ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Yogaraj Kori
Student ID: x23241365

School of Computing
National College of Ireland

Supervisor: Abid Yagoob

‘-—
National College of Ireland \ National

MSc Project Submission Sheet fr()eligfglf
School of Computing

Student Name: Ao To =T = | I 1o] o TSRO PRROPRRYR
Student ID: ... X23241365. e
Programme: MSc In Data Analytics.....cccocceviinirnnnen. Year: ... 2024..........
Module: . Research Project.......ccocoeeiiiiiie e
Lecturer: ... ADbId Yagoob.......oooic e e
Submission
Due Date: ... 1271272024 ..t e
Project Title: Fictional Face Generation using Adversarial Models............
Word Count: ... 1383 Page Count: 11,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ...l YOgaraj KOMi...ooooei it

Date: = 12/12/2024 ...t

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Yogaraj Kori
Student ID: x23241365

1 Overview

This is a research manual for my project “Fictional Face Generation using Adversarial
Models™. This will serve as a log and a manual for the technical procedure of development
and further execution of the project. It contains data on the tools required, setup of
environment and code configurations for this project. This manual also contains certain code
required to configure the project.

2 Environment and Requirements

2.1 Environment

This project is run on Google Collab as it requires GPU for proper and fast executions of the
code. You can turn the GPU on in google collab by changing the runtime type to T4 GPU
with High RAM.

Change runtime type

Fig 1: changing runtime type in Google Collab.

2.2 Hardware Requirements

The Hardware Requirements for this Research project requires GPU and CPU components
following which the program can be executed.

Operating System Requirements: Windows 10 or similar.
Processor: Intel(R) Core (TM) i3 with 2.5GHz 1.8GHz
Storage: 512 GB

RAM: 8.0 GB

2.3 Software Requirements

This project was built and run on this software environment.
Integrated Development Environment: Google Collab Python3
Programming Language: Python 3

Storage: Google drive.

Other Tools: Notepad, SmartDraw, any Image Viewer

3 Setting up Environment on Google Collab

We have written our program in google collab, you can access google collab by simply going
to the website and opening a new notebook, uploading and executing the code. However, the
first piece of code you will need to run is to allow google collab to connect with google drive.
The code to be used is shown below.

2 from google.co
3 drive.mount("/

=~ Mounted at /content/google drive

Fig 2: Connecting to google drive.

4 Data Collection.

We will be collecting the data from the data source, which is Kaggle using the Kaggle API, to
get the APl information you can go to the following website.
https://www.kaggle.com/datasets/jessicali9530/celeba-dataset, the screenshot of the page is also
shown below for your reference.

= Q, search
Create
B essicaniu + 1665 New Notebook
@ Home
 competiions CelebFaces Attributes (CelebA) Dataset
@ Datasets | Over 200k images of celebrities with 40 binary attribute annotations
A Models
<> Co
Data Card Code (558) Discussion (10) Suggestions (1}
E bis o
= About Dataset Usability ©

Context License

Expected update frequency
Not specified

Flé ‘3: Kaé\glemdata soa'rcelt”

4.1 Data Download:

We will be downloading the dataset using the API directly from the code, but we will first be
requiring the path for the dataset. The code for this can be seen below.

2

https://www.kaggle.com/datasets/jessicali9530/celeba-dataset

[1 1

2 lkaggle datasets download -d jessicali953@/celeba-dataset

S+ Dataset URL:
License(s): other
Downloading celeba-dataset.zip to fcontent
100% 1.33G/1.33G [00:47<00:00, 30.6MB/s]
100% 1.33G/1.33G [00:47<00:00, 30.2MB/s]

Fig 5: Kaggle data download

4.2 Data Extraction

The downloaded data will be in the form of a zip file which should then extracted into the
google collab disk using the next code snippet.

1
2
3 lunzip \¥.zip && rm *_zip

=
inflating: img align celeba/fimg align celeba/197604_jpg
inflating: img align_celeba/img_align_celeba/197605.jpes
inflating: img _align_celeba/img_align_celeba/197606.jpg
inflating: img_align_celeba/img_align_celeba/197607.jpes
inflating: img align celebafimg align celeba/197608.jpg
inflating: img align celebafimg align celeba/197609.jpg

Fig 6: Kaggle data download

5 Preprocessing.

After Data collection, the next step is to preprocess the data but to first handle the data, we
will need to download the required libraries for the project.

5.1 Required Libraries.

The following packages are required for the proper execution of the project.
TensorFlow

Keras

Numpy

Matplotlib

CVv2

Tgdm

keras.preprocessing.image
skimage.metrics.structural_similarity
scipy.linalg.sqrtm
tensorflow.keras.applications.InceptionVV3
tensorflow.keras.mixed_precision

imagio

from google.colab im
2 drive.mount (" /c

4 import tensor

rint (" Num ble: ™, len{tf.config.experimental.list_physical_devices('GPU"))

ib.pyplot as

tgqdm import tqdm

keras.preprocessing. image import img to array
time
warnings

ym tensorflow.keras import mixed p
icy = mixed precisi Policy("mix

xed_precision.set_glc _policy(p

Fig 7: python Libraries Import

5.2 Flexible GPU application

Once the necessary libraries are called, we will need to make sure that the GPU RAM varies
as the program might require more RAM for a code snippet and less RAM for another
snippet. The below figure shows the code snippet to make the GPU flexible.

|l gpus = tf.config.list physical devices('GPU")

for gpu in gpus:

tf.config.experimental.set_memory grouth(npu
logical gpus = tf conflg list logical devices('GPU')
print(len(gpus) ical GPUs,", len{logical gpus), "Logica
t RuntimeError as e:

print(e)

Fig 8: GPU configuration for memory Growth.
5.3 Preprocessing.

Now that we have flexible memory growth let us look at the preprocessing of the images. For
preprocessing the images, we will need to convert all the images in the form of an 4-
dimensional NumPy array and along with this save the path of each of the images. We will be
using CV2 library to save the images in RGB format in the array the code for which can be
seen below.

preprocess_img(img_path):
img = cv2.imread{(img_path)

Y ” not found or unable to
cv2. cvtColor‘(lmgJ cv2.COLOR EhRZRGE}
cv2.resize(img, (SIZE, SIZE))

He e
3 =

img to array(img)

e
3

img.astype('float32")
(img - 127.5) /[127.5
'n img

M e
3 3
- m g g o o9

m

Fig 9: Image preprocessing.

5.3 Saving the Image in a tf.records format.

Once we have pre-processed the images, we have saved the images in a tf.records format so
that we do not have to load the images every time during model building, this also ensures the
quick execution of the program and does not rely heavily on the GPU processing power.

Fig 10: Saing the images in tf.record format for faster model building.
5.4 Dataset Visualization.

Now that we have the preprocessed the data, let us visualize the data to understand what kind
of images are stored in the dataset.

1 plt.figure(figsize = (6,6))

3 for i in range(9):
plt.subplot(3
plt.imshow(
plt.axis(off")

suptitle("Som
show()

Fig 11:code for visualization of images.

6 Model Implementation.

For our project we have implemented 2 different GAN models which are implemented
seperately in 2 different .ipynb files. First Let us look at the implmentation of the DCGAN.

6.1 DCGAN

The below code snippet shows the implementation of generator and discriminator for the
DCGAN implementation.

Generator(latent_dim):
model = tf. keras.Sequential(name

model. -
model . add -LeakyReLU(nam

model . add .Conv2DTranspo c 5 -2, padding--same’,
model . add -BatchNormaliz
model . add -LeakyReLU(name=

model . add .Conv2DTranspoe . K i ides-2. padding-='same|'. name="Upsample_ to_64x64"))

model . add .BatchMormaliz

model.add(-LeakyReLU(nam

model._add(layers_conv2D(3. kernel size-5, strides-1, padding-="same’, activation-'tanh’, name="Final RGE_Output”))

~eturn model

Fig 12:code for generator.

Now let us look at the implementation of Discriminator for the DCGAN implementation.

quential()
putLayer(input_shape-(SIZE, SIZE, 3))
model _add(layers.Conv2D(6. 3, strides—2, padding

model . add (tf- s.layers.LeakyRelLU(

model . add Cconv2D strides-2, padding="same"’))
model _add(layers . BatchNorma tion())
model . d{layers.LeakyRel

model . d{layers.Conv2D(2 strides=2, padding-="same”))
model _add(layers . BatchNorma tion())
model . d{layers.LeakyRel

model . d{layers.Conv2D(5: strides=2, padding="same"”})
model . add(layers . BatchNorma

model .add(layers.LeakyRelLU())

model .add(layers.Flatten())
model -Dense (1))

return model

Fig 13: code for discriminator.

Now the most important part for the success of a GAN implementation is the optimizers for
both the generator and discriminator which influences the learning rate of the model and the
beta_1 and beta_2 momentum terms. The below figure shows the code snippet.

optimizer_gen tf.keras.optimizers.Adam({learning_rate—e.eee2, beta 1-©.5.,beta 2-8.5)
optimizer_dis tf.keras.optimizers.Adam(learning_rate—©9.00082, beta_1-©.5,beta_2-0.5)

Nk wWwN R

cross_entropy tf.keras.losses . .BinaryCrossentropy(from_logits =)]

Fig 14: Optimizers for DCGAN.

Along with the optimizers, the next crucial part of the implementation is the calculation of
the generator and the discriminator loss. The below code snippet shows the implementation
of the functions for each loss.

rator_loss(fake output):
1 cross_entropy(tf.ones_ like(fake_ output),fake output)

riminator_loss(fake output. real_ output):

» loss = cross_entropy(tf.zeros like(fake output),fake output)
loss = s _entropy(tf.ones like(real output),real output)
1 fake_loss + real_loss

Fig 15: Generator and Discriminator losses for DCGAN.

SNOWmAEWNE

Now once we have implemented the loss functions as well, we will also need to train the
model as such we have implemented the train steps function which will save the model
execution along with implementing and updating the above mentioned losses.

train_steps(images.epoch
noise = tf.random.normal([batch _size, latent_dim])

h tf.GradientTape disc_tape:
generated_images generator(noise)
fake_output = di

real_output = di

dis loss = discriminator_los

T 7 fleErt e — dRSt oA e fe Tree . f s RS e e S e ey
loptimizer disElaRUE- et ip(gradient_of_discriminator. discriminator.trainable_variables))

e tf.random.normal atch_size, latent_dim])
h tf.GradientTape gen_tape:

generated_images generator{noise)
fake output = discriminator(generated_images)
gen_los enerator_ loss(fake output)

checkpoint_path):
irs({checkpoint_path)
ave(os.path.join(checkpoint_path,
discriminator.save(os.path.join(checkpoint_pat

gradient_of_generator — gen_tape.gradient(gen_loss, generator.trainable_variables)
.apply_gradients(zip(gradient_of_generator, generator.trainable| variables))

urn 1 E . = 1 : dis_loss}

Fig 16: Train_steps Implementation.

The next step in the model implementation is to call all other functions and finally execute
the model.

. output_dir, dim-106, . . is_every-1@, excel file-"lo

s(output_dir):
tput_dir)

im))
) -numpy ()

Fig 17: Gan training function

Once we have implemented the GAN we can try to calculate the Inception score for the
model. The below code snippet calculates the Inception score of the model.

calculate inception_score(imag num_classes—108€. splits—18):
model = InceptionV3(include to . weights

images — preprocess_images(images)
preds — model.predict(ima
split_score L1
n pred ape[@]
split_size — mn // splits
i in range(spli
part — preds[i =
marginal — np.mean(part, axis—
cores — []
4 in range(part.shape[@]):
p_yx — part[i]
K1 diw entropy(p_yx, marginal)
= append (k1_di
split_scores.append(np.exp(np.mean (scores

urn np.mean(split_scores)

preprocess_images(images):

images resized — tf.image.res

urn preprocess_input{images resized.numpy

Fig 18: Incetion Score calculation function

6.2 WGAN_GP

Most of the model implementation is similar to the model implementation of DCGAN,
however we have implemented the model without utilizing the tf.records file and rather
preprocess the images directly in the program, this allows us to test the model performances
under various conditions and training capacities. Now first let us look at the generator
development in the below figure.

Fig 19: Generator for WGAN_GP

Now let us look at the discriminator development in the following figure.

build_discriminator(img_shape, activation="11i s alpha=8.2):
inputs = layers.Input(shape=img shape, name E*)

layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same', use_bias=) {inputs)
layers. LeakyRelU(alpha) (x)

layers.Conv2D(128, (5, 5), strides=(2, 2), padding="same’, use bias=)(x)
layers.LeakyRelLU(alpha) (x)

layers.Conv2D(256, (5, 5), strides=(2, 2), padding=" ', use_bias=) (x)
layers. LeakyRelLU(alpha) (x)

layers.Conv2D(512, (5, 5), strides=(2, 2), padding="same’, use bias=) (x)
layers. LeakyRelU(alpha) (x)

layers.Flatten()(x)
layers.Dropout(8.5)(x)

« = layers.Dense(1, activation=activation, dtype="float32’

model = tf.keras.Model(inputs=inputs, outputs=x)

Fig 20: discriminator for WGAN_GP

Now we will be implementing the WGAN_GP as a Object oriented programming code by
utilizing the classes and inheritance to implement the code. The first class of the model is the
code to implement the GAN itself, which building the model which calls the generator and
the discriminator, compiles the model, add instance noises and finally calculate the gradient
penalty.

enerator, noise dim, discrimi - Ep_welght=18.8):

self.gen
self.nois

opt, genera

ompi 1e (=*koware:

mimval-e, max
eal_samples + (1 - eps

gradients — tape.grad interpolated
gradients_norm — tf.sart(tf.reduce sum(tf.square (gradients),
gradient_penalt reduce mean({ (gradients_norm - 1.8) *= 2
ret gradient_penal

_ in range(self.discriminator_extra
h tf.GradientTape tape
fake samples self.generator{noise, training: 3]
» training=
» training=
noise({real_sample:
amp L

_samples, a amples, self.discriminator)

red_real, pred fake) + gp * self.gp weight

riminator.trainable_variables

self.discriminator. trainable_variable:

ith tf.GradientTap

erator.trainable wvariable:
plerads, self.generator.trainmable variables

_mean (gps))

Fig 22: train class 2 for WGAN_GP

Now the next class for the model implementation is the LRScheduler model which creates
the model results for each epoch and if the generator or the discriminator loss is high, we will
be applying gradient loss on the model output.

min_lr: float=a.

self.genera . 1f.model. generator_opt.learning_ra nump:
self.discriminator 1r self.model. criminator_opt.learning rate.nump:
self.compiled

1f.min_1r)
sign{new_g_1r)
o . epochs)), self.min_1r)

.model .discriminator.

 d_1r)

writer.flush

Fig 23: LRScheduler for WGAN_GP

At the end , we will be creating instances of all the classes and finally call the train class with
the instances of all other classes.

m_callback, inception_score_callback])

Fig 24: train class call with all instances for WGAN_GP

7 Model Implementation.

Now that we have implemented all the models we will need to calculate Inception Score,
Fretchet Inception score and Structural similarity Index, which we will be calculating using
the following classes.

port Inceptiomvz

calculate_fid{real_ images, generated_images):

inceptio i include_top=

(image:
.applications.incepticn s_input({images_resized)

real_images = preprocess_i (images)
generated_images = pre (generated_images)

real_features = inception model.predict(real_ images, batch_:
fake_features = inception model.predict(generated images, batch_:

mu_real = np.mean(
sigma_real = np.

mu_fake = np.mean(

sigma_fake = mp.cov

diff

covmean = sqrim(sigma_real @ sigma_fake + np.eye(sigma_real.shape[8]) * 1e-&)

covmean):
covmean an.real

Fi p.sum{diff**2) + np.trace(sipma_real + sigma_fake - 2 * covmean)
return fid

Fig 25: FID score calculation for WGAN_GP

Similarly we can implement SSIM and IS similar to the way we implemented for DCGAN.

8 Testing.

We have trained the model under various conditions including increasing and reducing the
training size, different implementations of the models and for different resolutions of images
and different batch sizes, from our various testing we believe this is the best model
implementation and provides the most optimal performance for the model.

10

References

Jagad Nabil Tuah Imanda, Bachtiar, F., & Achmad Ridok. (2023). Application of Deep
Convolutional Generative Adversarial Networks to Generate Pose Invariant Facial Image
Synthesis Data. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1049 -
1055. https://doi.org/10.29207/resti.v7i5.5112

Li S, Dutta V, He X, Matsumaru T. Deep Learning Based One-Class Detection System for
Fake Faces Generated by GAN Network. Sensors. 2022; 22(20):7767.
https://doi.org/10.3390/s22207767.

Reddy, Shirisha. (2024). Unveiling Spoofing Attempts: A DCGAN-based Approach to
Enhance Face Spoof Detection in Biometric Authentication.

11

https://doi.org/10.29207/resti.v7i5.5112
https://doi.org/10.3390/s22207767

