

Configuration Manual

MSc Research Project

MSc Data Analytics

Yogaraj Kori

Student ID: x23241365

School of Computing

National College of Ireland

Supervisor: Abid Yaqoob

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……. Yogaraj Kori……………………………………………………………………………………

Student ID:

………X23241365….………………………………………………………………………….……

Programme:

…. MSc In Data Analytics.…………………………

Year:

……2024……….

…..

Module:

……………………………Research Project…………………………………………….………

Lecturer:

……………………Abid Yaqoob……………………………………………………………….………

Submission

Due Date:

…………………12/12/2024………………………………………………………………….………

Project Title:

………………… Fictional Face Generation using Adversarial Models…………

Word Count:

………………1383……………… Page Count: …………………11………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

…………………………Yogaraj Kori………………………………………………………………

Date:

………………………………12/12/2024………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Yogaraj Kori

Student ID: x23241365

1 Overview

This is a research manual for my project “Fictional Face Generation using Adversarial

Models”. This will serve as a log and a manual for the technical procedure of development

and further execution of the project. It contains data on the tools required, setup of

environment and code configurations for this project. This manual also contains certain code

required to configure the project.

2 Environment and Requirements

2.1 Environment

This project is run on Google Collab as it requires GPU for proper and fast executions of the

code. You can turn the GPU on in google collab by changing the runtime type to T4 GPU

with High RAM.

Fig 1: changing runtime type in Google Collab.

2.2 Hardware Requirements

The Hardware Requirements for this Research project requires GPU and CPU components

following which the program can be executed.

• Operating System Requirements: Windows 10 or similar.

• Processor: Intel(R) Core (TM) i3 with 2.5GHz 1.8GHz

• Storage: 512 GB

• RAM: 8.0 GB

2

2.3 Software Requirements

This project was built and run on this software environment.

• Integrated Development Environment: Google Collab Python3

• Programming Language: Python 3

• Storage: Google drive.

• Other Tools: Notepad, SmartDraw, any Image Viewer

3 Setting up Environment on Google Collab

We have written our program in google collab, you can access google collab by simply going

to the website and opening a new notebook, uploading and executing the code. However, the

first piece of code you will need to run is to allow google collab to connect with google drive.

The code to be used is shown below.

Fig 2: Connecting to google drive.

4 Data Collection.

We will be collecting the data from the data source, which is Kaggle using the Kaggle API, to

get the API information you can go to the following website.

https://www.kaggle.com/datasets/jessicali9530/celeba-dataset, the screenshot of the page is also

shown below for your reference.

Fig 3: Kaggle data source.

4.1 Data Download:

We will be downloading the dataset using the API directly from the code, but we will first be

requiring the path for the dataset. The code for this can be seen below.

Fig 4: Kaggle data path collection.

https://www.kaggle.com/datasets/jessicali9530/celeba-dataset

3

Fig 5: Kaggle data download

4.2 Data Extraction

The downloaded data will be in the form of a zip file which should then extracted into the

google collab disk using the next code snippet.

Fig 6: Kaggle data download

5 Preprocessing.

After Data collection, the next step is to preprocess the data but to first handle the data, we

will need to download the required libraries for the project.

5.1 Required Libraries.

The following packages are required for the proper execution of the project.

• TensorFlow

• Keras

• Numpy

• Matplotlib

• CV2

• Tqdm

• keras.preprocessing.image

• skimage.metrics.structural_similarity

• scipy.linalg.sqrtm

• tensorflow.keras.applications.InceptionV3

• tensorflow.keras.mixed_precision

• imagio

4

Fig 7: python Libraries Import

5.2 Flexible GPU application

Once the necessary libraries are called, we will need to make sure that the GPU RAM varies

as the program might require more RAM for a code snippet and less RAM for another

snippet. The below figure shows the code snippet to make the GPU flexible.

Fig 8: GPU configuration for memory Growth.

5.3 Preprocessing.

Now that we have flexible memory growth let us look at the preprocessing of the images. For

preprocessing the images, we will need to convert all the images in the form of an 4-

dimensional NumPy array and along with this save the path of each of the images. We will be

using CV2 library to save the images in RGB format in the array the code for which can be

seen below.

Fig 9: Image preprocessing.

5

5.3 Saving the Image in a tf.records format.

Once we have pre-processed the images, we have saved the images in a tf.records format so

that we do not have to load the images every time during model building, this also ensures the

quick execution of the program and does not rely heavily on the GPU processing power.

Fig 10: Saving the images in tf.record format for faster model building.

5.4 Dataset Visualization.

Now that we have the preprocessed the data, let us visualize the data to understand what kind

of images are stored in the dataset.

Fig 11:code for visualization of images.

6 Model Implementation.

For our project we have implemented 2 different GAN models which are implemented

seperately in 2 different .ipynb files. First Let us look at the implmentation of the DCGAN.

6.1 DCGAN

The below code snippet shows the implementation of generator and discriminator for the

DCGAN implementation.

6

Fig 12:code for generator.

Now let us look at the implementation of Discriminator for the DCGAN implementation.

Fig 13: code for discriminator.

Now the most important part for the success of a GAN implementation is the optimizers for

both the generator and discriminator which influences the learning rate of the model and the

beta_1 and beta_2 momentum terms. The below figure shows the code snippet.

Fig 14: Optimizers for DCGAN.

Along with the optimizers, the next crucial part of the implementation is the calculation of

the generator and the discriminator loss. The below code snippet shows the implementation

of the functions for each loss.

Fig 15: Generator and Discriminator losses for DCGAN.

Now once we have implemented the loss functions as well, we will also need to train the

model as such we have implemented the train steps function which will save the model

execution along with implementing and updating the above mentioned losses.

7

Fig 16: Train_steps Implementation.

The next step in the model implementation is to call all other functions and finally execute

the model.

Fig 17: Gan training function

Once we have implemented the GAN we can try to calculate the Inception score for the

model. The below code snippet calculates the Inception score of the model.

Fig 18: Incetion Score calculation function

8

6.2 WGAN_GP

Most of the model implementation is similar to the model implementation of DCGAN,

however we have implemented the model without utilizing the tf.records file and rather

preprocess the images directly in the program, this allows us to test the model performances

under various conditions and training capacities. Now first let us look at the generator

development in the below figure.

Fig 19: Generator for WGAN_GP

Now let us look at the discriminator development in the following figure.

Fig 20: discriminator for WGAN_GP

Now we will be implementing the WGAN_GP as a Object oriented programming code by

utilizing the classes and inheritance to implement the code. The first class of the model is the

code to implement the GAN itself, which building the model which calls the generator and

the discriminator, compiles the model, add instance noises and finally calculate the gradient

penalty.

9

Fig 21: train class 1 for WGAN_GP

Fig 22: train class 2 for WGAN_GP

Now the next class for the model implementation is the LRScheduler model which creates

the model results for each epoch and if the generator or the discriminator loss is high, we will

be applying gradient loss on the model output.

Fig 23: LRScheduler for WGAN_GP

At the end , we will be creating instances of all the classes and finally call the train class with

the instances of all other classes.

10

Fig 24: train class call with all instances for WGAN_GP

7 Model Implementation.

Now that we have implemented all the models we will need to calculate Inception Score,

Fretchet Inception score and Structural similarity Index, which we will be calculating using

the following classes.

Fig 25: FID score calculation for WGAN_GP

Similarly we can implement SSIM and IS similar to the way we implemented for DCGAN.

8 Testing.

We have trained the model under various conditions including increasing and reducing the

training size, different implementations of the models and for different resolutions of images

and different batch sizes, from our various testing we believe this is the best model

implementation and provides the most optimal performance for the model.

11

References

Jagad Nabil Tuah Imanda, Bachtiar, F., & Achmad Ridok. (2023). Application of Deep

Convolutional Generative Adversarial Networks to Generate Pose Invariant Facial Image

Synthesis Data. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1049 -

1055. https://doi.org/10.29207/resti.v7i5.5112

Li S, Dutta V, He X, Matsumaru T. Deep Learning Based One-Class Detection System for

Fake Faces Generated by GAN Network. Sensors. 2022; 22(20):7767.

https://doi.org/10.3390/s22207767.

Reddy, Shirisha. (2024). Unveiling Spoofing Attempts: A DCGAN-based Approach to
Enhance Face Spoof Detection in Biometric Authentication.

https://doi.org/10.29207/resti.v7i5.5112
https://doi.org/10.3390/s22207767

