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Fictional Face Generation using DCGAN and WGAN 
with Gradient Penalty 

Yograj Kori  

X23241365  
 

 

Abstract 

With the increase in the capability of Artificial Intelligence and Machine Learning 

Algorithms, scams and deep-fake profiles on social media websites are becoming 

predominant. As such it is important to counter such malicious activities by bettering 

existing human face detection algorithms and testing them with deep-fake images of our 

own. In this project, we will be providing a human face generation algorithm with the 

ability to create high end facial images of non-existent personalities using Deep 

Convolutional Generative Adversarial Networks (DC-GAN) and Wasserstein 

Generative Adversarial Networks with Gradient Penalty (WGAN + GP). A 

collection of thirty thousand images of cropped and augmented human faces was used to 

train the model where two parts of the algorithm generator and discriminator compete 

with each other in creation and challenging of new images. To analyze the model 

performance, we will be monitoring Inception Score (IS) of the generated images along 

with plotting the generator and the discriminator loses to understand the imbalance. 

Along with Inception Score we have also utilized Structural Similarity Index (SSIM) 

which compares the contextual and structural similarity of generated images and its 

training image counterparts as well as Fréchet Inception Distance (FID). With this 

implementation we can generate non-existent human faces and utilize it to further 

improve facial recognition software by feeding these deep-fake images for negative 

validations and edge case scenario validation.  

 

Keywords: Deep Convolution Generative Adversarial Network (DC-GAN), 

Wasserstein Generative Adversarial Networks + Gradient Penalty (WGAN + GP), 

Inception Score (IS), Fréchet Inception Distance (FID), Structural Similarity Index 

(SSIM), Negative validation, Edge Case validations 
 

1 Introduction 
 

While the framework for Generative Adversarial Networks was introduced in 2014, it 

still serves as an exciting topic and several models resembling the original idea of two 

different neural networks competing and improving each other have been developed. While 

such models can be considered semi-supervised models, the purview of GANs can fall 

under both semi-supervised and unsupervised learning. The conceptual idea behind the 

model is similar to a author and a plagiarism model, where the author creates contents based 

on his own creativity and the plagiarism model compares the authors writing to its own 

understanding of other existing works and gives its opinion of whether the content is self-

written or plagiarized. In this example although the work of author and the model might seem 

reliant on each other, they work concurrently creating and challenging contents. 

From the example above, we understand that GANs have a neural network which 

exclusively generates contents which is inherently called Generator and an adversarial 

neural network which challenges the Generators content called the Discriminator. The 

Generators G Generatively do not have access to the training data and immerse themselves in 

creating content which in the case of our project are images. While the Discriminator D has 

access to the dataset, it compares the image generated by the Generator G with the training 
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data and gives a decision as to whether it is a fake image or a real image. If the Discriminator 

judges an image as fake, the Generator works harder on creating more realistic images, 

similarly the Discriminator keeps improving itself in determining real and fake images until a 

point where it is hard for it to determine and it plateaus. 

 

Fig 1: Working of GAN. 

The model is better explained with the figure 1 where the Generator utilizes random 

uniform noise and generates human faces and the Discriminator model which has access 

to training images determines whether the image is real or fake. Each error made by the 

Discriminator is backpropagated to the Generator. Generator is further trained with random 

high dimensional noise called the latent space. This function of Generator is mathematically 

defined as G: G(z). The Discriminator can be viewed as a probability matrix of 0 and 1 , 0 

being the image being fake and 1 being the image being realistic. For a simple GAN we can 

denote the Discriminator D as D: D(x) → (0, 1). When the generator's output distribution 

perfectly matches the real data, the discriminator becomes unable to differentiate between 

real and fake images, predicting a probability of 0.5 for all inputs. This equilibrium represents 

the ideal state of a GAN, although achieving this balance is often challenging during training. 

Deep Convolutional Generative Adversarial Networks are a type of GAN which 

implements GAN utilizing the convolutional powers for better image generation. It leverages 

the deep convolutional Neural Networks to generate realistic images. It was first introduced 

by Radford, Metz and Chintala in 2015, where the key concept was to utilize the powers of 

both GAN and CNN for both the generator and the discriminator. In this implementation 

generators learned to map the latent space to the data space of the real dataset, while the 

discriminator acts as a challenger to the generator evaluating its performance. These models 

incorporate architectural features like strided convolutions, ReLU and Leaky ReLU 

activations along with tanh activation models and batch normalizations to generate images. 

The other positive note for this model was the stable training of the model and an enhanced 

output quality of the images. Along with image generation they are also used in style 

transfers and unsupervised feature learning. 

Wasserstein Generative Adversarial Network with Gradient penalty is another 

such model which was improved upon the initial GAN and the WGAN first introduced by 

Arjovsky et al. It leverages the Wasserstein distance for comparing the real and generated 

images providing more meaningful loss values while also improving the generators feedback. 

But the WGAN first implemented used Lipschitz constraint by weight clipping which led to 

a limited model capacity and convergence of generator and discriminator model outputs. To 

overcome this a gradient penalty was introduced which penalizes the model when the 

normal deviation grows or drops below 1 ensuring the Lipschitz constraint. This 

implementation works similarly to DCGAN, however when the generator output varies from 

the gradient norm, it adds a penalty to the discriminator loss which ensures better quality 

images as the model progresses its training. Not only can this model be utilized for image 

generation, but it can also be utilized in image synthesis, 3D models creation and audio 



3 
 

 

generations. It is not only more stable than a typical DCGAN, it is also faster in computing 

and produces images of a higher quality than that of DCGAN. 

GANs have numerous applications across various domains. For example, in the fashion 

industry, GANs can be used to create images of virtual models, reducing the need for costly 

photoshoots and logistical expenses. This allows for the creation of diverse advertising 

campaigns, potentially enhancing customer engagement and sales. Additionally, after 

adequate training, GANs can enhance image quality by preserving intricate details such as 

colour, background, and textures, making them valuable for tasks like image super-

resolution, restoration, and content generation. These capabilities demonstrate GAN’s 

potential to revolutionize industries that rely on high-quality and diverse visual content. 

 Although there are more recent variations of GAN available today like StyleGAN, we 

chose to implement DCGAN and WGAN_GP due to the resource intensive training of the 

models. StyleGAN and other recent models require significant memory and 

computational power along with extensive hyperparameter tuning for their implementation 

and since we will be implementing the models in a memory and computational power 

constraints, DCGAN and WGAN_GP would help us in answering the below Research 

questions significantly. 

 

1.1 Research Problem/ Question 

 

Q1: Can machine learning algorithms be used to generate accurate human faces and if so, 

how accurate are the generated images. Once we answer these questions, we will also answer 

how the model performs for each of the different factors mentioned above. 

Q2: How does the training size factor into the performance of a complex model like 

Generative Adversarial Networks? 

Q3: Does the resolution of images that the model is trained on affect the accuracy of the 

model. 

Q4: How does the Generator and the Discriminator of the model perform throughout the 

model training? 

Q5: Can we measure the accuracy of the generated Images using strategies like Inception 

Score or Structural similarity Measure. 

With this project, we will be trying to answer these Research question which from hereon 

will be mentioned with their Q numbers. 

 

 

 

2 Related Work 
 

2.1 DCGAN 

The authors of the paper [1] explore on the pose invariant image synthesis data to 

generate images for the model while training the model on Queen Mary University of London 

Multiview Face dataset. Generative Adversarial networks was implemented with Generator 

hyperparameters as learning rate 0.002, beta1 as 0.5, Adam as Generator optimizer similarly 

for the discriminator learning rate as 0.0002 and 0.5 for beta1 and like generator Adam as the 

optimiser. Although the model was trained using a Deep Convolutional Generative 

Adversarial Network with an Fréchet Inception Distance (FID) of 74.05, they were not able 
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to generate a proper image for the model and achieved a dip in the curve in the FID score 

during the initial and end of the curve of the epochs, which indicate that the generator and the 

discriminator performed poorly during the start and the end of the training. Contrary to the 

performance to the [1], the authors of [2] use the Celeba dataset which provides higher 

amount of training images. In [2] the authors perform image generation using GAN but also 

perform image recognition to check the accuracy of the generated image, although this seems 

like the right approach the authors were not able to achieve greater accuracy at the same time. 

They used the model with dataset labeling which consists of over 40 binary attributes, 

including facial attributes (Bald, Blond hair, Black hair, Eyeglasses, Smiling, etc) , 

demographics, ethnicities, ages and genders. 

While both papers give a wide variety of results and technical contributions the results 

were inconsistent. However, in [3] they implement DCGAN similarly to the above papers 

with the exception of utilizing one-class classification model to judge the accuracy of the 

facial images and the generated images. Along with the one-class classification model they 

also implemented various filter enhancement methods along with Multi Channel 

Convolutional Neural Networks (MCCNN). The generated images were then fed as inputs to 

a image classification model where the accuracy of the models were interpreted. The 

accuracy of the MCCNN was defined to be higher than the accuracy of the other industry 

standard models showing a great innovation, however the model was not trained on higher 

quality images and were implemented on limited number of image datasets and might not 

produce similar results under different circumstances. [4] proposes human face generation 

using unlabeled data and random noise They use models like DCGAN and a simple GAN. 

They also implement techniques like noise removal, image normalization and Histogram 

Equalization and Contrast enhancement. They also used techniques like data augmentation, 

data imputation and transferred learning with pretrained DCGAN, while these techniques 

increased the accuracy of the model and enhanced model performance, they were unable to 

achieve highly defined accuracy because the results were examined using the loss functions 

of a simple GAN where the generator generates images from the scratch and the 

discriminator tries to decide whether the image is fake or real. While the implementation 

seems relevant to the trends, they do not have proper evaluation metrics for the model as 

techniques like Structural Similarity index and Inception Score help with the proper model 

evaluation. 

The authors [5] in this paper uses Deep convolutional generative adversarial networks 

to create fake face images. They have used CelebA dataset as the training dataset for the 

same. The design followed in this paper is the “generator- used to generate the fake face 

images and discriminator- used to differentiate between real face images and fake face 

images” method. The training is done with 40 epochs, the generator and the discriminator 

will be trained in turn; to calculate the losses, they have used loss functions that are 

previously used. This model is trained on GPU along with model inputs being moved to 

GPU. By the end of this research the model was able to generate fake human face images. 

Even though they were able to produce the results as same as human faces, their model was 

not stable enough as well the faces were shady because they were not clear in differentiating 

the skin color of the face with respect to white and black. Another important factor is the 

execution of the model for the lower epoch leading to an undervalued output. Similar to this, 

the [6] propose a method to generate fake human face images using Deep Convolutional 

Generative Adversarial Network (DCGAN) technique. And use Measuring the Quality of the 

Features of an Image (MEQFI) to evaluate the images produced. They used three datasets in 

this model as the training dataset namely CelebA, CelebA-HQ3 and Labelled Faces in the 
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Wild LFW dataset. The methods used for the model development were batch size = 128, 

image size =64×64, noise vector =100, number of features in both of the Generator and the 

Discriminator 64, and they used the Adam optimizer [14] to update both G and D neural 

networks with a learning rate of 0.0002 and β1 =0.5. They have managed to generate fake 

face images with better quality and with the help of good dataset examples, but as mentioned 

in the paper their model could not be as stable as they have expected it to be because of 

training process used in DCGAN and they can achieve more score from the measure if they 

follow more effective processes. 

The authors [7] proposed a model using Pooling layers, DCGAN, Network 

Architecture, Hyperparameters, Training processes and evaluation parameter. So, after the 

series of implementations and simulations, they could generate the fake face images from the 

DCGAN model which they got as the low-fidelity 64*64-dimension images. They were able 

to generate the artificial face images which had the structural similarity of up-to .34 with 

respect to the original dataset of CelebA training data. But this model can be improved to get 

a high-resolution image with better hardware capacity and improved GANs techniques and 

processes. Another issue with the model was that no further preprocessing on the input 

images. Unlike this paper, in the next paper the [8] proposes a model to reconstruct the 

personal image from forensic sketches using DCGAN. They have used CHUK Faces as the 

dataset. The proposed design was developed representing the model-specific function stage 

performed with a specific Pre-processing stage- This stage consists of noise reduction, image 

resizing and normalization for consistency and improve the input quality for the later stages. 

By the end of the processes and techniques followed, using the DCGAN algorithm they 

managed to reconstruct the personal face images by transforming the sketches into vibrant 

realistic images. The image quality was evaluated by the nearest neighbor method. Although 

this paper utilized great process implementation, The evaluated score was not up-to the mark. 

 

2.2 WGAN+GP 
 

The main issue with the DCGAN is its instability in training, which is harder to cure, 

when either the generator or the discriminator starts behaving badly, we have to ensure that it 

is corrected. One such implementation of GAN called the Wasserstein GAN with gradient 

penalty addresses this issue by applying a penalty on the generator when the model performs 

poorly.[9] talks about the implementation of WGAN_GP where the model was trained on 

human faces aiming to utilize GAN for facial reconstruction and medical engineering. The 

positive note of this implementation is the utilization of small dataset and achieving higher 

accurate images. They utilize Wasserstein loss as a way to improve the losses from both the 

generator and the discriminator leading to a more stable model training. But the negative 

affects of this implementation is that model stability is not focused on, while the model does 

perform better at initial stages, it does not however have a steady model training and the 

discriminator overwhelms the generator after certain epoch.  

[10] talks about the implementation of multiple variations of GAN including 

WGAN+GP, where the authors of the paper implement and compare the model performances 

for 128 X 128 pixeled images, The generated image resembles real human beings, however, 

doesn't reach the level of which the original paper demonstrated because of insufficient 

computing power and limited running time. The paper also talks about the ethical concerns of 

the Human Face Generation using GANs and makes a prospect for the future of the human 

face generation. They also found that WGAN with weight clipping overlooks data 
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distribution's high-order moments leading to extra layers of the input dataset images being 

clipped from its source and the model is trained on clipped images leading to a higher quality 

Human face generation. The results from this model in the paper demonstrated higher 

accuracy of human faces with decreased deformities, however the margin blurred depiction 

still remained a problem for the images. 
 
 

3 Research Methodology 
 

This research was implemented using a dataset with a moderate sized unlabelled image. 

While GANs require huge datasets with labelled images for better image generation, we are 

trying to improve the accuracy of the GAN by using an unlabelled dataset. With this we will 

be following the traditional approach to GAN as mentioned in the figure 2 and we will be 

experimenting with different approaches including activation functions, hyper-

parameters, batch sizes and image resolutions. The model performance also hinges on the 

number of epochs the generator and the discriminator are trained on.  

 

 
Fig 2: Framework of GAN utilized. 

 

3.1. Libraries Utilized 
 

Since Image generation at first involves the preprocessing and augmentation of 

images, we will be utilizing the TensorFlow library to process the images, and we will also 

be saving the images into tf.records format since image processing is a time and labour-

intensive process. Since we will also be processing the data, we will be requiring CV2 

library to process the data. The pre-processed images are stored in the form of a four-

dimensional array using keras preprocessing library. The next step is to implement the 

GAN, for which we will be utilizing convolutional neural networks using keras for both 

generators and discriminators. 

 

3.2 Data Gathering 
 

One of the most popular datasets used in Image processing and the image generation 

sources is the CelebA website which provides a vast dataset of cropped images of 

celebrities. The original dataset has 202,599 images of various celebrities of different skin 

colour and different facial structures. The images are also taken from different time frames 

and different backgrounds, but all match a similar structure and are aligned and cropped in 
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the dataset. Although the dataset contains massive amounts of images, for the purpose of our 

project we will be taking only 30,000 images which will reduce the training time and the 

computational complexity of the model. 

 

 
Fig 3: Dataset Images. 

 

 

 

 

 

3.3 DATA AUGMENTATION 

 

 In this step, we will need to increase the complexity of the images dataset so the 

model can perform better and can be trained for vast set of heterogeneous data. As such we 

will be performing Data augmentation on the dataset, where we will take existing images 

and rotate the images at different angles leading to a more diverse training of the model. In 

most of the cases, the images have been rotated at an angle of 30 degrees either in clockwise 

direction or anti clockwise direction and in some cases the images have been completely 

flipped upside down, so that the model can be trained on a more diverse dataset. 

 

3.4 DATA Preprocessing 

 

This is one the most important and time consuming process in the project, as we are 

dealing with image data, we will need to process all the images along with the image path, 

For the purpose of better utilization of time during the model building, we have the image 

dataset in a Tensor Flow record format which can be easily ingested by both the Generator 

and the Discriminator. Since the original dataset has copious amounts of images, we will be 

utilizing the Kaggle API to directly download and unzip the images from the API. Once 

images are available, we will be converting the images back to an RGB format, following 

which we will be able to convert it into a 4-Dimensional NumPy array, but the most 

important step is to convert the images in a latent space of [1, -1]. This is a crucial step in 

our preprocessing as the model can not recognize any input exceeding the range of this latent 

space and ensures that all the features of the image contribute equally to the model training. 

 

As seen in figure 2, the loss of the discriminator is looped back to the generator model 

so that the generator performs better. as such we have utilized cross entropy model loss 

calculations for each generator and the discriminator where generator loss is calculated as 

the cross entropy of the fake output whereas the model loss for the discriminator is calculated 

as the cross entropy comparison of the fake output of the generator to the fake output of the 

discriminator, similarly the real loss of the model is calculated as the entropy comparison of 

the real output and the real images. the final model loss for the discriminator is calculated as 

the sum of real loss and the fake loss. 
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 3.4 Model building 

 

3.4.1 NOISE GENERATION 

 

The first step towards the model development is the creation of noise array also called 

the latent dimension array, which is an array of normalized random values between the 

space of [1, -1]. The below figure shows us the Generated Latent space noise image which 

has been normalized. 

 

 
Fig 4: Noise Generation. 

 

3.4.2  GENERATOR 

 

Now that we have a clean, pre-processed and augmented dataset which has been 

converted into a NumPy array with a latent space of [1, -1], we will now be working on 

building on building the Generator and the Discriminator for the model. The Generator G 

does not have access to the input numpy array and as such will need to have random uniform 

noise as its input. The number of layers in the Generator will depend on the pixelation of the 

images we intend to generate but for the purpose of this project, we will be generating images 

of 64 X 64. The generator model contains multiple layers of 2D Convolutional Neural 

Networks, where the initial layers work on generating the images from higher image 

resolutions and the later layers work on fine tuning the lower resolutions of the image which 

can be seen as the initial layers looking at the bigger picture while the later layers work on 

fine tuning smaller and more intensive parts of the images. The figure 5 shows us a better 

understanding of the development of the Generator model. 

 

 
Fig 5: Generator Layers. 

 

For the project, we will be utilizing he_normal kernel initializer which will help in 

faster initialization of the generator’s first layer following which the last layer of the model 

will have tanh activation function. The figure 6 shows the summary of the Generator function 

once it is built and trained. 



9 
 

 

 

 
Fig 6: Generator summary. 

 

3.4.3  DISCRIMINATOR 

 

While the generator is trained on a random normalized noise in the latent space, the 

discriminator is trained on the images array, following which the model can decide on 

whether the generated image is real or fake. The discriminator works inversely to generator 

as the model seeks for the lower resolution of images first and then with the later layers the 

model starts looking at the higher resolutions of the images. This is implemented like the 

generator and the summary is represented below. 

 

 
Fig 7: Discriminator summary. 

 

3.4.4  LOSES 

 

 Loses in GAN are used by both the generator and the discriminators to create realistic 

images, where the generator uses the Wasserstein Loss to trick the discriminator, and the 

discriminator uses it to understand the reality of the generator output. Tracking the loses for 

both of these provide valuable information on training of the model. Ideally both the 

generator and the discriminator losses need to converge as the model learns better which 

implies that the generator is creating exceptional images and the discriminator is unable to 

prove that the images are fake. 

 

 

3.5  DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS 
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With the implementation of generator and the discriminator shown above we were 

able to implement DCGAN. This is a Generative Adversarial Network architecture which 

involves replacing the pooling layers with strided convolutions for discriminator and strided 

fractional convolutions for the generator. It also involves using batchnorm and removing 

hidden layers which are fully connected to allow us to modify the model for deeper 

architectures. This also allows us to implement LeakyReLU for all the layers in our 

discriminator. This can be considered as an evolved version of our simple GAN and as such 

produces higher resolution images which are more well defined, since Convolutional 

Neural Networks greatly enhances the generated image quality. The main issue regarding this 

model is the tracking of the model performance leading to a confused model development 

along with the disruption in the model stability. To improve on this, we have also 

implemented a different model which can perform more stably.  

 

3.6  WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS WITH 

GRADIENT PENALTY 

 

Along with DCGAN, we were also able to implement Wasserstein GAN which involves 

loss formulation called the Wasserstein loss along with a Gradient Norm penalty every time 

the model performs poorly. This model using gradient clipping using weights to achieve 

model correction at any given moment of the training. The main issue with this model 

however is the potential of gradient explosion or a gradient vanishing which happens 

when the model is unable to decide on a model weight and keeps increasing the model weight 

so the generator and the discriminator starts performing worse and worse leading to a model 

disruption. However, with the help of Gradient Penalty we can overcome this result where 

whenever the model performs irregularly, we can punish the model into performing better 

leading to a more stable model generation. 

 
 

4 Implementation 
 

4.1 Implementation Requirements. 
 

Image generation is a hardware intensive process requiring high Functioning 

Graphical Processing Units and high RAM, as such for the purpose of project development 

we have utilized Google collab to handle GPU requirements. We have utilized a System 

RAM of 15 GB as well as GPU RAM of 15 GB with 80% to 90% of the RAM utilization. 

These configurations help in the model training allowing the model to perform efficiently and 

without delays. 

 

4.2 Model Implementation 
 

Our main objective of the project was to answer the Research Questions mentioned in 

the 1.1 section of the report along with implementation of two different models which behave 

differently in two distinct methods. So that we will be able to compare and contrast not 

only the model performance but also how the steps prior to the model training affects the 

performance of the model. The below subtopics not only highlight the model development 

but also define the structure of implementation as well as define the best hyperparameters for 

the models and also includes the best evaluation metrics for each of the models. After 

multiple executions, we were able to define the best configurations for the model to perform 
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with the highest efficiency. As such we have been able to define the best configurations as 

below. 

 

4.2.1 DCGAN 
We began our project with the implementation of this model and after weighing in the 

computational costs and the execution time of each epoch of the model, we were able to find 

the best optimal flow for the project is shown in figure 8. 

 

 
Fig 8: WGAN_GP implementation Flowchart. 

We used data preprocessing as a separate step in the model development rather 

than as a model implementation step since the major consumption of time in the model 

execution was taken up by the preprocessing and augmentation of the images. As such we 

downloaded, pre-processed and augmented images from the dataset and saved the pre-

processed data as a TensorFlow Record. Following which we implemented our model by first 

extracting the TensorFlow Record and then building the generator and the discriminator 

followed by model implementation and then display of the result and then calculating the 

evaluation metrics for the generated images. Because DCGAN is a slower model when 

compared to other models like WGAN_GP, we have utilized a training size of only 3000 

Images with an image resolution of 64 X 64 both of which were deduced from our research 

for the most optimal execution while considering the constraints of our own computational 

capabilities both physical and logical. 

 

Upon implementation of our initial model with fewer layers, we then improved on it 

but adding more layers to the model. As such we were able to summarize the number of 

layers required for both the generator and the discriminator and its optimal execution. The 

table 1 explains the number of layers in the model.  

 

Layer Name Number of Generator 
layers 

Number of Discriminator 
Layers 

Dense Layer 1 1 

Reshape Layer 1 0 

LeakyRelu Layer 3 4 

Conv2DTranspose Layer 3 4 

Batch Normalization Layer 2 0 
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Flatten Layer 0 1 

Input Layer 0 1 
Table 1: DCGAN Layers. 

 

Along with these layers, we also have hyperparameters which are set as follows 

 

Hyperparameter Name Value 

Optimiser ADAM 

Learning Rate 0.0002 

Beta_1 0.5 

Beta_2 0.5 

Epoch 100 

Batch Size 32 

Latent Dim 100 

Input Size 30,000 

Table 2: DCGAN Hyperparameters. 

 

 

 

4.2.2 WGAN + GP 
We were able to implement this model by utilizing the images from the Celeba 

dataset by downloading the dataset from the Kaggle API and directly loading the data into the 

google collab disk, following which we were able to generate, save the image paths in the 

disk and perform data augmentation on the images as a step in the preprocessing of the 

training dataset. For the purpose of implementing this model under both physical and logical 

constraints like the GPU requirements, model enhancements and evaluation capabilities of 

existing metrics, we have decided the optimal training size to be 30,000 images which we 

will vary after initial implementation to answer of Research Question Q2. For the same 

constraints explained above, we will able be implementing the models in order to produce 

images which are only 64 X 64 pixels which will again be varied in order to answer the 

Research Question Q3. The whole model implementation can be seen in the flowchart in 

figure 9. 
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Fig 9: WGAN_GP implementation Flowchart. 

 

Once the model was implemented, through our research we were able to quantify the 

layers necessary for both generator and the discriminator for the optimal execution. As such 

the Below table explains the number of layers for this model. 

 

Layer Name Number of Generator 
layers 

Number of Discriminator 
Layers 

Dense Layer 1 1 

Reshape Layer 1 0 

LeakyRelu Layer 4 4 

Conv2DTranspose Layer 4 4 

Batch Normalization Layer 4 0 

Flatten Layer 0 1 

Input Layer 1 1 

Dropout Layer 1 1 
Table 3: WGAN+GP Layers. 

 

Along with these layers, we also have hyperparameters which are set as follows 

 

Hyperparameter Name Value 

Optimiser ADAM 

Learning Rate 0.0001 

Beta_1 0.5 

Beta_2 0.9 

Epoch 200 

Batch Size 128 

Latent Dim 128 
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Input Size 30,000 

Table 4: WGAN+GP Hyperparameters. 

 

4.3 Difference in EPOCH 
 

We can see the difference between DCGAN and WGAN_GP in terms of epoch, this was implemented 

so as to check for the variation in the output levels of the model under different epochs. Since both the 
models are implemented with the same basic learning rates and other hyperparameters modifying the 

epochs is crucial in understanding the difference between outputs of each of the models. 

 

5 Results 
 

In this section, we will not only look at the images generated by both of our models, but we 

will also try to answer the Research questions mentioned in the section 1.1.  

 

5.1 DCGAN 
 

This was the first implementation of our model, and the model was trained on 3000 images 

from the Celeba dataset. We will be visualizing the generated images for this individually as 

this model has lower number of layers but also takes up huge amounts of computational 

power and time. First let us look at the dataset image on which the model will be trained on. 

 

Fig 10: dataset images for DCGAN 

Although we have visualized the dataset images in a grid, we will be training the model on 

individual images and visualizing generated images sequentially. The next image shows the 

first image generated by the model which will serve as a blueprint for the model to evolve on. 

 

Fig 11: First image output for DCGAN 
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The first image of the model although might not look good does show the basic 

structure of the images which will be generated in further epochs. Now let us look at the 

final output of the model after 100 epochs. 

 

Fig 12: last image output for DCGAN after 100 epochs. 

 

We can see that although the images generated have a proper facial structure 

defined, the image in itself is not high quality and still has noise in it. This maybe a result 

of model instability leading to either the generator or the discriminator overpowering its 

adversary. When the generator loss is high, it means that the model is stuck creating the same 

quality images and the discriminator keeps on rejecting the images proving they are fake, 

similarly when the discriminator losses are high, it means that the generator is producing 

more and more images of better quality that the discriminator is not able to keep up with the 

generator. However, since both the models are adversarial to each other, the discriminator 

cannot give proper feedback to the generator which makes the generator think that it is 

creating proper images even though it is not. The model performs better when both the 

generator and the discriminator produce meaningful losses. To counter the issue faced in this 

model, we will be developing another model called WGAN+GP where there is a penalty if 

there is model instability. 

 

5.2 WGAN+GP 
 

We have already established all the parameters for the executions in the above sections 

but let us first look at the dataset images for this model. Unlike the DCGAN, we will be 

visualizing and generating the images for this model as a grid of 9 images all being 

generated at the same time so that we can save time and computational resources for the 

model. This technique helps in visualizing and comparing the images efficient for us as well 

as saves computational powers and time and also helps in simplified visualization of the 

images. First let us look at the input images for the dataset as these images will be the 

training data upon which the model results are dependent on. 
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Fig 13: Input image for WGAN_GP 

 

Now that we know the clarity and the quality of the images from the dataset let us 

look at the first generated image from the model, we have to understand that the model has 

not yet understood the dataset clearly and the gradient penalty to ensure the model performs 

better has not yet been founded by the model. This image will serve as a blueprint for the 

model to generate better quality images. 

 

 

Fig 14: First generated image for WGAN_GP 

 

We can see that while certain facial structures have been identified by the model in 

some cases, it has not yet figured out how to improve the model. Even on its first epoch the 

model generates a generator loss, a discriminator loss, a gradient penalty and an overall loss 

for the epoch. This can be seen in the image 15. 

 

 

Fig 15: Model results for an intermediary epoch.  

 

Fig 16: Final Image output after 200 epochs.  
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We can see that although the quality of the generated images is not really high when 

considering the generated image resolution to be 64 X 64, it is creating more meaningful 

images than DCGAN. The images not only show better quality in its essence it also shows high 

similarity to a natural human being. Thus, we can say that we have successfully been able to 

generate human faces with abstract personalities. The output of the model can be further 

enhanced by running the model on higher epochs from 200 to 500, better resolutions like 128 X 

128 or 256 X 256 which can only be performed with higher computational efficiency. The final 

output of the model in the form of a gif can be viewed below. 

 

Fig 17: gif of final output. 

Now let us look at the generator and the discriminator losses for the model and understand 

how the model is performing. 

 

Fig 18: Generator and Discriminator behaviour 

 

6 Evaluation 
 

While there is still no accuracy metrics defined for a GAN human face generation, we can use 

metrics like Inception score, Structural similarity index and The Fréchet Inception Distance 

(FID) to properly evaluate the quality of the generated images from a GAN. Before we look at 

these metrics for the evaluation of the model, let us look at what each of these metrics calculate 

and what is the meaning of these metrics. 

6.1 Inception Score 

This is a popular metric for evaluating GAN’s generated image quality. It checks for the 

realism of the images which can be defined as how lifelike the generated image is to reality. 

Another point of Inception Score (IS) is to check for diversity of the generated image. GAN 
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models sometimes tend to pick out images from the training dataset which are favourable in 

producing images able to deceive the discriminator as such IS makes sure that the generated 

images are diverse. On the background, it utilizes a pretrained model called InceptionV3. The 

score is computed by the model analysing the generated images where it checks mainly for 

conditional label distribution and marginal distribution. A higher Inception score indicates that 

GAN has produced both realistic and diverse images. However, since IS utilizes a pre-trained 

model, it lacks the ability to identify and calculate its score on the dataset specific features. 

Now let us look at the inception score for both our models. 

A. DCGAN 

The below image shows the plot of the DCGAN Inception score as it evolves through the 

epochs. We can see that although the generated image was not ideal, the inception score keeps 

increasing although minutely as the model evolves which indicates that the model is creating 

better and better images which are both realistic and diverse according to the InceptionV3 

model. 

 

Fig 19: IS plot for DCGAN 

B. WGAN_GP 

The image 20 shows the plot of WGAN_GP’s InceptionV3 model results. We can see that the 

values are much better than DCGAN. Although the model produced a well-rounded image at the 

end, the inception score is still low. However, we can see that as the model progresses that IS 

increases leading to a plot which is rising. This indicates that our model is performing better 

at generating realistic images and these images are diverse. Keeping in consideration that we 

trained the model with both physical and computational constraints we can safely say that this 

model has achieved higher accuracy than expected. 

 

Fig 20: IS plot for WGAN_GP 
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6.2 Structural Similarity Index Measure 

This is another popular metric used to measure the quality of the generated images by GAN. It 

checks for the perceptual quality of the generated images. It evaluates the generated images 

on three basic factors luminance, contrast and structure. It checks all three measures and 

combines them to present a score between -1 and 1 where -1 indicates an image with perceptual 

dissimilarity to a human face, while 1 represents a perfect similarity in the generated image and 

the image in the dataset. Since this does not depend on a pre-trained model like Inception Score, 

this is better for our evaluating our model. However, the SSIM can be sensitive to changes in 

the brightness and the generated image contrast and SSIM does not check for the diversity in 

the generated image. Now let us look at the SSIM score for both our models. 

 

A. DCGAN 

The image 21 shows the plot of SSIM score for the DCGAN model. We see that the majority of 

the results produce SSIM score closer to -1 indicating that the model does not present 

structural similarity to the input dataset. However, the result might not be conclusive as 

indicated above SSIM score also relies on Brightness and contrast of the generated images. 

Considering this factor although we cannot overrule the SSIM scores for our model, we can state 

that our model has room for growth. 

 

Fig 21: SSIM plot for DCGAN 

B. WGAN_GP 

The image 22 shows the SSIM scores for the model as it leaps through the epochs. We can see 

from the plot that the values are much higher than that of DCGAN and the model performs 

reliably better than DCGAN. We can also see that SSIM score increases as the number of 

epochs increases meaning that our model is generating images which have more structural 

similarities with the dataset images. Due to the disadvantages of SSIM mentioned above, the 

model might be performing better than the SSIM score is indicating. Considering all the 

mentioned factors and the SSIM scores calculated we can safely say that the model is 

performing satisfactorily and with the increase in the training dataset and the number of epochs 

the model will produce lifelike images of human faces. 
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Fig 22: SSIM plot for WGAN_GP 

 

6.3 Fréchet Inception Distance (FID) 

The Fréchet Inception Distance is another popular metric used to evaluate the quality of 

generated images. It compares the distribution of features between the dataset and generated 

images using the pre-trained InceptionV3 model. It calculates the mean and covariance for 

the dataset and generated image which is then modelled as Gaussian Distribution. A higher FID 

score indicates that the generated image is not real nor diverse, similarly a lower FID score 

indicates that the generated image is both real and diverse. FID is comparatively better than IS 

even though both of them compare the same indicators as it takes into  account both diversity and 

the quality of both the real and fake images which makes it sensitive to mode collapse and 

ensures the generated images are more closely resembling the real images. Similar to IS, FID 

also presents a sensitivity to dataset as it also works on the same pre-trained model and also 

requires large data samples for an accurate evaluation. Now let us look at the FID score of both 

datasets and compare both the models. 

A. DCGAN 

Although the FID score seems low for the model in the graph below, we can see that it evolves 

as the number of epochs increases. We can also see that the model has instability in training 

from the FID score as it fluctuates in the middle and since the image generated was not ideal the 

FID can be considered moderately adequate for our model considering we have only utilized 

3000 images for training. 

 

Fig 23: FID plot for DCGAN 

B. WGAN_GP 

The image 24 shows the plot of WGAN_GP’s FID results. We can see that the values are much 

better than DCGAN. Although the model produced a well-rounded image at the end, the FID 

score is still low when compared to the baseline pretrained models. However, we can see that as 

the model progresses that FID score increases leading to a plot which is rising. This indicates 

that our model is performing better at generating realistic images and these images are diverse. 

Keeping in consideration that we trained the model with both physical and computational 

constraints and on a limited image dataset we can safely say that this model has performed 

Fairly. 
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Fig 24: FID plot for WGAN_GP 

 

7 Interpretation of Results 
A. With the implementation of the models, we can safely say that with the help of 

GAN we can generate human faces of non-existent personalities accurately. 

Considering the results of WGAP_GP we can safely say that given the non-

existence of computational complexities we can produce more realistic human faces 

which answers the question to Research Question Q1. 
B. By comparing both the models performance and understanding that although 

several factors contributed to the accuracy of each of these models and the major 

one being the training size since DCGAN was trained on only 3000 images and 

performed poorly while WGAN_GP was trained 30,000 images and performed with 

more accuracy, we can safely answer Research Question Q2 stating that training 

size does increase the performance of a GAN model given the computational 

requirements are answered. 

C.  Although this report was only including performances of 64 X 64 images trained 

GAN, upon increasing the resolution of training images the accuracy of the model 

also increases. This can be attributed to the fact that higher resolution images 

provide more fine-grained details for the generator and the discriminator to validly 

improve answering our third Research Question Q3.  

D. We can see from the image, we can see that generator performs poorly at the 

beginning creating unrealistic and unclear images while the discriminator performs 

well at the beginning of the training, but as the training continues both the generator 

losses and the discriminator losses ideally should converge leading to a balanced 

state. Although it is highly unfeasible to produce an ideally stable model, from our 

implementation we can see that models try to converge at the centre answering our 

Research Question Q4. 

E. From our evaluation metrics we can see that it is possible to measure the accuracy 

of the GAN generated human faces. Although each of the metrics has its own 

demerits we can measure the accuracy with great confidence. This answers our 

Research Question Q5. 

 

 

8 Conclusion and Future Work 
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This project was implemented with the sole purpose of generating human faces to be 

utilized for testing image recognition models to check for spoofing in social media 

websites. Including answering the research questions stated, we have been successful in 

generating realistic and diverse human faces of non-existent personalities by utilizing the 

power of GANs and implementing DCGAN and WGAN_GP. We have also been able to 

determine that training size and resolution of the images greatly impact the quality of the 

generated images by the models. Not only did we monitor and visualize the behaviour of 

generator and the discriminator in an adversarial network, but we have also been able to track 

these behaviours for higher epochs. We have also been able to measure the accuracy of the 

generated images by utilizing Inception Score, Fréchet Inception Distance and 

Structural Similarity Index. Both by generating human faces using GAN and by measuring 

the generated image accuracy we have been able to successfully answer all the Research 

Questions presented at the beginning of the project. 

 

By utilizing higher computational resources, we will be able to implement better and more 

realistic human faces which will confuse even facial recognition software across the globe. 

This will be essential in our war against spoofing and scams prevailing on the social media. 

Along with this we can also develop a text to image generation model where we can integrate 

Large Language models to help us generate images from text-based requests. These models 

can also be helpful in gaming industries and virtual reality industries saving vast amounts of 

money in these sectors. Additionally, we can implement domain expansion on the dataset 

ensuring that it involves face images of wide range of ethnicities, age groups and facial 

expressions. 
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