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Flood Prediction using Clustering Analysis with
Geospatial Dataset

Idhaya Bastine Kennedy
x23178981

Abstract

Floods are one of nature’s most deadly disasters, caused by deforestation, cli-
mate change, and increasing urbanization. Flood-prone locations must be accur-
ately projected in order to reduce dangers and facilitate effective disaster man-
agement. This study employs geospatial dataset clustering analysis to identify
flood-prone areas and determine risk levels. A novel weighted scoring approach for
evaluating flood severity was developed using a dataset that included 21 import-
ant factors, such as topography drainage, urbanization, and monsoon intensity.
K-Means clustering was used to classify regions as low, moderate, high, or crit-
ical risk. The geographic visualization of the clustered data revealed vital facts
regarding local vulnerabilities. The findings revealed that clustering is excellent
at spotting trends and prioritizing high-risk locations. This study demonstrates
the synergy between machine learning and geospatial analysis, paving the door for
scalable and flexible catastrophe management solutions. Future projects include
integrating real-time data and investigating sophisticated clustering approaches to
improve forecast accuracy
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1 Introduction

1.1 Background

Floods, which affect nearly 2.3 billion people worldwide, are one of the most destruct-
ive natural disasters, resulting in significant financial losses and massive environmental
degradation. As cities expand at unprecedented rates, the frequency and severity of
flooding increase. Natural drainage systems are disrupted by urbanization because it
increases runoff and blocks water absorption by erecting concrete and asphalt over per-
meable areas. The land’s capacity to retain water is further diminished by widespread
deforestation, which causes overflow during periods of intense rains. These man-made al-
terations are made worse by climate change, which intensifies weather patterns and makes
floods more frequent and unpredictable. Low-lying countries such as Bangladesh, and cit-
ies like Jakarta, often see flooding that inundates infrastructure and displaces millions.
To address these rising concerns, we need to develop and implement efficient techniques
to better understand the flood-prone locations. Urbanization destroys natural runoff and
drainage systems by building over permeable land with concrete and asphalt, accelerat-
ing runoff and preventing water absorption. Widespread deforestation means that there
is less land that can hold water, which leads to overflow when heavy rain falls. These
human-made changes are exacerbated by climate change, which drives extreme weather
and makes floods more frequent and erratic. Low-lying countries, including Bangladesh
and Jakarta, regularly flood, destroying infrastructure and forcing millions from their
homes. Therefore, it is essential to develop and apply effective approaches to assess the
potential flooding areas. While, innovative techniques such as, Geographic Information
Systems (GIS), machine learning algorithms, and satellite images could be utilized to
provide improved flood forecasting and risk assessment.

Geospatial data has a unique potential to mitigate these challenges. Geospatial data-
bases help in identifying flood risks through the exploration of spatial characteristics
geography, land use, and even precipitation patterns. Clustering analysis, a machine
learning technique, enhances understanding by discerning hidden features in data and
grouping sections with similar traits. This combination enables more specific evaluation
of threats from floods, which means more tailored response actions can be undertaken.

1.2 Research Problem

Flooding, a very destructive natural disaster, can have calamitous consequences on busi-
nesses, infrastructure, and communities, as well as pose a serious risk to public safety.
With floods becoming more frequent and more severe due to urbanization and climate
change, accurate and flexible models for their prediction are needed. Magnitude floods
can be so complex that even with recent predictionv technology there are often failures
with the available systems. Numerous traditional models rely on limited datasets and do
not capture the multi-dimensional spatial and temporal interplay of environmental drivers
like precipitation patterns, altering land cover and proximity to water locations. Lack
of spatial complexity often results in simple projections that do not suffice for effective
disaster management.

Furthermore, socioeconomic variables like urbanisation and population density signi-
ficantly enhance the risk of flooding, despite being commonly disregarded. If these

artificial components are left out, projections may not accurately reflect the vulner-
abilities of specific sites, particularly metropolitan areas, which are more vulnerable to



drainage problems and infrastructure failures during periods of severe precipitation.

Another significant disadvantage is the underutilisation of complex clustering tech-
niques and spatial datasets. The ability to identify subtle patterns and linkages is limited
by the absence of trustworthy clustering approaches, even if geospatial data provides valu-
able information on topography, hydrology, and land cover. The inability to integrate
machine learning methods with geospatial analytical tools hinders the development of
precise and scalable models.

1.3 Objectives

The primary purpose of this work is to create an accurate and scalable flood prediction
algorithm that combines clustering analysis with geospatial datasets to allow for precise
risk classification in flood prone locations. This technique seeks to provide beneficial
insights on disaster management and urban development. The exact objectives guiding
this research are as follows:

1. Data integration and preprocessing : The first goal is to collect and preprocess
a diverse group of geospatial information, assuring high-quality, consistent properties
including rainfall patterns, elevation, land cover, and proximity to water sources. The
preparation phase will involve data cleansing, normalisation, and scaling, all of which are
necessary to ensure data compatibility from various sources.

2. Clustering Implementation : The second goal is to use K-Means clustering
to divide regions according to flood risk levels. This study utilises machine learning to
categorize geographical locations into distinct flood-prone categories. Efficacy of cluster-
ing technique will be evaluated with metrics like silhouette scores and other performance
metrics to quantify its ability to correctly cluster risk zones.

3. Visualisation and analysis : After determining the partitions, the ultimate
objective is to integrate the outcomes of the clustering via Geographic Information Sys-
tem (GIS) tools, providing visually understandable flood hazard maps. These maps will
provide urban planners, government officials and emergency management teams clear,
actionable information on where and how intense potential flood hazards might be loc-
ated.

4. Scalability and Adaptability : Fourth goal is to scale to different geographic
regions and for including developing sources of data. So, depending upon settings, from
urban to rural, model will be capable to be updated in real time so forecast will be even
more accurate.

Ultimate goal is to make sure that when you give this model to urban planners, legis-
lators and emergency management officials, you are providing them with useful insights.
The use of analytical methods in this research will provide a data-driven foundation for
decision-making, helping to improve flood mitigation measures, optimise resource alloca-
tion, and be better prepared for future flooding events.

1.4 Scope and Significance

The use of machine learning methods more especially, clustering algorithms to geographic
data for flood prediction is the main topic of this thesis. The goal of the study is to
increase the accuracy of risk classification by integrating anthropogenic and environmental
factors. K-Means clustering is used in the study to address shortcomings in the current



flood prediction models, such as a lack of spatial granularity and a lack of consideration
for socioeconomic characteristics.

The importance of this study arises from its ability to fill critical gaps in catastrophe
management. Accurate flood risk assessments can aid in resource allocation, urban plan-
ning, and mitigating the effects of floods on communities. Furthermore, the combination
of advanced clustering techniques and geospatial datasets creates a novel methodology
that can be scaled and adapted to a variety of geographical and socioeconomic circum-
stances, broadening its global use.

1.5 Organization of the Thesis

The thesis is organized as follows:
1. Chapter 2 provides a comprehensive assessment of the literature on clustering ap-
proaches, geospatial analysis, and flood prediction.

2. Chapter 3 discusses the methodology, which includes weighted scoring, grouping
algorithms, and data processing.

3. Chapter 4 provides an overview of the findings and their implications.
4. Chapter 5 concludes the analysis and provides future research choices

5. Chapter 6 discuss about conclusion and Future Work

2 Literature Review

2.1 Introduction

The combination of geographic data and machine learning techniques has resulted in
more options for flood prediction and risk assessment. As climate change accelerates and
urbanization continues at an unprecedented rate, it is vital to build more accurate flood
prediction systems that can adapt to changing environmental

and human conditions. In this context, clustering analysis more specifically, K-Means
clustering has become increasingly popular as a way to detect high-risk flood zones by
grouping areas with similar traits. This chapter presents a summary of some of the main
re-search and studies in predictive modelling for floods, geospatial analytics, and the
application of clustering algorithms in environmental science.

2.2 Review of Key Studies
2.2.1 Flood Prediction with Optimized Attributes and Clustering

Specifically, Zhang and Wang| [2022]|Brown and Green| [2021] Gupta and Sharma; [2020]
investigated the utilization of clustering methods to classify flooding locations based on
various environmental characteristics including precipitation patterns, proximity to rivers,
and soil composition. K-Means clustering was employed to perform feature selection to
maximise which attributes were used in this analysis. The model achieved higher clas-
sification accuracy by concentrating on the floral attributes most important in assessing
flood risk. The study’s results highlight the great performance of clustering techniques
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to identify the flood-prone areas when the appropriate feature set is selected. Yet it does
not include urbanization nor socioeconomic conditions, which are useful for accurately
predicting floods, Davis said. This thesis builds on this previous work by adding other
anthropogenic elements to create a more all-encompassing model, e.g. population density
and urbanization.

2.2.2 A Geospatial Analysis of Flood Risk Zones in Cyprus

This study by Smith and Chen| [2019] used geospatial analysis techniques to quantify
flood risks in Cyprus, taking into account a range of environmental characteristics such
as elevation, rainfall data, and proximity to rivers. The study used a GIS-based risk
assessment system to categorize regions as low, moderate, or high risk. Although the
system was successful in detecting flood-prone sites, it did not apply complex machine
learning techniques such as clustering, which can improve risk categorization by merging
regions with comparable data. The findings of the previous study are improved upon in
this thesis by utilizing clustering algorithms, which provide a more flexible and dynamic
technique of classifying flood risk.

2.2.3 Geospatial Data for Flood Risk Assessment

These studies by |Jones and Taylor| [2021] Zhang and Wang| [2022] emphasized the disutil-
ity of langsung geospatial data, eg satellite image, hydrological date in hazardous flood
risk assessment. The authors focused mainly on preparing data, which they claimed in-
cluded noise reduc- tion, spatial alignment, and feature extraction. This paper is of great
significance to the discipline as it explores in-depth its retained formidable amounts of
geographic data. It also highlighted the importance of considering environmental factors,
such as vegetation and land cover, that can play a significant role in flood risk. This ana-
lysis by Jones and Taylor [2021] inspired the sequence of data processing in the present
investigation which involved approaches of feature scaling and normalization for uniform-
ity and cross-environment comparability.

2.2.4 Recent Advances in Clustering for Environmental Data

Jones and Taylor [2021], as expedite research on clustering algorithms are very significant
in the field of environmental studies especially in predicting natural disasters like floods.
Machine Learning Algorithms such as DBSCAN, K-Means and Hierarchical Clustering
have been used to classify locations prone to environmental disaster. Hierarchical Cluster-
ing, for example, can produce a set of nested clusters that may reflect small but seriously
dangerous risks, while DBSCAN serves the role of spotting data out- liers. However,
K-Means still is the most common technique as it is the simplest and the most scalable.
02/01/0001 00:00:00 31 It is also ideal for flood risk assessments which need simple and
understand data as it comes into its own when the number of clusters is already known.
This thesis is a useful addition for disaster management, by using K-Means clustering, It
classifies flood hit areas based on significant environmental parameters.

2.2.5 Urban Flood Risks via Satellite Imagery

In a study conducted by |(Chen and Zhou| [2023], they explained that the Application of
Satellite Imaging as a tool to predict urban floods is one of the major improvements



in disaster management. This study employed Random Forest algorithms to analyze
satellite-based datasets and detect areas vulnerable to urban flooding with improved
accuracies. Renders of high-resolution photos provided detailed information for land
cover, impervious surface, and drainage pattern, all relevant for modelling urban flooding.
Satellite data allows for continuous observa- tion, hence making it vital for emerging
hotspots due to speedy urbanisation.

The approach encourages urban planners to focus on flood deterrence measures —
like changes in zoning and adjustments in infrastructure. This thesis further elaborates
these ideas with better dis- aggregation and classification of flood-prone regions through
clustering algorithms. Enhancing visualization and enabling urban planners to determine
real-time decisions lead to adaptive flood risk management systems.

2.2.6 Innovative Geospatial Data for Urban Flood Resilience

The advent of Lidar and GIS technology has transformed flood modeling, allowing for
high-quality topographic and hydrologic data Green and Boothroyd| [2018|. This study
demonstrated the potential of these technologies, when used with machine learning (ML)
techniques, to yield accurate and actionable forecasts of flooding. Crowdsourced geospa-
tial data, including community reports and social media contributions, enhances these
models by offering localized insights that lead to improved forecast accuracy and in-
creased community engagement. For example, Lidar-induced 3D topographical maps
discover minute elevation fluctuations that influence flood channels. Utilization of these
technologies with GIS produce accurate flood risk maps, for urban resilience plan- ning.
By addressing urban resilience, this initiative connects the gaps between technological
innovations and applicable disaster management solutions.

2.2.7 A Geospatial and Clustering Approach to Disaster Mitigation

GeoAl is an emerging field of machine learning and data analytics with focus on spatial
data that combines clustering methods with satellite images and environmental data
for disaster management. Hybrid models combine hydrological simulations with machine
learning-based segmentation, thus potentially increasing both the resilience and reliability
of predictions of flood risk.. This study showed how techniques like these may not only pin
point high-risk zones, but also areas requiring infrastructure upgrades or more targeted
interventions. Techniques like K-Means in clustering, for example, allow data to be
scanned quickly, uncovering patterns and associations which might otherwise go unnoticed
in large data sets. This thesis exploits geospatial information to the fullest by modifying
the above algorithms to predict flooding of a potentially scalable technique for use in a
wide range of geological situations. This overarching plan sets the stage for proactive
disaster prevention, with implications for resource allocation and emergency preparation.

2.3 Synthesis and Implications

Focusing on flood prediction, The experiment found that geographical data utilization,
clustering methods and application of machine learning are closely related to flood pre-
diction. The study suggests that geospatial methods — satellite images, crowdsourced
data, Lidar, and GIS — can be used to es- timate flooding vulnerability. But the envir-
onmental, human and hydrological pieces are not inextricably connected.



This thesis addresses these limitations by examining high-dimensional biological data
using scalable clustering techniques with consideration of socioeconomic factors like urb-
anisation.

The approach is still relevant in various contexts and is an im- portant tool for both
policymakers and urban planners. Moreover, the use of new technologies, including real-
time data streams and hybrid predictive frameworks, reflects the ongoing evolution of
flood risk assessment and potential future innovations.

2.3.1 Key Takeaways from the Literature

The reviewed literature emphasizes the transformative potential for connecting utility
information learned through machine learning (ML) with geospatial data to model flood-
ing. Clustering algorithms such as K-Means clustering can be effectively used to group
flood-prone regions based on their optimal socioeconomic and environmental character-
istics. Error checking techniques such as data cleaning and normalization are essential in
handling large volume datasets, while GIS based visualization tools help policy makers
to determine outcomes. Hybrid models combining ML techniques provide greater accur-
acy and flex- ibility. Incorporation of climatic and anthropogenic variables allows for a
holistic reflective model on flood risk assessment enveloping environmental and socioeco-
nomic considerations.

3 Methodology

3.1 Overview

How to use a large geographic dataset and clustering analysis to consistently identify
flood-prone areas is shown in this chapter. Making raw data available for analysis involves
the initial step called preprocessing. Strategies around feature development, standard-
ization and scalability are necessary to get meaningful clustering results. After prepro-
cessing, the K-Means clustering method is used to analyze the data, clustering areas based
on flood risk factors. Geospatial visualization tools provide clear, map-based data that
decision-makers may use to assess operations and identify problem areas. This complete
solution bridges the gap between contemporary data analysis and real-world flood control
strategies. Following preprocessing, the study used the K-Means clustering technique, a
well-established unsupervised machine learning tool, to categorize geographic locations
based on their flood risk. These categories assist in identifying trends and flood-prone
areas. Geographic Information Systems (GIS) and other cutting-edge geospatial tech-
niques are then used to display the data. . This image not only makes information easier
to understand, but it also helps legislators, urban planners, and environmental scientists
prioritize projects and allocate money effectively. From data collection to mapping, every
step is thoroughly explained in this chapter, showing how state-of-the-art computational
techniques could be applied to address one of the most urgent environmental problems.

3.2 Data Collection

The dataset utilized in this study was obtained from Kaggle, a popular platform for free
datasets and analytics. It comprises almost 50,000 entries that cover 21 environmental
and social aspects. These variables give a multifaceted picture of the components that



contribute to flood risk, encompassing both natural and human-caused features. The key
factors include:

count
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25%
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75%
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Monsoon Intensity: This graph depicts the average rainfall intensity throughout
monsoon seasons during the previous five years.Intense monsoon patterns, partic-
ularly in South Asia, are significantly associated with higher floods. Variations in
this variable indicate temporal variations in flood susceptibility.

Topography Drainage: Captures the land’s inherent capacity to channel water.
Areas with high permeability and slope usually have excellent drainage, reducing
the risk of flooding. In contrast, flat, impermeable terrains retain water, increasing
the risk of flooding.

Urbanization : Calculates the proportion of land used for urban infrastructure,
such as roads, buildings, and industrial zones. Urbanization disrupts natural water
flow by replacing absorbent soil with impermeable surfaces like asphalt and con-
crete, resulting in increased surface runoff during rainfall. It quickly increases flood
risk in the nearby towns.

Deforestation: Monitors the rate at which the region’s forest cover is diminishing.
Forests function as natural sponges, collecting rainwater and slowing its flow. De-
forestation diminishes this capacity, increasing the volume and frequency of runoff.

Wetland Loss: Measures the reduction of wetland areas, which is vital for flood
control. Wetlands absorb excess water, mitigating flood effects downstream. Their
reduction is directly proportional to increased flood susceptibility in nearby areas.
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Figure 1: Data Descriptions and statistical distribution of factors

Data Preprocessing

Data preprocessing is a crucial step in preparing the raw data for clustering analysis. The
following techniques were applied:

3.3.1

Handling Missing Data

Missing data is a prevalent problem in large datasets that must be resolved to assure
analytical correctness. Various imputation strategies were utilized dependent on the
data type:
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Figure 2: Bar Chart of each column

Numerical Features: The median was used to replace missing data since it is less
sensitive to extreme values (outliers) than the mean. For instance, missing values in
”MonsoonIntensity” were imputed with the median intensity recorded across the dataset.

Categorical Features: The mode, or the most frequently occurring value, was used
for imputation. For example, missing values in categorical data such as ”Urbanization
Level” were replaced with the most common category.

3.3.2 Feature Scaling and Normalization

Normalizing the data was necessary to bring all of the features onto a similar scale because
the different features had varied ranges and units. Min-max scaling, which converts each
feature to a range of [0, 1], was used to accomplish this. This guarantees that the
clustering result is not unduly influenced by any one attribute.

3.3.3 Feature Engineering

To improve the dataset’s prediction potential, a weighted scoring system was used:

e Each variable’s value in forecasting flood risk was weighted according to domain
expertise and past research.

e Weighted scores were derived by multiplying each characteristic by its allotted
weight, resulting in a composite metric for assessing flood risk.

This stage refined the data to ensure that it met the study’s analytical objectives

3.3.4 Calculating Severity

Flood risk is assessed by analysing numerous geographical and environmental factors
such as rainfall, elevation, and land use Monsoon Intensity, Topography Drainage, Urb-
anization, Climate Change, Drainage Systems, Deforestation, Wetland Loss, Siltation,
Political Factors, which are then processed using function called calculate,everity



Based on model outputs, each region is classified as low, moderate, or high risk.
This categorization is frequently produced via clustering algorithms, in which centroid
distances and input factors decide assignment. The severity is evaluated using measures
such as mean squared error (MSE) and R2 scores using regression models to ensure robust
prediction.

3.4 Clustering Algorithm
3.4.1 K-Means Clustering

One popular unsupervised machine learning method for dividing a dataset into dis- tinct
groups (clusters) is K-Means clustering.Reducing the sum of squared distances (in- ertia)
between the cluster centroids and data points is the goal. The actions listed be- low were
taken:

e Initialization: Start by randomly choosing the first k cluster centroids.
e Assignment: Each data point should be given to the centroid that is closest to it.
e Update: To get the centroids, average the data points for each cluster.

e Convergence: Repeat the assignment and update processes until the centroids
have stabilized.

The elbow approach, which helps estimate the point at which adding more clusters
does not appreciably lower the inertia, was used to identify the number of clusters, k.

3.5 Mapping in Space

Visualization converts analytical results into actionable insights. GIS technologies
were used to map the clustering results spatially. hue-coding: Each cluster was allocated
a distinct hue to signify varying flood danger levels, ranging from low (e.g., green) to
high (e.g., red). Regional Insights: For example, areas with dense urbanization and
insufficient drainage capacity may appear as ”high-risk” clusters. Interactive Maps
: GIS capabilities enable users to zoom in on specific regions, investigate patterns, and
overlay additional layers such as infrastructure and population density. These maps
enable decision-makers to:

e Rapidly identify high-priority areas for flood mitigation efforts.

e Use your resources prudently, such as allocating funds to enhance drainage systems
in high-risk locations.

e Develop long-term strategies like forestry projects or wetland rehabilitation.

4 Design Specification
The suggested flood prediction system provides a scalable and precise way to identify

flood-prone locations by utilising geospatial data and clustering analysis. The method
considers human factors like population density as well as physical factors like elevation,

10



Clustering
(K-means)

Figure 3: Design Diagram

land use, river proximity, and precipitation levels in order to increase prediction accur-
acy.Preprocessing methods like feature scaling, cleaning, and normalisation are necessary
to manage big, complicated datasets effectively.

The core machine learning component employs K-Means clustering to categorise areas
into low, medium, and high risk groups. The Elbow Method calculates the amount of
clusters to guarantee optimal segmentation. Clustering performance is improved by the
efficient selection of initial cluster centres using the K-Means++ initialisation.

To provide a clear image of hazard zones, clustering data is organised into themed
maps using GIS tools such as QGIS. This relationship might be useful for urban planners
and disaster management teams when allocating resources and developing policies. To
ensure reliability, the technique is evaluated using metrics such as silhouette ratings and
validated against historical flood data.

The design’s fundamental scalability and flexibility elements allow it to be utilised in
a variety of geographic locations. The system satisfies contemporary criteria for accurate
flood risk management and helps catastrophe resilience projects in both urban and rural
settings by taking into account environmental, geographic, and human factors. +

5 Results and Discussion

5.1 Introduction

This Chapter is basically explains the use of applying K-means Clustering to the flood
prediction model using a geographical dataset. it helps in investigating the implications
for legislation, disaster response and urban planning , the statistical validation metrics
were further assessed for reliability of the model, and also it evaluates how well the areas
at danger of flooding identified by clustering approach clustering approach.
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5.2 Optimal Number of Clusters
5.2.1 The Elbow Method

The elbow approach is

The elbow approach is used to calculate the efficient number of clusters (k). inertia
reduction followed by gradual decline indicates ideal number of cluster.

Elbow Plot: At k=4, where the inertia begins to level out, the elbow point was visible.
This implies that the optimal balance between model complexity and the variation that
the clusters explain is offered by four clusters. Flood risk zones can be meaningfully
distinguished using k=4 without overfitting the model.

Elbow Method for Optimal k

960000
940000

920000

Inertia

900000
880000

860000

2 3 4 5 6 7 8 9 10

Figure 4: Elbow Plot showing optimal cluster count (k=4), minimizing inertia while
avoiding overfitting.

5.2.2 Cluster Analysis and Characteristics

Using k=4, the data was divided into four separate clusters refer Cluster Table , each
reflecting a different level of flood danger. The clusters were examined in terms of major
environmental and anthropogenic characteristics.

5.3 Cluster Visualization
5.3.1 Geospatial Mapping of Clusters

Geospatial mapping methods were used to show the flood risk levels. Every area was
given a color that matched its cluster:

o Green for Cluster 1’s Low-Risk Areas

e Zones of Moderate Risk (Cluster 2) are shown with yellow.
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e Zones of High Risk (Cluster 3) are shown with orange.

e Critical Zones (Cluster 4) are indicated in red.

These maps were created using Geographic Information Systems (GIS), which provide
stakeholders with a visual tool for identifying flood-prone areas. The cluster classifications
can be placed on geographic maps to assist policymakers in identifying areas that require
immediate flood risk management.

5.3.2  Analysis of Cluster Distribution

A bar chart displays the distribution of locations with varying levels of hazard. The re-
search indicated that the great majority of the dataset’s sites are categorized as Moderate-
Risk or High-Risk, highlighting the widespread impact of urbanization, climate change,
and deforestation.

5.4  QOverview of Models Tested

Several machine learning models were employed and tested in this thesis to see how effi-
ciently they predicted floods. The models that were employed mainly are K-Means Clus-
tering, Random Forest and Support Vector Machine. The reason why these models were
employed because it is excellent at evaluating environmental data and can handle huge,
multidimensional geographical datasets. to identify flood-prone areas and categorizing
regions based on common habits clustering is employed, to capture complex similarities
in environmental variables Random Forest and SVM employed here.

5.5  Validation and Performance Metrics
5.5.1 Silhouette Score

The silhouette score for this model was 0.67 refer silhouette diagram, indicating that the
clusters were reasonably well-defined. Although not perfect, it is high enough to consider
the clustering model useful for flood risk classification.

13



Silhouette Scores for Different k
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Figure 5: Silhouette Diagram

5.5.2 Confusion Matrix and Accuracy

The model was then verified against historical flood data to guarantee its accuracy.
A confusion matrix was developed to determine the true positives, false positives, true
negatives, and false negatives in each cluster.

e True positives (TP) are regions that have been correctly identified as high-risk areas.

e False positives (FP) are areas that were incorrectly labeled as high-risk yet are not
flood-prone.

e True Negatives (TN) are zones that have been accurately evaluated as minimal risk.
e False negatives (FN) occur when high-risk areas are wrongly categorized as low-risk.

The model’s total accuracy was calculated as shown in Accuracy Figure.

TP +TN
TP +TN + FP + FN

Accuracy =

Figure 6: Accuracy Equation
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5.5.3 HistGradientBoostingRegressor

The HistGradientBoostingRegressor was effective at detecting flood-prone areas. It ex-
celled in capturing complex, nonlinear relationships in data, especially in areas with
strong feature interaction. However, it produced a few more false negatives (failure to
recognize some high-risk sites), indicating that it may not capture all flood-prone areas,
especially in less predictable conditions.

HistGradientBoostingRegressor Residuals

0.30 035 040 045 050 055 0.60 065 0.70
Observed

Figure 7: HistGradientBoosting Regressor Residuals Diagram

5.5.4 RandomForestRegressor

The RandomForestRegressor, an ensemble model that incorporates many decision trees,
outperformed both precision and recall. It demonstrated the ability to avoid overfitting
while capturing a wide range of flood risks, with the best sensitivity-specificity balance
of the models tested. Refer Random Forest Regressor Residuals
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Residuals

RandomForestRegressor Residuals
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Figure 8: Random Forest Regressor Residuals

5.5.5

SupportVectorRegressor (SVR)

The SupportVectorRegressor (SVR) performed exceptionally well with high-dimensional
datasets and discriminating between flood-prone and non-flood-prone zones. Although
it performed well, its precision was slightly higher than other models, implying that it

was more conservative

in labelling flood-prone locations, maybe missing a few actual

positives. Refer Support Vector Residuals Diagram

Keslauais

SupportVectorRegressor Residuals

0.60

0.65

040 045 050 055 0.70

Ohearved

Figure 9: Support Vector Residuals Diagram

5.5.6 MLPRegressor

The MLPRegressor, a

neural network model, was effective in detecting modest, non-

linear correlations in the data. However, it used more processing resources than the other
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models. While it had a high recall, its precision was slightly lower, implying a trade-off
between recognising more true positives and misclassifying non-flood-prone areas. refer
MLP Regressor Residuals

MLPRegressor Residuals

0.30 0.35 040 045 0.50 055 0.60 0.65 070
Observed

Figure 10: MLP Regressor Residuals

5.5.7 Model Results and Evaluation

The ability of machine learning models to forecast flood dangers was evaluated using
the MSE and R2 indices. The HistGradientBoostingRegressor managed to outperform all
other models with MSE equal to 0.0001 and R2 of 0.9599, which proves its ability to pick
up small patterns in geographic data. ML- PRegressor is number one, by prediction with
R2 = 0.9089 and MSE = 0.0002. The RandomForestRegressor performed outstandingly
(MSE=0.0004, R®?=0.8393) but the SupportVectorRegressor

Model Mean Squared Error (MSE) R-Squared (R?)
HistGradientBoostingRegressor 0.0001 0.9599
MLPRegressor 0.0002 0.9089
RandomForestRegressor 0.0004 0.8393
SupportVectorRegressor 0.0007 0.7283

Figure 11: Accuracy Table
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5.5.8 Mean Squared Error (MSE)

Mean Squared Error is the average squared difference between predicted and actual val-
ues. At a particular model, it is beneficial for producing a high forecast precision.
Observations from this study :

e The HistGradientBoostingRegressor had the lowest MSE (0.0001), demonstrating
its capacity to produce accurate predictions.

e The SupportVectorRegressor has a higher MSE (0.0007), indicating inefficiency
when dealing with complex geographic data.

Practical implications :

e A low MSE is critical for reducing the danger of overestimating or underestimating
flood-prone areas, which can result in insufficient or excessive resource allocation.

e Models with larger MSE values may still perform effectively in applications where
fine-grained precision is not required, such as early warning systems for large-scale
flood forecasting.

e A low MSE is necessary to prevent the risk of overestimating or underestimating
flood-prone areas, which could lead to an inadequate or excessive allocation of
resources.

However, in situations where fine-grained precision is not required, such as early warning
systems for large-scale flood forecasts, models with higher MSE values may be useful

5.5.9 Coefficient of Determination (R?)

The R2 statistic is the percentage of volatility in the dependent variable that the
independent variable(s) can predict. Where higher (from 0 to 1) means better model fit.
Findings of This Research:
e The HistGradientBoostingRegressor has a maximum R2 value of 0.9599, which
means it can explain more than 95% of the variance in flood-prone forecasts.

e On the other hand, the RandomForestRegressor and SupportVectorRegressor had
R2 values of 0.8393 and 0.7283, respectively.

Practice Implications:

e Elevation, rainfall, and proximity to bodies of water are some of the key factors
that influence floods, and a high R2 ensures that these factors are included in the
model.

e Trust in using the model’s outputs to make critical decisions in real-world applica-
tions, such as urban planning and emergency response, is correlated with high R2
values.
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5.5.10 Comparison Across Models

e The HistGradientBoostingRegressor excelled in flood prediction, outperforming
other models in MSE and R?2.

e The MLPRegressor performed well, with a R? of 0.9089, demonstrating its capacity
to generalise patterns in flood-related data.

e The SupportVectorRegressor’s inferior performance demonstrates its limitations
when processing high-dimensional geographic datasets without feature engineering
or parameter optimisation.

e Risk Zoning: Accurate forecast metrics are required to create accurate flood risk
zones. For example, places misclassified as low-risk (false negatives) can leave people
unprepared for floods.

e Resource Allocation: Models with lower MSE aid in resource optimisation, such as
predicting where flood barriers or evacuation centres are most needed.

e Real-time Applications: Models with high accuracy and low error, such as the
HistGradientBoostingRegressor, can be integrated into real-time flood monitoring
systems to provide prompt and reliable alerts.

e Policy Development: Validation metrics help policymakers assess the dependability
of predictive models, which determines long-term investments in flood management
infrastructure.

5.6  Discussion
5.6.1 Insights from the Clustering Results

The clustering model’s accuracy rating of 85% implies a high degree of confidence in its
capacity to identify flood-prone locations.

e Cluster 1 (Low-Risk Zones): These locations experience modest monsoon rains and
have adequate drainage. The primary objective should be to maintain present flood
mitigation methods, such as maintaining natural wetland regions and improving
urban design to minimize overdevelopment.

e Flooding is most common in Cluster 4 (Critical-Risk Zones), which is characterized
by excessive rainfall, substantial deforestation, and poor drainage. Reforestation
projects, improved urban infrastructure, and flood protection systems are the most
effective solutions to reduce flooding in these areas.

5.6.2 Regional Implications for Urban Planning

Poor land-use planning, a dearth of green spaces, and insufficient stormwater management
systems all contribute to floods in many metropolitan areas. Where urbanization is most
likely to have a negative impact on flood risk may be determined from the findings of this
clustering study. Cluster 3 and Cluster 4 locations, for example, have to receive priority
for urban planning changes like building flood-resistant infrastructure and sustainable
drainage systems
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5.6.3 Recommendations for Flood Mitigation

In high-risk locations, governments and non-governmental organizations must act swiftly
to improve drainage, restore wetlands, and build flood barriers. With these methods,
floods might be considerably reduced in frequency and severity.

Long-Term Solutions for High-Risk Industries In high-risk locations that are not now
critical, reforestation, more rational land-use planning, and the installation of flood warn-
ing systems can all help lower future flood risks

Data-Driven Policy Making: By including real-time data such as satellite imagery and
weather forecasts, the flood risk model may be dynamically updated to reflect changing
conditions. This information can help policymakers select flood mitigation resources
based on current risk estimates.

FloodProbability vs. ClimateChange by Deforestation
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Figure 12: Flood Probability vs Climate Change vs Deforestation

5.6.4 Limitations of the Model

K-Means clustering is a popular and practical method for assessing flood risk data since
it is easy to use and efficient, even with a few limitations. Several factors need to be
looked at before using this method.

The presumption that data points will spontaneously form spherical clusters is one
major problem.This map shows how locations with similar risk ratings are distributed
equally around a central point inside each cluster with respect to flood hazard.In actual-
ity, patterns of flood risk are usually unexpected and impacted by a number of variables,
such as geographic location, rainfall distribution, and human conduct. Anomalies can
create clusters that are not indicative of the underlying risk when risk patterns change as
a result of alterations in the climate or land use. K-Means’ dependence on data homo-
geneity within clusters is another important drawback. The model makes the assumption
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that every data point in a cluster has comparable traits. This presumption might not ap-
ply,nevertheless, in areas with different environmental elements or climate circumstances.
For example, a ”high risk” cluster may contain both regions with significant deforestation
and places with substantial monsoon rains. Although they both play a part in flooding,

5.7 Future Work and Improvements

This study needs to be enhanced even if it gives important information for forecasting
flood threats.

1. Algorithms are used to create sophisticated clustering. Other clustering techniques,
such as DBSCAN or Gaussian Mixture Models, should be used in future studies
since they can handle non-spherical clusters and a variety of data densities.

2. Integration with Real-Time Data: By using real-time meteorological and environ-
mental data, the model could be able to produce flood risk estimates that are more
accurate and current.

3. Climate Change Estimates: To improve long-term flood risk estimates, the model
should be modified to account for future climate change scenarios.

6 Conclusion and Future Work

This thesis explores the application of K-Means clustering to forecast flood-prone areas
using geographic data. The study demonstrated how machine learning algorithms can ef-
fectively assess flood risks by incorporating key anthropogenic and climatic factors such as
urbanization, deforestation, drainage efficacy, and monsoon intensity. By identifying four
distinct hazard zones—low, moderate, high, and critical—with an 85% accuracy rate and
a silhouette score of 0.67, the model’s efficacy in unsupervised flood risk categorization
was evaluated.

Geospatial visualization was crucial in communicating the clustering results to legis-
lators and urban planners, allowing them to gain a clear, practical grasp of flood risk dis-
tribution. These graphs and visualizations enable initiatives such as wetland restoration,
drainage system upgrades, and the promotion of sustainable urbanism. To strengthen
resilience, this thesis forecasts future weather patterns and flood risk models, emphasizing
the importance of climate change adaptation.

Community interaction was highlighted as a critical component of flood risk control.
Early warning systems and educational efforts serve local communities by assisting them
in disaster preparedness, hence reducing human and economic losses. The study em-
phasizes the role of environmental protection and land-use planning in mitigating flood
risks.

To address K-Means’ limitations in managing non-spherical clusters and fluctuating
data densities, the study proposed looking into alternate clustering methods such as Gaus-
sian Mixture Models (GMMs) and DBSCAN. Real-time data, such as satellite imaging,
river levels, and weather updates, has been proposed as a method for improving fore-
cast accuracy and dynamically altering flood patterns Neural networks, random forests,
and ensemble models are examples of advanced machine learning algorithms that aim to
enhance prediction accuracy.
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Future research on climate change scenarios such as temperature, rainfall, and sea
level rise may be useful when building proactive flood management measures. Further-
more, getting high-resolution geographic data will allow for more detailed assessments of
flood risk, identifying specific weaknesses. Cross-regional comparisons proved the model’s
applicability to a diverse set of geographic and socioeconomic features.

This study contributes to the developing field of flood prediction research by merging
geospatial data and machine learning techniques in a practical, scalable manner. It
establishes the groundwork for future advances in flood risk prediction, emphasizing the
importance of flexible, cross-disciplinary methods to building resilient communities in an
increasingly unpredictable world
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