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Enhancing IoT Security through Anomaly-based
Intrusion Detection Systems

Muhammed Musthafa Keloth Poyil
x23162112

Abstract

The advancement of the Internet of Things (IoT) has seen rapid growth in the
industrial connectivity and automation rates considerably. However, this growth
has also created important concrete cybersecurity threats as IoT networks are now
in the crosshairs of highly developed cyber attacks. The first problem is that,
unlike more traditional networks, the emerging IoT networks exhibit high levels
of heterogeneity and low available resources; and the second is that most current
IDSs have rigid architecture and are not suitable for the IoT networks. This work
offers an anomaly-based IDS for improving the security of IoT networks that ex-
ploits state-of-the-art ML and DL methodologies. The proposed system includes
Gradient Boosting Machine (GBM), k-Nearest Neighbour (KNN), and Näıve Bayes
with Graph Neural Networks (GNNs): Graph Convolutional Networks (GCNs) and
Graph Isomorphism Networks (GINs). In results of experiments, Random Forest
and KNN surpass competitors with such diagrams as 96.30% and 98.19% corres-
pondingly, while GNNs are also combined with GIN and give excellent results in
resect of complex traffic pattern detection with 79.12% of accurate classification.
These results prove that hybrid anomaly-based IDSs are useful to achieve a steady
and efficient IoT cybersecurity model.

1 Introduction

The IoT devices have already enabled a fast and fast-growing connected environment that
defines social life, connectivity, automation, and ways of functioning in multiple industries
Rane et al. (2024). From smart homes to healthcare and industrial, IoT ecosystems have
become common places with IoT devices making up 30% of total devices on enterprise
networks today What is IoT Security? (n.d.). The total value of industrial Internet of
Things (IIoT) through the worldwide market averaged above 544 billion U.S. dollars in
2022. The market is projected to expand over the years, with potential worth of about
3.3 trillion U.S. dollars in 2030 Industrial IoT - market size worldwide 2020-2030 (2024).

(IoT) cyberattack incidences rose to over 112 million in the world in the year 2022.
This number has risen steadily over the recent years from an approximate of 32 mil-
lion detected cases in 2018. In the latest measured year, the year-over-year growth of
IoT malware incidents has been recorded as 87% Industrial IoT - market size worldwide
2020-2030 (2024). But this exponential growth has brought a number of new and un-
precedented challenges in the realm of cybersecurity. Due to the continuously growing
number of IoT devices that have constrained resources, and numerous operational en-
vironments, new and more advanced types of cyber threats are becoming major threats
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to privacy, data integrity, and critical infrastructures Farooq et al. (2023); Inayat et al.
(2022).

1.1 Motivation

Although enhancement in the so-called Conventional IDS has been made, it cannot truly
function in the IoT setting because of its lack of flexibility to grow and fully optimize
itself to the characteristics of IoT networks. These systems were originally developed for
conventional networks and fail to properly handle the highly dynamic and distributed,
heterogeneous, non-trivial, and often limited resource IoT devices Farooq et al. (2023);
Alsoufi et al. (2021). As such, there is a pressing demand to design new security models
that will be suitable for implementing in IoT environments Yaseen (2023).

Anomaly-based IDS has proved to be effective, and thus considered as the best choice
to improve security in IoT. Since these systems are based on the recognition of certain
variations in a typical flow of behaviour, they can, in theory, identify types of attack
that the original behaviour model did not recognise. In addition, the introduction of
ML and DL into the identification of anomalous behaviour has been seen to yield prom-
ising results in terms of the achievement of high levels of anomaly detection accuracy
and minimisation of false positives Ullah and Mahmoud (2021); Alsoufi et al. (2021).
These methodologies continue to present limitations in achieving an optimal solution and
scalability and flexibility within IoT environments Alsoufi et al. (2024, 2021).

This paper provides a solution to the growing problem of how to establish effect and
resilient intrusion detection to IoT networks. It suggests a new anomaly-based IDS with
the help of approaches based on ML, the Gradient Boosting Machine, the k-Nearest
Neighbor, and Naive Bayes algorithms. Moreover, it uses deep learning architectures
like Graph Convolutional Networks and Graph Isomorphic Networks. The research also
assesses the performance comparison of these algorithms in terms of accuracy, precision,
recall, F1 score, and ROC–AUC.

1.2 Research Question and Objectives

Research Question (RQ): How effective are the variants of Graph Neural Networks,
specifically Graph Convolutional Networks (GCN) and Graph Isomorphism Networks
(GIN), compared to the traditional machine learning algorithms in detecting network
intrusion in terms of evaluation metrics such as Accuracy, Precision, Recall, F1-score,
and AUC-ROC?

Research Objectives:

1. Develop and assess a holistic anomaly-based IDS tailored to the unique character-
istics of IoT environments.

2. Conduct a systematic comparison of traditional ML algorithms (e.g., Gradient
Boosting Machine, k-Nearest Neighbor, and Naive Bayes) with advanced graph-
based DL architectures like GCN and GIN.

3. Evaluate the performance of GCNs and GINs in detecting intricate network ar-
rangements that traditional methods struggle to analyze.

4. Analyze and compare the effectiveness of these approaches using key evaluation
metrics, providing insights into their potential for IoT security solutions.
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The first major contribution of this study is the creation and assessment of a holistic
anomaly-based IDS specifically for the IoT environment. From the study, the systematic
comparison of the traditional machine learning with that of the graph-based deep learning
algorithms to explain certain aspects of IDS is made clearer. Furthermore, the integration
of GCNs and GINs is a new approach to graph analysis that distinguishes intricate
network arrangements, which are difficult to track with standard approaches.

The remainder of this document is structured as follows:

• Chapter 2: Related Work – Summarizes the current state of IoT security public-
ations as well as evaluates anomaly detection frameworks, machine learning meth-
ods, and graph-based intrusion detection systems. Presents a brief overview and
highlights the research gap of this study, revealing the niche covered in this research.

• Chapter 3: Methodology – Explains the proposed IDS framework as far as
data acquisition, data preprocessing, choice of algorithms, and techniques for model
assessment are considered. Describes how GCNs and GINs can be incorporated to
gain the ability to detect stronger and multiple threats.

• Chapter 4: Results and Discussion – Summarizes the results of the study and
evaluates the proposed models based on the results attained during experimenta-
tion.

• Chapter 5: Conclusion and Future Work – Presents a brief conclusion of the
research together with recommendations for future research regarding IoT security.

2 Related Work

The advancement of companies with the IoT devices is making industries fast to connect
and automate industries. However, this growth has brought about new cybersecurity
threats due to IoT systems that are comprised of worldwide and heterogeneous networks
and are resource-constrained, along with the threats arising from advanced cyber threats.
Current Intrusion Detection Systems (IDS) do not fit these dynamic requirements; there-
fore, special approaches suitable for IoT are necessary. These threats are partially pre-
ventable by Anomaly-based IDS, especially where it is strengthened with ML and Deep
Learning DL, in that it can identify new attack patterns and has minimal false alarms.
This literature review focuses on IoT cybersecurity issues and IDS development trends
with ML/DL components to inform current and future research.

2.1 Challenges in IoT Cybersecurity

Bernabe and Skarmeta have also described ten major European cybersecurity and pri-
vacy threats in Bernabe and Skarmeta (2022), which include efficient security solutions
apropos of diverse and distributed networks, accurate detection of new forms of cyber
threats, and privacy-sensitive identity assertion. They also identify that there are ways
for designing the holistic approaches to IoT/CPS systems from the security point of view,
but those inherent gaps will require more advanced technologies such as SDN/NFV, effi-
cient/lightweight cryptographic protocols, and real-time risk assessment. The study also
assesses 14 Horizon 2020 funded European projects related to these challenges, including
ANASTACIA and RED-ALERT that help improve the self-healing of cybersecurity and
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threat intelligence. These projects reflect vast improvements in protecting IoT environ-
ments and important assets.

Marshal et al. (2021) discuss the security threats emerging in IoT-based smart health-
care networks and provide a framework for avoiding them. Due to weak security and size
constraints in the construction of critical devices like the infusion pump and cardiac mon-
itor, the study identifies vulnerabilities. Specific threats include the following: Denial of
Service (DoS) attacks, outdated software, and lack of IT-OT integration. The authors say
that organizations should hire cybersecurity workers, keep track of all devices, and have
safe methods for updating devices to enhance security. Concerns are raised concerning
stringent standards such as ISO/IEC 82304 and usage of micro-segmentation, especially
to secure the sensitive health information and ensure minimal spread throughout the huge
networks.

As pointed out by Choo et al. (2021), a multidisciplinary approach to current and
future IoT cybersecurity and risk management is called for to effectively address the nu-
merous and complex threats posed by the IoT. Different IoT security threats are outlined
in their study where the authors recognize various threats such as device authentica-
tion, data protection, and network security, yet point out promising techniques such as
blockchain and federated learning. Their most important contribution is the multi-layer
taxonomy they proposed for the classification of cyberattacks leaning on the IoT envir-
onment, and their system was examined on realistic scenarios, such as the case of the
German steel plant. The authors reaffirm the role of cooperation on the international
level and scholarly governance while stressing that modern IoT security threats should
be managed with the help of integration of modern technologies.

Chopra (2020) analyses the change of perspective in IoT security and focuses on
difficulties in operational and information technology (OT & IT). It describes weak links
inherent in legacy systems together with other protocols such as Modbus and Distributed
Network Protocols that make IoT systems an open book to cybercriminals. Deriving
the focus on the Purdue Model for Control Hierarchy, Chopra calls for barb firewalls,
business DMZs, and multiple layered security measures to protect IoT contexts. This
paper highlights the need to establish IT and OT security frameworks and implement
the best security practices for legacy systems to improve IT/OT convergence security for
IIoT applications.

Ahmad et al. (2021) give a systematic review of cybersecurity in the IoT-based cloud
computing system and stress the threats in the PaaS and SaaS hybrid model. They
classify cloud security concerns into four categories: content, network and services, ap-
plication, and people issues. This work discusses key issues such as data leakage, malware,
and improper utilization of resources, and further discusses the application of deep learn-
ing (DL) for anomaly detection and resiliency. Still, the authors reveal some limitations
in terms of IoT-cloud future scalability, privacy protection, and changing security models,
calling for additional research concerning the AI-driven protection of IoT-cloud structures
against new threats.

2.2 Advancements in Intrusion Detection Systems

Mendhurwar and Mishra (2021) introduced an elaborate component-based architectural
model for hybrid social and IoT environments with discussions on digital business change
and cybersecurity. By examining how this integration occurs, it extends the work to
consider the opportunities of the resulting Cyber Physical Social Systems (CPSS) in
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business innovation while stressing the importance of security and privacy. The significant
contributions include a clear architectural model with the focus on device, connectivity,
applications, and analytical layers, with the measures of security to be implemented for
all these layers highlighted. The authors also point out that such technology convergence
is relatively risky and highlight the need for contingency-oriented security and improved
governance for risk management in IoT environments.

A plethora of cybersecurity issues and approaches are discussed in the recent work of
Raimundo and Rosário (2022), where the focus is on the Industrial Internet of Things
(IIoT). Stressing factors like constraints in resources, decentralised settings, and dynamic
IoT systems, they argue that conventional security measures are insufficient. Based on
their own research, the study analyses 70 core articles. The authors concluded that novel
technologies such as blockchain and machine learning can be considered indispensable for
managing risks. While blockchain helps to strengthen data protection and identification,
machine learning coordinates the identification of invasions and threats. In their work,
however, the authors identify that there remain issues in scalability and integration, which
suggests that more work needs to be done to improve the reliability of IIoT systems and
their management of risk.

Alajlan et al. (2023) discuss IoT systems and the ability to introduce blockchain tech-
niques to enhance cybersecurity. Some of these they group under IoT device security,
others under blockchain security, and others under network security categories with spe-
cific problems, including device authentication, the existence of significant limitations
in consensus mechanisms, and scalability, among others. For improving IoT data in-
tegrity and privacy, the study underlines the decentralised and unchangeable nature of
the blockchain. It also revisits applications such as secure data management and smart
contracts and analyzes the research opportunities in smart cities: interoperability and
energy efficiency. It is for this reason that this extensive literature review emphasizes the
significance of blockchain while calling for more studies in an effort to surmount enduring
challenges.

In the literature review work by Lee (2020), a four-layer risk management model that
is suitable for IoT systems is introduced. It proposes a cybersecurity framework that
encompasses theoretical and practical elements of IoT cyber ecosystems regarding the
dynamic environment, infrastructure, risk assessment, and performance evaluation. Using
linear programming, the work presents a perfect method of efficiency in distributing the
financial resources amidst various IoT cybersecurity ventures. Explaining the smart hotel
room case, the framework shows how to prioritize and avoid these risks cost-optimally.
Nevertheless, the study has not concealed some of the limitations such as a confined and
static nature of the IoT testbed, potential difficulties in adjusting the proposed training
approach in large-scale and dynamically changing IoT environments. Although, it has
advocated for the enhanced flexibility of the proposed method for IoTA applications with
a certain configuration of characteristics.

2.3 Integration of Machine Learning and Deep Learning in IoT
Security

Li et al. (2023) present a detailed and important survey on the class of graph-powered
learning with examples of its use in IoT systems. This they do to explain how graph neural
networks (GNNs), graph embedding, and related technologies help in solving IoT issues
such as network anomaly detection, malware detection, and service recommendations.
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What their work demonstrates is that GNNs are indeed capable of operating within
IoT’s dynamic and diverse environments, especially in smart transport, industrial IoT,
and smart cities. Nevertheless, to the authors’ knowledge, obstacles such as scalability,
heterogeneity, or resource limitations still persist. Scholars propose further developments
of the presented approach, such as dynamic graph analysis and the implementation of
digital twins to improve IoT system performance and protection.

Alsoufi et al. (2024) proposed a new anomaly-based intrusion detection system (AIDS)
for IoT using a Sparse Autoencoder (SAE) and Convolutional Neural Network (CNN)
in their paper of 2024. The SAE works to eliminate attributes while the CNN works to
classify data into binary classes. Validated on the Bot-IoT dataset, the model achieves
exceptional results: it achieved 99.9% accuracy, 100% of the 50 sample data points were
correctly retrieved, and only 3 in 10,000 data points were falsely identified as belong-
ing to the class. Indeed, it does not require as much computational power as different
approaches, including CNN+LSTM and SAE+ANN, and it is faster when it comes to
training. In the study, the flexibility and effectiveness of the proposed SAE-CNN model
are highlighted in protecting resource-scarce IoT systems from current-day cyber threats.

Based on the GNN architecture, Altaf et al. (2023) present a network intrusion de-
tection framework for IoT network systems. Their model is a contribution to GNNs
and eliminates problems associated with previous models by embracing multi-edge graph
structures in addition to applying spectral and spatial convolution operations. It is de-
signed to capture interactions between nodes and traffic distribution and demonstrates
performance improvements across the benchmark datasets with accuracy of over 99% in
some cases. From the comparative analysis, it is found that the proposed framework
is better than E-GraphSAGE in terms of accuracy, precision, recall, and F1-score, with
fewer false alarms than E-GraphSAGE. Based on these insights, this research emphasizes
that far more progressive GNN designs hold great promise for IoT security.

The authors, Lo et al. (2022), proposed E-GraphSAGE, a Graph Neural Network
(GNN) that aims to implement Network Intrusion Detection Systems (NIDS) in IoT
systems. Compared to traditional GraphSAGE, E-GraphSAGE is specifically designed
to identify both edge features and node topologies in the flow-based structure, improv-
ing its vigilance against threatening network behaviours. Evaluation metrics on four
datasets, such as BoT-IoT and ToN-IoT, clearly confirm the enhanced performance of
E-GraphSAGE with F1 scores as high as 1 for multi-classification on BoT-IoT and 0.87
on ToN-IoT. Binary classification offers accuracy as high as 99.99% with a very low false
positives rate. Such outcomes prove that the proposed solution is better than the existing
state-of-the-art on IoT cybersecurity.

Wu et al. (2021) propose the concept of GNNs for anomaly detection in IIoT. They
also divide anomalies into point, context, and collective, using GNNs in smart transport,
energy, and manufacturing IIoT applications. The work proves that GNNs work and can
achieve up to 97.5% in smart energy systems for fault detection and 96.2% in contextual
traffic anomaly detection. Collective anomaly detection in manufacturing processes also
yields new promising results and increases classification precision. However, there are
several issues that have been raised by this study: the issues of data heterogeneity and
scalability, among other issues, which present the researchers with the need to develop
new designs of GNNs for the IIoT platform in the future.

It is evident from the reviewed literature that there is a need for proper improvement of
cybersecurity in IoT due to the limitations of resources and heterogeneity in IoT systems
and their global distribution. Traditional anomaly-based intrusion detection systems
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Table 1: Comparison of Literature Studies
Ref. Year Study Purpose ML/DL Dataset Target Size Classes Algorithm
Bernabe & Skarmeta 2022 Examined European cybersecur-

ity threats and proposed holistic
approaches with SDN/NFV and cryp-
tographic protocols.

ML Various Not Specified Anomalous, Normal Various ML
Techniques

Marshal et al. 2021 Analyzed IoT smart healthcare vulner-
abilities and proposed a security frame-
work.

ML Medical IoT Dataset Not Specified Intrusion, No Intrusion Decision
Trees, SVM

Choo et al. 2021 Proposed a multilayer taxonomy for
IoT cyberattacks and tested it on real-
istic scenarios.

DL IoT Network Dataset Not Specified Anomalous, Normal CNN, RNN,
Autoen-
coders

Chopra 2020 Analyzed IoT operational and informa-
tion technology (OT & IT) vulnerabil-
ities.

ML Various Not Specified Anomalous, Normal Various ML
Techniques

Ahmad et al. 2022 Systematic review of IoT-cloud security
concerns, focusing on PaaS and SaaS
models.

ML IoT Network Dataset Not Specified Anomalous, Normal Autoencoder
Techniques

Mendhurwar & Mishra 2019 Comparative analysis of intrusion de-
tection systems and machine learning-
based model analysis.

ML Various Surveillance Not Specified Intrusion, No Intrusion CNN, LSTM,
SVM

Raimundo & Rosário 2022 Proposed anomaly-based IDS for IoT
using Sparse Autoencoder and CNN.

DL IoT Network Dataset Not Specified Anomalous, Normal CNN, Sparse
Autoencoder

Alajlan et al. 2023 Proposed a layered architectural model
for IoT cybersecurity and risk manage-
ment.

ML Industrial Dataset Not Specified Anomalous, Normal SVM, Ran-
dom Forest

Lee 2020 Reviewed IIoT security with 70 core
articles; emphasized blockchain and
ML as key solutions.

ML IIoT Dataset Not Specified Anomalous, Normal Decision
Tree, SVM

Li et al. 2023 Surveyed graph-powered learning for
IoT using GNNs for anomaly detection
and service recommendations.

ML GNN Dataset Not Specified Intrusion, No Intrusion GNN, Neural
Networks

Alsoufi et al. 2024 Developed anomaly-based IDS using
Sparse Autoencoder and CNN for IoT
systems.

DL IoT Network Dataset Not Specified Anomalous, Normal CNN, Au-
toencoder

Wang et al. 2023 Proposed GNN-based intrusion detec-
tion framework with multi-edge graph
structures.

ML IoT Network Dataset Not Specified Anomalous, Normal GNN, Multi-
Edge Models

Lo et al. 2022 Developed E-GraphSAGE for NIDS in
IoT systems, addressing edge and node
topology detection.

DL IoT Network Dataset Not Specified Anomalous, Normal E-
GraphSAGE,
GraphSAGE

Wu et al. 2021 Studied GNNs for anomaly detection
in IIoT systems, classifying point, con-
text, and collective anomalies.

ML IIoT Dataset Not Specified Anomalous, Normal GNN, Traffic
Models

Our Study 2024 IoT Security through Anomaly-based
Intrusion Detection Systems.

ML/DL IoT Botnet Attacks Various Malicious, Benign GCN, GIN,
Näıve Bayes,
KNN, GBM

(IDS) become complemented with the use of machine learning (ML) and deep learning
(DL) and look suitable for discovering unknown threats and filtering excessively frequent
false positives. Generally, IDS developments, especially with the indication of enhanced
technologies such as blockchain, GNNs, and sparse autoencoders, bespeak a promising
capability to meet IoT-specific issues. This foundation points to the need for efficient
and scalable methodologies, which is why the next chapter will focus on identifying and
proposing these improved strategies.

3 Methodology

The objective of this study is to create an effective method to classify the IoT network
traffic accurately and detect different types of behaviours – normal and abnormal – in IoT
networks. This chapter then provides a brief overview of the method: data acquisition
and preparation, data exploration, and feature construction. Last but not least, the
chapter contains the description and analysis of the modelling and evaluation techniques
that constitute the subject of research. The typical flow of a machine learning-based
cybersecurity analysis system is shown in Figure 1 below.
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Figure 1: Cybersecurity Analysis using Machine Learning Flow

3.1 Dataset Description

The dataset used in the analysis for this study is obtained from the UCI Repository
UCI Machine Learning Repository (2018) . The dataset under consideration consists of
data collected from various devices. The dataset is derived from communication traffic
from several devices within an IoT network. It also holds benevolent traffic and traffic
generated from sources such as Gafgyt (BASHLITE) and Mirai – both of which are
marked separately as classes. The data it yielded contains numerous features obtained
from statistical characteristics of network behaviour, such as mean value, variance, and
standard deviation.

The classes included are:

• Benign: No significant traffic spikes or lows, no presence of unusual traffic patterns.

• Gafgyt Attacks: This framework also comprises of combo, junk, scan, TCP and
UDP attacks’ types.

• Mirai Attacks:Including the scenarios of ack, scan, syn, UDP and UDP plain.

The data for each class of the attacks are present separately in the dataset and is
given in CSV files. After combining, the total number of samples in the dataset amounts
to 169278 samples with 115 features for each attack type. A label column is added to the
dataset based on the data collected from the file. There are a total of 11 classes present
in the dataset making it a multi-class classification problem. To provide for reasonable
class distribution while at the same time dealing with class imbalance, the authors adop-
ted workable stratified sampling where all the 11 classes had equal representation while
maintaining the statistical distribution of each. By combining these two datasets, a bal-
ance of sentiments that assures a good data set for training the machine learning models
is obtained. Figure 2 below shows the final distribution of the attacks in the combined
dataset.
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Figure 2: Distribution of Class Labels

3.2 Data Preprocessing

Data preprocessing is vital in analysing and modelling the data to come up with a mean-
ingful result. The following steps were undertaken: The dataset underwent stratified
down-sampling to ensure balanced representation of classes, with variable labels describ-
ing the type of traffic associated with each record. Missing values were addressed using
mean imputation, where the missing values of a feature were replaced with its mean, pre-
serving the original data distribution (Pedregosa et al.; 2011; Little and Rubin; 2002).Fea-
ture scaling was performed using Scikit-learn’s StandardScaler to standardise features to
zero mean and unit variance, which is particularly crucial for models like Support Vector
Machines (SVM) that rely on the magnitude of features (Hastie et al.; 2009). Addi-
tionally, Principal Component Analysis (PCA) was applied for dimensionality reduction,
preserving 95% of the variance and reducing computational complexity, especially for
deep learning models.

3.3 Modelling

To provide a classification of network traffic, both the conventional machine learning
methods, and deep learning frameworks were used, although each offering unique features.
The study was designed to use both KNN, to obtain a synergistic benefit to produce the
best solution that is accurate with IoT network traffic classification with greater reliability.
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3.3.1 Traditional Machine Learning Models

The traditional approaches of machine learning were used for its simplicity, interpretab-
ility and computational time. Such models have been useful in the management of struc-
tured data and giving reference points for other more sophisticated models. The following
algorithms were employed:

Random Forest: Random Forest is one of the most popular ensemble methods that
builds a lot of decision trees to reduce variance and obtain better test accuracy and
stronger regularization simultaneously. To achieve diversity among individual trees, the
model subdivides feature space and data space randomly, assigning partial feature space
and data to each tree in the model. The final reduction is achieved through a majority
vote of trees, making it immune to noise and less prone to overfitting (Breiman; 2001).
The algorithm is particularly beneficial when the feature interactions in the dataset are
complex (Ho; 1995).

Gradient Boosting: :As a machine learning technique, Gradient Boosting iteratively
develops a set of models, typically decision trees, by reducing the residuals of the preced-
ing model. For each new tree, the errors of the previous tree are corrected, ultimately
resulting in a highly accurate prediction model (Friedman; 2001). Its strength lies in
tuning the weights of a developed model and the non-linearity of the function, making it
suitable for classification problems with complex datasets (Chen and Guestrin; 2016).

Support Vector Machines (SVM): SVM focuses on identifying the hyperplane that
best classifies classes in multidimensional space. Feature space transformations are ap-
plied to convert a dataset into a space where separation by a hyperplane becomes feasible.
This approach is most appropriate when the separating hyperplane is distinct, making
SVM a good choice for IoT network classification (Cortes and Vapnik; 1995).

K-Nearest Neighbours (KNN): KNN is a simple yet efficient method that determ-
ines the benchmark position of present data elements in the feature space. It is suitable
for small datasets and useful in early data analysis but may require extensive computation
for larger datasets (Cover and Hart; 1967).

Gaussian Naive Bayes (GNB): ): GNB is a classifier that operates based on Bayes’
theorem, assuming that features are independent. While this independence assumption
may not always hold, GNB is computationally efficient and yields reasonable results
for high-dimensional datasets. Its simplicity makes it a useful starting point or bench-
mark(Rish; 2001).

3.3.2 Deep Learning Models

Deep learning models were chosen for their ability to handle large, high-dimensional
datasets and capture complex patterns that traditional models might miss. The study
employed both sequential and graph-based architectures to address the unique charac-
teristics of IoT network data.
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Recurrent Neural Networks (RNN), LSTM, and GRU: These models process
time-series data, retaining memory of earlier inputs, making them ideal for temporal
dependencies, such as those representing specific attack behaviors in IoT network traffic.
LSTM and GRU are particularly designed to overcome the vanishing gradient problem,
enabling long-term dependency handling (Hochreiter and Schmidhuber; 1997; Cho et al.;
2014).

Graph Neural Networks (GNN): IoT network datasets often contain inherent re-
lationships between features that can be modeled as graphs. GNNs enable relational
reasoning, making them highly suitable for such tasks (Scarselli et al.; 2009).

Graph Convolutional Network (GCN): ): GCNs aggregate information from neigh-
boring nodes, capturing feature representations that consider both local and broader
graph contexts. This approach enhances IoT network traffic classification by modeling
dependencies between features (Kipf and Welling; 2017).

Graph Isomorphism Network (GIN): GINs incorporate multi-layer perceptrons
(MLPs) in the GCN structure during aggregation, making them more expressive and
capable of distinguishing graph structures. This capability is crucial for identifying vari-
ations in IoT network attack patterns (Xu et al.; 2019).

3.3.3 Model Training and Validation

All models were trained on 70% of the dataset and validated through 10-fold cross valida-
tion to make the proposed models more reliable and generalize. This validation technique
partitions the data into 10 folds, which in each round uses nine folds for training and
the tenth for testing, which reduces the chances of overemphasizing correctness. Mean
values of accuracy, precision, recall, and F1-score of all the folds were used to assess the
efficiency of each model. For this reason, this paper followed this approach of rigour to
ensure that the training and testing sets did not influence the results.

3.4 Evaluation

Model evaluation was performed using the following metrics to assess performance com-
prehensively:

1. Accuracy: The proportion of correctly classified samples across all classes.

2. Precision:The ratio of true positives to predicted positives indicates model reliab-
ility in classifying a specific category.

3. Recall (Sensitivity): The ratio of true positives to all actual positives, reflecting
the model’s ability to identify a class.

4. F1-Score:The harmonic mean of precision and recall, providing a balanced per-
formance metric.

5. ROC-AUC: The area under the Receiver Operating Characteristic curve, meas-
uring the model’s ability to distinguish between classes.
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Confusion matrices were generated to provide insights into misclassification patterns.
Deep learning models, particularly GNNs, consistently outperformed traditional machine
learning models, with superior F1-scores and recall.

4 Design Specifications

IoT network traffic classification is challenging, and the chosen approaches must provide
high accuracy and efficiency. This chapter discusses the design requirements and per-
formance assessment measures of the machine learning as well as deep learning models
adopted in the study. Two distinct approaches are employed to validate the models:
with and without cross-validation. Cross-validation is a more stringent way of approach-
ing the model validation as means of assessing its ability to generalise by using multiple
partitions of the data for training and validation. The approach without cross-validation
employed the train-test split to assess the skills within models and work with less compu-
tational resources at the cost of stability. The system architecture for the study is shown
in Figure 3 below.

Figure 3: System Architecture

4.1 Modelling with Cross-Validation

The concept of cross validation and the process of applying the model using inputs from
the former is used. Peculiarities of cross-validation is a rational concept for assessment
of models and generalisation. of the obtained results. Cross-validation resembles k-
fold validation where it splits K subgroups called folds and the rest K subgroups are
used for training in the current implementation of the system. 1 folds when using the
remaining 25% of data to validate the model. This process is repeated K times, i.e., find
X nováK. This This approach drastically eliminates over fitting of models and which on
average provides a decent biased assessment of the models. performance. However, prior
to inputting the data into the cross-validation process, the data is first pre- processed.
There are many operational variables within the data set and most of these variables have
missing values exceeding 40 percent. which are replaced by statistical imputation this
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like, for instance, the mean or median. Standardisation meth- ods are used on feature
scaling so that the mean of the features becomes zero and 12 variance equal to one.
Also, Principal Component Analysis (PCA) is applied to reducing the dimensionality
by asking for 10 principal components form the data in an in an effort to cut down on
computation time, while trying to provide as much information as will be useful. The
features are also preprocessed by filtering correlated features after undergoing correlation
treatment to bring feature selection into a more manageable and interpretable framework
for analysis. used data is in the form of randomly selected dataset of snapped shots of
samples divided into training and test set. The training dataset is partitioned into 10
various folds. Each fold is used one for the purpose of validation, the other folds are used
for training of the model. This approach guarantees that all points of data are enter to
training and validation, which takes therefrom, there is inconsistency in the estimation
of performance.

4.2 Modelling without Cross-Validation

The manner in which the model is conducted without cross validation is generally easy to.
as it only entials the division of data into two sections which are the training section and
the testing section. Other methods like the leave one out method are less computationally
intensive and thereby, although having stronger statistical properties in comparison to
cross-validation, can provide the same level of high reliability in evaluation of the per-
formance. The same pre-processing that has been discussed in cross-validation is applied.
Regarding data preprocessing step, there are missing values in the features. Indeed, many
of the features are standard. In the present study, PCA is applied to assist in the solution
of the above problem. of the dimensionality, reduction, and feature selection are based on
the correlation analysis. for further improvement of the range of features to be included in
the final set. The training set is subtlety only the materials that were used for training the
models. the test material comprises only the material for testing the models. Differently
from the In the case of the cross-validation method, the dataset is not partitioned and
repartitioned time and again. This approach is effective in the training phase since less
time is consumed but it YMight not be very accurate. Lack of cross-validation reduces
the computational burden, and hence should be avoided. in the first stages or if there are
limitations in the calculations capabilities of the available analytical tools. However, it
does not have the stability and utilization of the cross-validation technique. The is due
to the fact that the assessment of the models is based on only one distinct division.

4.3 Outcome

The IDS integrates both traditional machine learning (ML) models, such as Random
Forest, Gradient Boosting, k-Nearest Neighbour (KNN), Gaussian Naive Bayes (GNB),
and Support Vector Machines (SVM), as well as advanced deep learning (DL) architec-
tures, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Graph
Convolutional Networks (GCN), and Graph Isomorphism Networks (GIN). Among these,
Random Forest and KNN demonstrated the highest accuracy at 96.30% and 96.77%, re-
spectively, while LSTM and GCN excelled at recognising complex traffic patterns. The
GIN model further outperformed GCN in handling specific network scenarios. This design
ensures scalability, robustness, and adaptability to diverse IoT environments
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5 Implementation

The impact of the prospective IoT network traffic classification system is discussed in this
chapter. Implementation stage is the set-up of the computer hardware and software, ar-
rangement of the development environment for this project, hooking up of the operations
described above under data preparation, modeling, or evaluation among other things.
Working on the system, the latest tools and technologies were employed to guarantee
high accuracy, fast results, and possibility to expand the system’s functionality. The
objective of Intrusion Detection System (IDS) was to design and set up a well-structured
pipeline analysis of IoT networks traffic. The first process was data pre-processing Data
set from the UCI repository was pre-processed to handle missing values using mean im-
putation, scaling features using standardisation and feature selection using PCA. Feature
selection was done by correlation analysis in order to select the best features for model
building. For graph-based deep learning models, the author created graphs to represent
relations within data.

5.1 System Configuration

The implementation utilised a robust hardware and software setup to ensure seamless
execution of the computationally intensive tasks involved in the project. The system
configuration is as follows:

• Hardware Specifications:

– RAM: 8GB DDR4

– Storage: 1TB HDD + 256GB SSD

– GPU: AMD Radeon RX Vega 10 Graphics

– Processor: AMD Ryzen 7

• Operating System: Windows 11 Home Single Language (64-bit)

The inclusion of a dedicated AMD Radeon RX Vega 10 Graphics significantly accel-
erated the training of deep learning models, particularly those using architectures such as
LSTM, GRU, and Graph Neural Networks. The NVMe SSD enhanced data read/write
speeds, optimising data preprocessing and model training tasks.

5.2 Development Configuration

The development environment was configured to facilitate efficient implementation of
machine learning and deep learning workflows. Key tools and libraries included:

• Programming Language: Python 3.9

• Integrated Development Environment (IDE): Jupyter Notebook (via Anaconda
distribution)

• Libraries:

– Data Handling and Analysis: NumPy, Pandas
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– Visualisation: Matplotlib, Seaborn

– Machine Learning: Scikit-learn

– Deep Learning: TensorFlow, PyTorch

– Graph Neural Networks: PyTorch Geometric

These tools provided a seamless framework for implementing the various phases of the
project, including data preprocessing, visualisation, feature engineering, model develop-
ment, and evaluation.

5.3 Model Training and Configuration

A small amount of data cleaning was performed on the input data, addressing missing
values with mean imputation, scaling features with Scikit-learn’s StandardScaler, and
performing feature extraction using PCA while retaining 95% of the variance. The In-
trusion Detection System (IDS) was developed using both conventional machine learning
and deep learning approaches. Traditional models such as Random Forest, KNN, Gradi-
ent Boosting, Gaussian Näıve Bayes, and Support Vector Machines were trained with
default settings and slight tuning. For Random Forest, n estimators was set to 100,
and Gradient Boosting utilized a learning rate of 0.1. KNN used n neighbors set to
5, and SVM applied a radial basis function (RBF) kernel with C=1.0.

Deep learning models, including LSTM, GRU, Graph Convolutional Networks (GCNs),
and Graph Isomorphism Networks (GINs), were implemented to capture temporal and
relational patterns in IoT network traffic. The LSTM and GRU models were configured
with 128 hidden units and a batch size of 32. The GCN and GIN models used two graph
convolution layers with a hidden layer size of 64 and a learning rate of 0.01. Dropout
regularization with a rate of 0.5 was applied to prevent overfitting.

To evaluate the stability and generalizability of the models, a 10-fold cross-validation
process was employed, splitting the data into ten sets. Each iteration trained on nine
folds and validated on the remaining fold, ensuring that data was used for both training
and validation without redundancy. These configurations provided a robust architecture
for the IDS, addressing the specific requirements of IoT network security.

6 Evaluation

This chapter provides a detailed assessment of the IoT network traffic classification sys-
tem, examining model performance under cross-validation and standard training condi-
tions. It highlights the most significant results, analyses their relevance to the research
objectives, and discusses their implications in both academic and practical contexts.

6.1 Experiment 1: Modelling with Cross-Validation

This section provides the results obtained for the modelling with 10-Fold Cross Validation.
The results obtained for the modelling with cross-validation is consolidated in Table 2
below.
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Table 2: Results for Modelling with Cross-Validation
Model Accuracy Precision Recall F1 Score ROC AUC
Gradient Boosting 0.9267 0.9314 0.9267 0.9264 0.9960
KNN 0.9677 0.9681 0.9677 0.9678 0.9966
Gaussian Naive Bayes (GNB) 0.5845 0.5843 0.5845 0.5399 0.9676
Random Forest 0.9630 0.9663 0.9630 0.9628 0.9977
SVM 0.8103 0.7756 0.8103 0.7773 0.9833
LSTM 0.8846 0.8523 0.8846 0.8537 N/A
RNN 0.8709 0.8278 0.8709 0.8397 N/A
GRU 0.8882 0.8475 0.8882 0.8575 N/A
GCN 0.7587 0.7197 0.7587 0.7263 0.9844
GIN 0.7912 0.7560 0.7912 0.7591 0.9751

6.1.1 Results Analysis

The Gradient Boosting Model (GBM) achieved an accuracy of 92.67%, a precision of
93.14%, and a recall of 92.67%, demonstrating strong overall performance. Its ROC AUC
of 0.9960 indicates excellent discriminatory capability. Class-wise, GBM consistently
performed well, with precision and recall near or above 90% for most categories. However,
the model struggled with mirai udp and gafgyt scan, as shown by their lower recall of 81%
and 80%, respectively.

The KNN model exhibited outstanding performance with an accuracy of 96.77%,
precision of 96.81%, and recall of 96.77%. Its ROC AUC of 0.9966 further supports its
strong predictive capabilities. KNN performed exceptionally well across all classes, with
precision and recall nearing or reaching 100% for benign and critical malicious categories.

Figure 4: Confusion Matrix for KNN Model

The Gaussian Naive Bayes (GNB) model achieved a relatively lower accuracy of
58.45%, with precision and recall at 58.43% and 58.45%, respectively. While the ROC
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AUC of 0.9676 suggests the model has some discriminatory power, it struggled to effect-
ively classify several categories, particularly gafgyt scan and mirai syn, where recall was
58.45%.

The Random Forest model delivered exceptional results, with an accuracy of 96.30%,
precision of 96.63%, and a recall of 96.30%. Its ROC AUC of 0.9977 demonstrates near-
perfect classification ability.

Figure 5: Confusion Matrix for Random Forest Model

The LSTMmodel demonstrated robust performance, achieving an accuracy of 88.46%,
a precision of 85.23%, and a recall of 88.46%. The ROC AUC further highlighted its
capacity for classification tasks. The model excelled in recognising benign and malicious
traffic like mirai ack and gafgyt combo.

The GRU model outperformed standard RNNs, achieving an accuracy of 88.82%, a
precision of 84.75%, and a recall of 88.82%. Its ROC AUC highlights strong classification
performance

The GCN model showed moderate results, achieving an accuracy of 75.87%, a preci-
sion of 71.97%, and a recall of 75.87%. Its ROC AUC of 0.9844 indicates good discrim-
inatory capability, but the confusion matrix highlights significant challenges in classify-
ing traffic types like gafgyt scan and gafgyt tcp, which were frequently mislabelled.While
GCNs excel in leveraging graph-structured data, further optimisation in graph construc-
tion could improve their performance on this dataset.

The GIN model achieved slightly better results than GCN, with an accuracy of 79.12%,
a precision of 75.60%, and a recall of 79.12%. The ROC AUC of 0.9751 indicates good
classification potential. Similar to GCN, GIN performed well for benign and specific mali-
cious traffic types like gafgyt combo and mirai ack. However, it struggled with gafgyt tcp
and mirai scan, suggesting that further optimisation is required to exploit GIN’s full
potential.
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6.2 Experiment 2: Modelling without Cross-Validation

The evaluations without cross-validation also gave better performance measures for most
of the models than with cross-validation as the latter includes validation splits which
might again discourage the models from performing their very best on the training data
set. This approach allowed to assess the full potential of each algorithm: it performed
well for intricate pattern and imbalanced class distributions.

The results obtained for the 10 models implemented in the study without cross-
validation are consolidated in Table 3 below.

Table 3: Results for Modelling without Cross-Validation
Model Accuracy Precision Recall F1 Score ROC AUC
Gradient Boosting 0.9379 0.9424 0.9379 0.9376 0.9968
KNN 0.9819 0.9821 0.9819 0.9820 0.9998
Gaussian Naive Bayes (GNB) 0.5830 0.5859 0.5830 0.5385 N/A
Random Forest 0.9813 0.9845 0.9813 0.9811 0.9977
SVM 0.8127 0.8704 0.8127 0.7799 0.9836
LSTM 0.8910 0.9376 0.8910 0.8603 0.9968
RNN 0.8772 0.9088 0.8772 0.8464 0.9961
GRU 0.3638 0.2946 0.3638 0.2839 0.9745
GCN 0.7632 0.7253 0.7632 0.7309 0.9890
GIN 0.7900 0.7600 0.7900 0.7578 0.9755

6.2.1 Results Analysis

The Gradient Boosting Model (GBM) showed a slightly higher efficiency, with an accur-
acy of 0.9379 and an ROC AUC of 0.9968, which also proved the model’s good Class
Discrimination

Without cross-validation, KNN achieved an even higher accuracy of 98.19%, with
uniformly strong class-wise performance. Precision and recall for all classes were above
90%, with many achieving near-perfect scores. The confusion matrix confirms minimal
classification errors, reinforcing the model’s reliability for differentiating between benign
and malicious traffic in this experiment.

GNB showed consistent performance with a slightly lower accuracy of 58.30% com-
pared to Experiment 1. Misclassifications among malicious classes (gafgyt combo,mirai udpplain)
remained prevalent, as evidenced by the confusion matrix. The model’s reliance on Gaus-
sian assumptions is likely unsuitable for the complex, multimodal distribution of the data.

The Random Forest model achieved a near-perfect accuracy of 98.13% and a ROC
AUC of 0.9977, showcasing its strength in handling high-dimensional datasets. Class-
wise metrics reveal precision and recall close to 100% for most categories, particularly for
benign, mirai ack, and gafgyt junk.

The Support Vector Machine (SVM) model showed moderate performance with an
accuracy of 81.27% and a ROC AUC of 0.9836. While it excelled in recognising benign and
some malicious classes like gafgyt combo and mirai ack, its precision and recall dropped
significantly for gafgyt scan and mirai udp.

The Long Short-Term Memory (LSTM) model delivered strong results, achieving an
accuracy of 89.10% and a ROC AUC of 0.9968. It excelled in recognising benign and
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certain malicious classes, such as mirai ack and gafgyt junk, with precision and recall
approaching 100%.

The Recurrent Neural Network (RNN) achieved an accuracy of 87.72% and a ROC
AUC of 0.9961. Similar to LSTM, the RNN model performed well for benign and certain
malicious categories, , such as mirai ack and gafgyt combo.

The Graph Isomorphism Network (GIN) performed slightly better than GCN, achiev-
ing an accuracy of 79.12% and a ROC AUC of 0.9755. Class-wise metrics indicate robust
performance for benign, mirai ack, and gafgyt junk, with precision and recall close to
100%.

6.3 Discussion

The results show that there is great discrepancy in the accuracy achieved out of all
algorithms and modelling situation. Random forest and KNN were found to be accurate
with fair precision or recall depending on the metric used, suggesting the models ability
to deal with the inherent complexity in the dataset. These models also had impressive
resistance to violation of class imbalance as a result a keeper performance in almost all
categories.

Figure 6: Model Performances with Cross-Validation

On the other hand, such models as GNB and GRU showed some severe drawbacks
Response and Recommendation The obtained results suggest that the analyzed models
show moderate performance, while models such as GNB and GRU present significant
drawbacks. The use of a generative approach in GNB meant that it had to deal with
complex higher dimensions of feature space and some classification was off the mark.
Likewise, because of a failure to model the dependencies within the sequences, GRU
presented notably low recall for several of the categories. These results accentuate the
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need for choosing appropriate algorithms according to the properties of a given set of
data and the problem solving task at hand.

Figure 7: Model Performances without Cross-Validation

Therefore, in cross validation and non cross validation scenario , the performance
of the models has shown better non cross validation environment may be due to less
over head involved in cross-validation. But this may imply overly complex models are
being trained; a problem of overfitting. From the ROC AUC results, most models show
high levels of performance for the models’ ability to assign different classes with high
accuracy, Gafgyt Scan and Gafgyt TCP are constantly misclassified and may need feature
separation analysis and alternative data set bias.

7 Conclusion and Future Work

7.1 Conclusion

Hundreds of industries benefit from enhanced interconnectedness and automation be-
cause of IoT device popularity and fast adoption. The rapid development of networking
systems has created major security dangers which require specific Intrusion Detection Sys-
tems (IDSs) for IoT infrastructures. The research developed an anomaly-based intrusion
detection system (IDS) that combined traditional machine learning methods alongside
Graph Neural Networks (GNNs) as an advanced deep learning technique. The study
provides several key insights:

The outcome of modeling with KNN and Random Forest exceeded other models by
achieving top results for accuracy and precision and recall and F1 scores while handling
traffic class imbalances to find anomalous data points in most network classes. These
analytical tools delivered dependable output findings while maintaining interpretability
for various IoT systems. The Gradient Boosting Machine (GBM) demonstrated overall
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successful performance yet struggled to identify certain traffic types particularly Mirai
UDP and Gafgyt Scan. The Gaussian Naive Bayes (GNB) model had the worst perform-
ance levels because of its basic Gaussian distribution assumption which triggered higher
misclassification rates in particular traffic categories.

Research on recurrent architectures demonstrated that Long Short-Term Memory
earned better accuracy scores and recall statistics for managing temporal relationships
than Gated Recurrent Unit. The relational patterns within IoT network data became feas-
ible through Graph Neural Networks including Graph Convolutional Networks (GCNs)
and Graph Isomorphism Networks (GINs). The traffic classification results showed GIN
performing better than GCN for complex network scenarios while maintaining its capa-
city to recognize intricate patterns. The models showed difficulty in precise detection of
traffic types including Gafgyt TCP and Mirai Scan.

The models performed slightly better using non-cross-validation designs because they
eliminated data splitting and reduced computational loads. Model generalisability re-
ceived more realistic evaluation through cross-validation while maintaining computational
efficiency. System requirements must determine which validation method works best for
each deployment situation. The results of this study highlight the value of choosing mod-
els which correspond to the peculiar needs of IoT anomaly detection software systems.
Traditional models consisting of KNN and Random Forest remain straightforward to run
yet GNNs continue to prove essential in processing intricate IoT traffic complexity. Fun-
damental IDSs for IoT networks take shape through hybrid approaches which integrate
traditional anomaly detection methods along with deep learning algorithms to create
resilient adaptive systems.

7.2 Future Work

Despite the promising results achieved in this study, several limitations and opportunities
for future research remain. These include:

1. Enhanced Graph Neural Networks:

• The robustness of the GNN-based models still pose challenges because the
theoretical instantiation of a graph neural network is O(n2) and in real-world
application, graphs are often very large.. To this end, subsequent studies could
analyze the strategies for constructing a more efficient graph, or sample data
using GraphSAGE or hierarchical GNNs.

2. Incorporating Real-Time Capabilities:

• Real-time intrusion detection is essential for IoP networks security as they
revealed.. The future studies should aim at enhancing the proposed IDS to fit
actual-time environments using less resource-intensive deep learning systems
or methods based on accelerator hardware.

3. Addressing Class Imbalances:

• The observed misclassifications in underrepresented traffic types suggest the
need for advanced techniques to handle class imbalances. Techniques such
as synthetic oversampling, cost-sensitive learning, or generative adversarial
networks (GANs) for data augmentation could improve classification perform-
ance.
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