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Predictive Analytics for Patient Discharge Using 

Electronic Health Records 

Shrey Sanjay Kekade 

x23194316@stuent.ncirl.ie 

Abstract 

This study investigates the application of machine learning methods to predict 

patient discharge outcomes by using EHR data, focusing on two critical challenges in 

healthcare resource management and patient care continuity. The investigation involved 

a feature selection and model interpretability to balance predictive accuracy with 

practical usability in clinical environments. This systematic methodology, consisting of 

data preprocessing, hyperparameter tuning, and performance assessment using metrics 

such as F1-score and AUC-ROC, compared a total of five machine learning models: 

Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, and 

Neural Network. Of these, the Random Forest model proved to be the most robust, high 

in accuracy, and easy to interpret using SHAP-based explanations. While the obtained 

results are promising, the limitation of a single dataset and real-world validation pose a 

need for improvement and future research. However, this work contributes to predictive 

analytics in healthcare by providing a replicable framework that integrates advanced 

machine learning with domain-specific insights. Future work will expand dataset 

diversity, implement real-time predictive pipelines, and validate models in clinical 

settings to enhance their utility and scalability. 

Keywords: Predictive Analytics, Patient Discharge, Machine Learning, Electronic Health Records 

(EHR), Healthcare Resource Management. 

1. Introduction 

The rising demands have pressed the use of predictive analytics to optimise patient care and 

resource allocation in all hospital settings. Of course, this is very important for the forecast of 

a patient's status at discharge status which considerably affects both the continuity of care and 

has important ramifications concerning hospital operations and resource utilisation. With 

Electronic Health Records (EHR) increasingly available (Ferrão et al., 2021), the ability to 

apply machine learning to high-dimensional patient data offers a method for improving the 

accuracy and actionability of discharge predictions. The present study aims to enhance patient 

discharge-related predictions by advanced machine learning models by focusing on feature 

selection and interpretability for practical usage in clinical environments. 

Even with the broad acceptance of EHRs, issues related to the handling of high-dimensional 

data, imbalance problems in classes, and interpretability of the models, especially complex 

models like neural networks, persist. These are considered critical issues because, for real-

world applications in healthcare, predictable accuracy and interpretability ensue, in which 

decisions have to be transparent and explainable to the professional physician (Zapata et al., 

2023). The project consequently aims to solve these challenges by developing machine 

learning models that realize an excellent trade-off between performance and interpretability, 

contributing to improved outcomes for patients and better management within hospitals. 
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This inquiry focuses on evaluating the performance of several machine learning algorithms: 

logistic regression, decision trees, random forests, and neural networks for patients at 

discharge. Ultimately, the project works to provide healthcare professionals with reliable and 

interpretable tools to contribute step-by-step to improved decision-making processes 

regarding patient discharge. This enables resource management and assures better care.  

The major research question that guides this project asks the question:  

How can machine learning methods, combined with feature selection and explainability 

techniques, be used to accurately predict patient discharge outcomes using EHR data?  

This project will contribute to the development and validation of predictive models that 

enhance the precision and usability of discharge predictions that improve patient flow and 

resource use and efficiency in healthcare. 

The work is organized into five broad sections, namely Introduction, Literature Review, 

Methodology, Results, and Conclusion. Sequentially, these sections address the research 

objectives and various steps undertaken toward the eventual implementation and validation of 

the developed models in the healthcare environment. Therefore, this topic has many prospects 

for high contribution to the analytics of health care because it can effectively combine 

technical and practical aspects. 

2. Literature Review 

This section reviews the literature in the domain of machine learning for the prediction of 

discharge status but is limited to papers related to EHR-based predictive modelling, 

comparative analysis in machine learning techniques and feature selection, model 

explainability, and fixing challenges connected with AI deployment. The literature confirms 

that EHR data can drive a sea change in predictive modelling, but there are important gaps, 

such as more sophisticated methods of feature selection, model explainability, and real-world 

validation. These insights will thus help form the basis for our research toward building an 

accurate, interpretable model that is practically applicable to predict patient discharge 

outcomes, hence contributing toward healthcare management and patient care. 

2.1 Introduction to EHR-based Predictive Modelling  

EHRs have dramatically changed healthcare data analytics by providing structured data 

needed for predictive modelling. According to a study by Gao et al. (2022), systematic data 

mining was applied using EHR data in optimizing hospital resource management and patient 

discharge planning, demonstrating improved abilities to allocate resources. The integration of 

machine learning models with EHRs in Singapore hospitals for inpatient discharge 

predictions is another area that shows data-driven decision-making. According to Ayala 

Solares et al. (2020), there are various techniques like neural networks and decision trees that 

can be utilized to arrive at predictive accuracy. 

During the COVID-19 pandemic, the role of EHRs in predictive modelling came to the 

forefront. Zapata et al. (2023) created models using EHRs for predicting possibilities of 

COVID-19 patients' home discharges, which proved high accuracy in handling pandemic-

induced challenges. On the other hand, Lee et al. (2024) explored EHR data in emergency 

departments for proactive resource allocation, thus proving the versatility of EHRs across 

healthcare domains. 
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Problems of data integration and scalability remain. Ferrão et al. (2021) propose a framework 

for the integration of EHR data into hospital strategies that highlight the need for advanced 

techniques to handle dataset complexity. A totally different approach is made by Gramaje et 

al. (2021) who focused on scalable models dealing with large EHR datasets, thus focusing on 

the dual challenges of data integration and model scalability (Ferrão et al., 2021; Gramaje et 

al., 2021). 

EHRs thus form a very important ingredient of predictive modelling for improved discharge 

planning and resource management in healthcare. Nevertheless, the issues relating to data 

integration and lack of scalability raise the need for further research. The next section will be 

devoted to reviewing machine learning techniques that predict discharge, showing effective 

algorithms with feature selection and model explainability in place. 

2.2 Comparative Analysis of Machine Learning Techniques and Feature Selection 

Evaluation of machine learning algorithms is instrumental in predicting discharge outcome. 

This research, comparing Decision Trees, Bayesian Networks, and Random Forests, has 

shown that while the latter is very good at handling complex interactions, Bayesian Networks 

are much more interpretable, thus putting forward a trade-off between accuracy and 

interpretability. Additional testing revealed that neural networks provide high accuracy but 

with an extremely high resource cost, while support vector machines represent a much more 

balanced trade-off in terms of model performance to efficiency, which does reflect the 

positive correlation of model complexity with its resource requirements. Reviews indicate 

that logistic regression and decision trees are very much simpler, and improvement might be 

noted with regard to complex enhancers such as GBM, while tuning for these models is 

formidable. 

In psychiatric hospitals, machine learning approaches do brag of large improvements over the 

traditional methods, but proper model selection and validation should be done in order to 

prevent overfitting. Effective feature selection from EHRs including blood pressure and heart 

rate, according to J. P. Li et al. (2020) and Saleem & Chishti (2019) has been the key to 

improving predictive accuracy in stroke severity and discharge planning. In this regard, 

studies on neuro-intensive care outline the role of variables such as Glasgow Coma Scale 

scores in discharge prediction models. Recursive feature elimination and LASSO regression 

are some of the methods that have been identified as key drivers for predictive capacity in 

such models. Class I challenges to the management of high-dimensional EHR data include 

overfitting issues, which dimensionality reduction techniques like PCA (Bharadiya & 

Bharadiya, 2023)and t-SNE help reduce. In this view, the combination of feature selection 

with domain knowledge makes sure to retain clinically meaningful indicators, therefore 

balancing automated techniques with expert insights (Miao et al., 2022; Wolff et al., 2020) 

Therefore, selecting relevant features from EHR data is an important step toward the 

derivation of accurate predictive models. Two critical aspects in developing robust models 

for discharge prediction will be addressing high-dimensional data challenges and balancing 

accuracy with interpretability. The next section will focus on enhancing model explainability 

and the challenges of deploying AI in healthcare. 
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2.3 Enhancing Model Explainability and Addressing AI Challenges 

One of the things that clinical decision-making does is that model explainability is important, 

and structured EHR data would help tie up with NLP techniques for enhanced model 

interpretability, making them even more accessible to clinicians. (Kogan et al., 2020). In this 

regard, strategies aimed at improving model explainability, developing explainable AI using 

SHAP and LIME, clarify complex outputs of importance toward needing explainable AI in 

health, where decisions bear heavy consequences (Khodadadi et al., 2023). 

Techniques like visual aids and simplifying model architectures help make predictions more 

understandable, balancing accuracy and transparency (Rahnenführer et al., 2023). Complex 

models with better performance, such as deep learning networks. A hybrid approach of 

interpretable models with advanced techniques ensures that acquired benefits are not 

undermined by muddiness (Chang et al., 2022). 

Several challenges, such as those of data privacy, biasing, and scalability, exist that impede 

the deployment of AI in healthcare. The integration of EHR data in resource management 

also leads to serious privacy issues that call for very strict data governance policies. There is 

bias in the model due to imbalanced data sets, which needs to be dealt with if there have to be 

equitable predictions (Kogan et al., 2020). Oversampling and Synthetic Data Generation 

techniques enhance model reliability, most needed in the deployment of ethical (Khodadadi 

et al., 2023). Machine learning approaches are needed in optimising scalability issues with 

dimensionally high data (Rahnenführer et al., 2023). These studies highlight AI's potential in 

healthcare but also significant implementation challenges, requiring robust data strategies, 

scalable models, and fairness in predictions. 

Model explainability and addressing AI deployment challenges are key to developing a 

predictive model that can be trusted. The final section will identify research gaps and 

contributions that have advanced patient discharge prediction. 

 

2.4 Integration of Cloud Computing in Healthcare Systems 

 

Cloud computing has become increasingly integral to healthcare by enabling efficient data 

storage, real-time access, and enhanced interoperability across healthcare networks. By 

leveraging cloud infrastructure, healthcare organizations gain scalable data management 

solutions that support the storage, and processing demands of electronic health records 

(EHRs), diagnostic imaging, and other high-volume data. Alassafi (2021) identify the cloud’s 

role in reducing infrastructure costs, promoting resource flexibility, and allowing for the 

seamless adoption of advanced technologies, such as IoT and Big Data analytics. This 

integration aids healthcare providers in implementing comprehensive e-health systems, 

enhancing remote monitoring capabilities and telemedicine initiatives to support patient care 

continuity. 

 

Further, cloud platforms improve interoperability by enabling unified access to healthcare 

data across multiple stakeholders, including hospitals, research institutions, and public health 

organizations. (Mugisha & Paik, 2023) discuss how cloud solutions centralize patient 

information, making it accessible in real-time to authorized healthcare professionals across 

various locations. This interoperability fosters collaboration and streamlined patient care, 

particularly for rural or under-resourced areas. As cloud adoption advances, healthcare 

systems can leverage real-time analytics and collaborative data sharing to optimize treatment 
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outcomes and operational efficiency, establishing a more connected, responsive healthcare 

ecosystem. 

 

2.5 Research Gaps and Contributions 

The literature reveals critical gaps in machine learning for healthcare, especially in discharge 

predictions. There is a need to develop better methods of feature selection to enhance model 

accuracy using EHR data. Finally, there will be an emerging need to create sophisticated 

methodologies related to the selection of impactful health indicators. (Sivan & Zukarnain, 

2021). Another major gap relates to generalizability across diverse populations and settings. 

Most of the models developed so far are not flexible, with many realising that the application 

of these tools in differing scenarios is quite challenging. It's a tough requirement: ensuring 

the high accuracy of the models over multiple demographics and clinical environments. 

(Abad et al., 2021). 

Real-world validation of most of the developed models is often lacking. Validating predictive 

models in real clinical settings gives them practical utility and effectiveness, hence more 

credibility for adoption (Sivan & Zukarnain, 2021). Critical care settings are complex and 

nuanced; they require robust models. Comprehensive clinical features improve discharge 

predictions within such settings when incorporated (Abad et al., 2021). 

 

Study Focus Area Techniques/Models Key Findings Challenges Addressed 

(Gao et 

al., 2022) 

Discharge 

Prediction 

Techniques 

Decision Trees, Bayesian 

Networks, Random 

Forests 

Random Forests handle 

complex interactions well; 

Bayesian Networks offer better 

interpretability 

Accuracy vs. 

Interpretability 

(Wolff et 

al., 2020) 

Feature Selection 

and Stroke Severity 

Prediction 

Deep Forest Algorithm 

Key health indicators like blood 

pressure and heart rate enhance 

predictive accuracy 

Feature Selection, 

High-dimensional 

Data 

(Kogan et 

al., 2020) 

Discharge Length 

Prediction in 

Emergency Depts 

SVM, Neural Networks 

Neural networks achieve high 

accuracy; SVMs balance 

performance and efficiency 

Model Complexity, 

Resource Needs, 

Interpretability 

(Abad et 

al., 2021) 
 

AI Deployment in 

Healthcare Systematic Data Mining 

Approach 

Data governance is crucial for 

privacy; strategies to mitigate 

model bias are essential 

Data Privacy, Bias, 

Scalability 

 

Table 1: Literature Comparison Table 

There are several major gaps in the research, including feature selection, generalizability, 

validation in real-world settings, and robustness in critical care. Table 1 above provides a 

compact summary of significant literature. Our study seeks to fill these gaps: as we develop 

accurate, adaptive, and validated predictive models with the goal of improving patient 

management and resource allocation in healthcare. 
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3. Research methodology 

The methodology adopted for this study will be based on the KDD process. This structured 

approach is appropriate for any predictive analytics task, especially in large and complex 

datasets like EHR (A. Li et al., 2018). The methodology will be broadly divided into five 

major phases, which include, data understanding, exploratory data analysis, preprocessing, 

model selection and training, and evaluation metrics, as depicted in Figure 1 below. 

 

Figure 1: KDD 

Data Understanding 

First, the raw EHR dataset, named EHR_data.csv, was loaded for preliminary analysis from 

Mendeley Data (https://doi.org/10.17632/7kv3rctx7m.1) (Sadikin & Mujiono, 2020). The 

structured and unstructured data points included patient characteristics and outcomes in 

relation to discharge (Miao et al., 2022). In this regard, the sources, formats, and attributes of 

the data were closely observed to spot missing values and inconsistencies. This initial 

understanding helped in underlining various features that may strongly impact the prediction 

of patient discharge. 

Exploratory Data Analysis (EDA) 

EDA on the data was performed with a view to establishing patterns, relationships, and 

anomalies in the data. Quantitative features distribution and central tendencies were done by 

use of descriptive statistics. Box plots allow checking for outliers (Ali et al., 2023), while 

correlation heatmaps show the level of relationships among various features and thus support 

the process of choosing features. In exploring categorical data, the use of count plots is 

performed for class imbalances or predominant categories. These steps unveiled the hidden 

patterns present the data and prepared it for further pre-processing. 

Data Preprocessing 

The preprocessing pipeline carried out important steps to clean and prepare the data for 

modelling. Firstly, it encoded categorical variables into a numerical format to make them 

compatible with any kind of machine-learning algorithm. It also normalized the distribution 

by using PowerTransformer for skewness and scaling the features to standardize numerical 

attributes (A. Li et al., 2018). Principal Component Analysis was carried out to reduce 

dimensionality as an effort to get rid of multicollinearity and redundancy among the features 

(Bharadiya & Bharadiya, 2023). 

https://doi.org/10.17632/7kv3rctx7m.1
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Treatment of outliers was done using capping so that the effect of very extreme values is 

curtailed. Eventually, VIFs were checked to make sure that the problem of multicollinearity 

had disappeared. The cleaned data was now moved into a new CSV file called 

cleaned_data.csv. The cleaned data was subjected to updated visualization and descriptive 

statistics for validation to make sure that the quality has really improved. 

Model Selection and Training 

The following techniques were tested for various predictive solutions: Logistic Regression, 

Decision Tree, Random Forest, SVM, and Neural Network. In this case, these models were 

selected due to the wide range of methodologies, from simple linear ones up to ensemble and 

deep-learning-based techniques. Each model uses simulations of hyperparameter tuning using 

GridSearchCV (Belete & Huchaiah, 2022). The dataset was randomly divided into training 

and testing subsets, with 80% of the data used for training and 20% kept for the test; this 

therefore allowed validation of the generalizability of the developed models. 

Evaluation Metrics 

The performances for these models were measured in a variety of ways to create the most 

comprehensive view of performance: the percentage of samples classified correctly, a 

balanced measure between precision and recall using the F1-score, class distinguishability 

through AUC-ROC among the rest, and the relationship of sensitivity to specificity via 

precision-recall curves. Collectively, the aforementioned metrics informed the most suitable 

and robust model to real-world deployment. 

4. Design Specifications 

4.1 System Architecture  

The system architecture as illustrated in Figure 2 for this study consists of two main 

pipelines: preprocessing and modeling. The preprocessing pipeline involves loading the raw 

dataset (EHR_data.csv), performing Exploratory Data Analysis (EDA), and applying 

preprocessing steps such as categorical variable encoding, feature scaling, and dimensionality 

reduction using PCA (Bharadiya & Bharadiya, 2023). These steps ensure the data is clean, 

normalized, and optimized for modelling. The processed dataset is then stored as 

cleaned_data.csv for further use. 
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Figure 2: Architecture diagram 

The modelling pipeline involves splitting the cleaned dataset into training and testing subsets, 

defining machine-learning models with tailored hyperparameters, and optimising these 

parameters using GridSearchCV. The best-performing model is evaluated using predefined 

metrics and saved with joblib for deployment. 

4.2 Model Specifications 

The combination of these five models provides a comprehensive evaluation of predictive 

techniques, from interpretable linear models to advanced ensemble and deep learning 

approaches. By leveraging the strengths of each model, this study aims to develop a 

predictive framework that balances accuracy, interpretability, and practical applicability in 

healthcare settings. The justification for the models can be seen in Table 2. The diversity in 

model selection ensures that the findings contribute to both the theoretical insights and 

practical advancements in EHR-based predictive analytics. 

 

Model Justification Key Literature 

Logistic 

Regression 

Simple, interpretable model effective in healthcare applications where 

transparency is critical. 

(Mugisha & Paik, 

2023) 

Decision Tree 
Captures non-linear relationships and provides hierarchical decision insights, 

making it accessible to healthcare professionals. 

(J. P. Li et al., 

2020) 

Random Forest 
Robust ensemble method capable of handling complex interactions and 

minimizing overfitting, suitable for high-dimensional EHR data. 

(Miao et al., 

2022) 

Support Vector 

Machine 

Balances performance and computational efficiency; kernel methods handle non-

linear patterns effectively. 

(Wolff et al., 

2020) 

Neural Network High accuracy in capturing intricate data patterns, though resource-intensive; (Kogan et al., 
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evaluates trade-offs in advanced modeling techniques. 2020) 

Table 2: Model Selection Justification 

Each model was systematically fine-tuned to optimize performance, balancing accuracy, 

precision, recall, and other metrics, ensuring the final deployed model was both reliable and 

interpretable. 

5. Implementation  

5.1 Hardware, Tools, and Libraries Used 

For these experiments, the used environment is one with an AMD Ryzen 5 4600H with 

Radeon Graphics processor, 8 GB of RAM (7.42 GB usable), and 217.82 GB storage running 

Windows 11 Home Single Language (Version 23H2). The main development flow used 

Python 3.10.13 for compatibility and efficiency, with work iterated in JupyterLab for ease of 

execution. Additionally, joblib was utilized for saving and reloading trained machine learning 

model, enabling efficient maintenance and management of work outputs. 

The pandas and numpy libraries were important in the chain of preprocessing for data 

manipulation and numerical computations. Matplotlib and seaborn were other libraries used 

for data visualization, mainly for exploratory data analysis. Feature scaling was done using 

StandardScaler, and normalization of skewed data distributions was done using 

PowerTransformer (A. Li et al., 2018). For dimensionally reducing the multicollinear 

features, PCA from scikit-learn was used. Finally, VIF from the statsmodels library was used 

to check for multicollinearity among features. 

The machine learning pipeline consisted of the following algorithms: Logistic Regression, 

Decision Tree, Random Forest, Support Vector Machine, and Multi-Layer Perceptron from 

the scikit-learn library. Hyperparameter tuning was performed in a structured fashion using 

GridSearchCV, and model evaluation consisted of accuracy, F1-score, and AUC-ROC. 

Advanced visualizations included ROC and precision-recall curves and were created with the 

help of matplotlib and seaborn. 

This combination of hardware, tools, and libraries ensures a robust and efficient framework 

for the building, evaluation, and deployment of predictive models. 

5.2 The Preprocessing Pipeline 

The preprocessing pipeline began by importing the libraries to ensure that the environment 

was equipped with tools for data manipulation, statistical checks, visualization, and 

transformation. After loading the initial dataset, an exploratory data analysis phase was 

conducted to gain insight into the structure and quality of the data. This initial EDA first 

computed the descriptive statistics to show basic distributions and central tendencies (Fig. 3), 

followed by a series of visualizations. Distribution plots, for example, showed how some 

features change with regard to the target variable, while box plots were an effective way of 

determining the presence and amount of outliers. Correlation heatmaps made the 

relationships between features quite clear and helped guide decisions about subsequent 

dimensionality reduction steps. Besides, count plots made the understanding of categorical 

variables much easier by pointing out class imbalances or dominant categories. 
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Figure 3: Distribution of EHR Features 

After the picture of the raw data had crystallized, the focus shifted to a structured sequence of 

tasks regarding preprocessing. Categorical variables were encoded to enable non-numerical 

attributes to be transformed into a form suitable for machine learning models. The 

PowerTransformer handled the skew of the data distribution, making it symmetric and thus 

improving the performance and stability of downstream models (Fig. 4). 

 

Figure 4: Effect of PowerTransformer on Skewed Features 

Feature scaling, mostly through standardization, prevented variables with different scales 

from having a disproportionate effect on the learning algorithms. Besides, it made use of PCA 

for decreasing the dimensionality and addressing the problem of multicollinearity to let the 

model focus on those principal components explaining the data with most variance using only 

a few non-redundant features. The selection of this feature set was refined further by 

performing checks based on the Variance Inflation Factor for problems regarding 

multicollinearity. In a case where outliers could not be removed, capping methods were used 

to contain them without completely discarding data that could potentially be useful. 
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Figure 5: Correlation Matrix Before and After Preprocessing 

Once these main preprocessing steps were carried out, visualizations were undertaken a 

second time. This post-preprocessing EDA allowed us to verify that scaling, normalization, 

PCA, and capping outliers improved the general quality of the dataset. The newly generated 

distribution plots had more normalized feature distributions; box plots depicted less influence 

from outliers (Fig. 6), and correlation heatmaps (Fig. 5) confirmed the non-redundant 

manageability of data. 

   

Figure 6: Box plot of Features Before and After Preprocessing 

Finally, the now cleaned and pre-processed dataset-without problematic outliers, skewness, 

and too much dimensionality-was written to a new CSV file. This output-now clean and well-

structured data would form the very basis of the subsequent modelling pipeline, ensuring that 

any machine learning models trained or validated would be done with data of the highest 

integrity. 

5.3 The Modeling Pipeline 

After getting a cleaned and well-structured dataset from the pre-processing phase, the 

modelling pipeline commenced by importing this refined data. The cleaned dataset, now free 

of problematic outliers, in a state of reduced dimensionality, and balanced scales, therefore 

presented a stable bedrock on which predictive models could be built. Upon loading the data, 

the target variable, SOURCE, was separated from the features to clearly distinguish the input 

variables from the outcomes that the models would seek to predict. 
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Having prepared the data, it would make a lot of sense to split the data into training and 

testing subsets. It ensures that models will be trained on one portion of the data while being 

evaluated on an unseen one by assigning about 80% of the data to training and about 20% to 

testing. This structure allowed less overfitting, besides generalizing performances of the final 

model better.  

Having established the train-test framework, the pipeline now needed to define a set of 

models and their respective hyperparameters. Accordingly, a list of well-known machine 

learning algorithms such as Logistic Regression, Decision Tree, Random Forest, Support 

Vector Machine (SVM), and a Neural Network (MLPClassifier) were chosen for selection to 

span low to high complexities and different approaches. Each model type was further 

complemented with a predefined grid of hyperparameters for which the optimal configuration 

would be systematically searched. This is attested by the fact that for Logistic Regression, the 

tuning of regularisation strengths was completed; for Decision Trees, different tree depths 

and sample splits were tried; and for Neural Networks, changes in the size of hidden layers 

and different activation functions were tried. Random Forests were tuned by changing the 

number of trees and maximum depth, and for SVMs, iterative testing with different kernel 

values and penalty values was done to find the optimal combination. 

Training and evaluation in this pipeline formed the critical core. Using GridSearchCV, each 

model was put into an extensive hyperparameter search process, where several configurations 

for each model were tried with their respective scores using the F1 metric. This is a 

convenient metric because it balances between precision and recall. After identifying the best 

hyperparameters for each model, that model's best version was retrained and further 

evaluated on the test set. Accuracy, precision, recall, F1-score, and AUC-ROC are some 

performance metrics that can be used to measure the holistic view concerning strengths and 

weaknesses that the model portrays. Consequently, visualization through confusion matrices, 

ROC curves, and precision-recall curves intuitively showed findings for a clear understanding 

of how each model was performing in handling true and false predictions, including trade-

offs between sensitivity and specificity. 

The last part was to compare all the models side by side. It was easy to compare which 

candidate model was better after each other through the tabular transformation of the 

evaluation results and also to plot comparative line graphs for the main metrics of interest. the 

best model was prepared for deployment, validated through the testing phase and supported 

by diagnostic visualisations that established its reliability. Conclusive performance 

characteristics confirmed the best hyperparameters chosen in the modelling pipeline. 

6. Evaluation 

6.1 Experiment: Logistic Regression 

First was Logistic Regression, a linear model often used as a baseline in classification tasks. 

After systematic hyperparameter tuning using GridSearchCV, the model chose a 

regularization strength C of 0.1 and used the 'lbfgs' solver for optimization. This setting 

provided a good balance between generalization and computational efficiency, ensuring that 

the model neither underfit nor overfit the data. 

After selecting the best parameters, Logistic Regression was applied to the test set to see its 

performance. From the resultant metrics, it could be observed that this model achieved an 

accuracy of about 0.71, hence correctly classifying about 71% of the samples. The precision 
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and recall were about 0.71 and 0.85, respectively, which postulated that the model was good 

in identifying the positive class but sometimes misclassified certain negatives as positives. 

Thus, this confirmed a reasonable balance between precision and recall with an F1-score of 

about 0.77, which therefore showed moderate discriminatory power across the two classes 

with an AUC-ROC of approximately 0.77. 

Visualizations from Figure 7 provided deeper insights: the confusion matrix brought out the 

balance between true positives and false positives, while the ROC curve emphasized the 

ability of the model to do well in distinguishing between classes at various thresholds. 

 

Figure 7: Evaluation Metrics and Visualizations for Logistic Regression 

The precision-recall curve shows how the changes of the decision threshold affected the 

model sensitivity to the positive class. To wrap up, this first experiment with Logistic 

Regression set a solid baseline from which, although improvement was possible, the linear 

approach of the model had already caught most of the key patterns in the data.  

6.2 Experiment: Decision Tree 

The second experiment was carried out using a nonlinear model with inherent interpretability 

and understandability, namely the Decision Tree classifier. A number of hyperparameters 

were tuned concerning the criterion, depth, and splitting rules. 'Gini' was used as a criterion, 

while max_depth was set to 10. It was combined with a lenient constraint on the splitting: 

min_samples_leaf=1 and min_samples_split=2. In this way, it allowed the tree to grow up to 

a reasonable complexity without excessive overfitting. On the held-out set, Decision Tree 

achieves an accuracy of around 0.73, compared with the best Logistic Regression 

performance of less than that. 

With a precision of about 0.73 and recall of about 0.80, it says that the tree was performing 

quite well in recognizing the positive examples and was less prone to mistakenly labelling a 

negative example. 

This outputs a balanced F1-score of about 0.77, while the AUC-ROC, at about 0.77, 

confirmed that this tree was indeed yielding a moderate yet distinct discrimination between 

classes. This finding was reinforced by visualization tools (Fig. 8). The confusion matrix 

depicted that the hierarchical splits of the Decision Tree resulted in fewer misclassifications 

as compared to the linear model. The ROC curve's true positive rate for a given false positive 

shows more stability in improvement, and the precision-recall curve represents a model that 

can maintain reasonable levels of precision on a wide range of recall values. In summary, the 

Decision Tree performed worst of all but still showed a better adaptation to the data's inherent 

complexities than the logistic regression linear model. 
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Figure 8: Evaluation Metrics and Visualizations for Decision Tree 

6.3 Experiment: Random Forest 

The third experiment scaled up the complexity using a Random Forest classifier. By 

aggregating multiple decision trees trained on bootstrapped samples of data and subsets of 

features, the Random Forest tamed the variance that might affect a single decision tree. 

Hyperparameter tuning explored different numbers of trees (n_estimators), maximum depths, 

and splitting criteria. The selected hyperparameters were n_estimators=500, max_depth=10, 

min_samples_leaf=1, min_samples_split=2, and notably bootstrap=False for increased 

diversity. That was the balance between model complexity and computation, considering a 

large forest, yet keeping trees focused and diverse. 

As observed, the Random Forest showed a clear gain in performance, reaching an accuracy of 

about 0.76. The precision was at about 0.75, with recall as high as about 0.87. This shows its 

strong capability to catch true positives with fewer classification errors. Improved F1-score to 

about 0.80 reflects a good balance between precision and recall. Moreover, this model 

enhances the AUC-ROC metric, reaching as high as 0.81, and showing a good discriminative 

power. Compared to all the experiments before, Random Forest stood out as the best so far, as 

it leveraged the strength of ensemble methods in picking up complex patterns and 

interactions among the data (Fig. 9). 

These improvements were even clearer in the visualization charts. The confusion matrix 

showed fewer classification errors, thus reinforcing the model's deep understanding of both 

classes. The ROC curve placed the Random Forest comfortably above the baseline, 

maintaining high true positive rates even as the false positives increased. Similarly, the 

precision-recall curve was consistently stronger, proving that the model sustained high 

precision across a range of recall levels. 

 

Figure 9: Evaluation Metrics and Visualizations for Random Forest 
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6.4 Experiment: Support Vector Machine 

The fourth experiment introduces the SVM, a model known to find complex decision 

boundaries with high-dimensional data. Great care was taken to tune the kernel and 

regularisation parameters of the SVM toward optimal performance. The best configuration 

from GridSearchCV had a penalty parameter C of 1, a kernel type of 'rbf', a gamma parameter 

set to 'auto', and a polynomial degree of 2. These parameters balanced the model's flexibility 

with its capacity to generalise so that it didn't overfit or struggle to find meaningful patterns. 

On test data, the evaluation of the SVM yields an accuracy score of approximately 0.74, 

where most three-quarters predictions have turned right into the desired actual results of this 

classification model. Much more detailed was the precision and recall, 0.73 for the number of 

true positive predictions against the predicted positives, and just less than 0.86 for recall for 

relative sensitivity to class-positive events or situations. The resulting F1-score of about 0.79 

confirmed a balanced trade-off between these metrics, and an AUC-ROC score of about 0.81 

reflected robust discriminative capability. This placed the performance of the SVM squarely 

between the Decision Tree and Random Forest results in previous experiments. 

This was further supported by the visualizations (Fig. 10): the confusion matrix showed fewer 

errors in classification when compared to simpler models, and the ROC curve, while falling, 

remained above the baseline, confirming the performance of the SVM as stable and reliable 

across a spectrum of decision thresholds. The precision-recall curve showed how the SVM 

could maintain reasonable precision levels as recall increased, a good testament to the model 

complexity and tuneable decision boundary. Although not outperforming the performance of 

the ensemble-based Random Forest, the SVM showed that careful tuning of kernel-based 

methods could yield a performance close to the more sophisticated ensemble methods. 

 

Figure 10: Evaluation Metrics and Visualizations for Support Vector Machine 

6.5 Experiment: Neural Network 

The fifth experiment was given to a Neural Network MLPClassifier for the implementation 

of deep learning to capture complex and nonlinear relationships in the data. Perform 

hyperparameter tuning through hidden layer sizes, activation functions, learning rate, and 

alpha concerning overfitting, making sure model capacity is enough. The best configuration 

obtained was a hidden layer structure with 150, the 'relu' as an activation function for better 

propagation of gradients, a learning rate set to 'constant', and an alpha valued at 0.0001 for 

soft regularization. 

This neural network reached an accuracy of about 0.76, outperforming both Logistic 

Regression and Decision Tree performances, while closely matching the Random Forest and 

SVM. Precision near 0.77 and recall at about 0.83 showed that the model was strong in 

identifying positive instances without inflating false positives too much. With an F1-score of 
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approximately 0.80, the Neural Network balanced precision and recall effectively. Although a 

bit surprising, considering that some simple techniques are known to perform rather well on 

this data, its AUC-ROC of approximately 0.80 assured that this more complex and parameter-

heavy approach was indeed showing legitimate discriminatory power rather than simply 

overfitting the training data. 

 

Figure 11: Evaluation Metrics and Visualizations for Neural Network 

Associated plots from Figure 11 confirmed these results: from the confusion matrix, it was 

possible to see that the classification improved, while from the ROC curve, the increases of 

the true positive rate steadily increased by varying the threshold. Precision-recall stayed put, 

demonstrating the stability of maintaining a reasonable level for the Neural Network in its 

precision, even while moving along with different thresholds on the recall. Although it did 

not beat the best performance from the Random Forest, this Neural Network showed the 

potential of such advanced modelling techniques, given a sufficient amount of data and 

tuning effort. 

6.6 Experiment: Model Comparison 

The sixth and final step in the evaluation was the drawing together of all previous models 

tested, Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, and 

Neural Network, into a comprehensive comparison analysis. Aggregation into Table 3 of key 

metrics like accuracy, precision, recall, F1-score, AUC-ROC, and showing all of the results 

on a comparative plot allow us to take an integrated overview and identify which model is 

actually superior while trying to balance everything about prediction performance. 

 

Model best_params accuracy precision recall f1_score AUC_ROC 

Logistic 

Regression 
{'C': 0.1, 'solver': 'lbfgs'} 0.713476784 0.709836066 0.850687623 0.773905273 0.767447969 

Decision 

Tree 

{'criterion': 'gini', 

'max_depth': 5, 

'min_samples_leaf': 1, 

'min_samples_split': 2} 

0.734994337 0.729549249 0.858546169 0.788808664 0.766833363 

Random 

Forest 

{'bootstrap': False, 

'max_depth': 10, 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500} 

0.757644394 0.751277683 0.866404715 0.804744526 0.813081117 

Support {'C': 1, 'degree': 2, 'gamma': 0.741789354 0.734557596 0.864440079 0.794223827 0.806175998 
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Vector 

Machine 

'auto', 'kernel': 'rbf'} 

Neural 

Network 

{'activation': 'relu', 'alpha': 

0.0001, 'hidden_layer_sizes': 

(150,), 'learning_rate': 

'constant'} 

0.756511891 0.767272727 0.829076621 0.796978281 0.804639484 

Table 3: Evaluation Metrics for Tuned Models 

Each of the models had some advantages. Logistic Regression is understandable, very 

efficient, and an easy-to-understand baseline that did a reasonable job, though definitely there 

is further space to consider sophisticated relationships. The Decision Tree introduced 

nonlinearity and slightly improved metrics, showing a better understanding of subtle features 

than the linear approach did. The Random Forest leveraged the power of an ensemble even 

further in accuracy, precision, recall, and especially in AUC-ROC, a belief that ensemble 

methods were really capable of handling the intricacies in this dataset robustly. Whereas the 

Support Vector Machine and the Neural Network continued to push the boundaries, with the 

SVM closely nudging Random Forest's high standards and the Neural Network providing a 

nuanced trade-off between complexity and accuracy. 

  

Figure 12: Comparative Metrics Across Models 

The plotted metrics in Figure 12 tell an interesting story. While accuracy and precision 

gradually rose from the simpler to the more complex models, recall is especially vital in 

healthcare contexts where missing positive cases can be quite costly, improved markedly with 

ensemble methods and kernel-based approaches. The F1-score, the harmonic mean of 

precision and recall, rose steadily to higher values as models became more advanced, 

indicating that better overall quality of classification was achieved by more sophisticated or 

ensemble-based methods. Meanwhile, the AUC-ROC, which reflects the model's 

discriminative ability across thresholds, peaked for the Random Forest and remained high for 

both SVM and Neural Network, emphasising the fact that these models were proficient in 

distinguishing between classes even under varying decision boundaries. 

The final comparison yielded one clear winner: while SVM and Neural Network were 

competitive, both confirming the potential of nonlinear and deep architectures, Random 

Forest consistently provided the best metrics. The balanced improvement of this model in all 

the key performance indicators, together with its non-declining AUC-ROC, best qualified it 
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for real-world deployment. The relative interpretability of the Random Forest using feature 

importance analysis and SHAP explanations added confidence that the stakeholders would be 

in a position to understand-and thus trust-the model's decisions in a clinical setup. 

 

Figure 13: Feature Importance and a Decision Tree from Random Forest 

This was clearly reflected in the visualisations, where the Random Forest model 

outperformed the rest. From Figure 13, the decision tree from the Random Forest ensemble 

provides a very clear hierarchical representation of important decision paths that the model 

follows in making predictions, showcasing its capabilities for complex relationships. A 

feature importance plot further points to features such as THROMBOCYTE, group1_PCA, 

and LEUCOCYTE that contributed to the critical building up of the model's predictive 

accuracy (Fig. 13). The combination of interpretability and high performance underlines the 

robustness of Random Forest as the best choice to predict the outcome in the case of patient 

discharge. These insights have been pivotal in understanding the key drivers of the model's 

predictions, providing valued inputs for clinical decision-making. 

In a nutshell, the comparative exercise highlighted not only the incremental value of 

exploring multiple algorithms and tuning their hyperparameters but also guided the selection 

of a final model. Random Forest came out to be the best among them, balancing robust 

accuracy, strong discriminative capability, and interpretability. The evaluation chapter thus 

reached its logical conclusion by placing individual model performances in a broader 

comparative landscape, laying a foundation for deploying the chosen model in practice. 

6.7 Discussion 

The study employed a systematic approach to predicting patients' discharge using machine 

learning models from EHR data. While strong predictive performance was attained with the 

results, there is a dire need for critical assessment in methodology and identification of areas 

which may require an upgrade. One limitation of the design used in the study is that the 

analysis relied on one dataset; hence, the generalisation of the model to other clinical settings 

could be compromised. Incorporation of data from so many different healthcare facilities 

could increase robustness and applicability. Besides, even though the preprocessing steps 

were followed very carefully, outliers and removing the skewness in some variates may have 

affected those model performances. A deeper investigation involving alternative scaling 

methods or robust estimators may alleviate these questions.  

The results of the current study compare pretty well with the literature, mainly about the high 

performances of Random Forest and Neural Networks in performing predictive tasks on 

healthcare data. However, the deviations in certain metrics-like precisions across Logistic 

Regression-predict that it might depend a lot on the data-specific pattern, underlining the 
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feature engineering-domain-specific tuning aspect that still has to be investigated in further 

detail. 

Despite these limitations, the experiment contributed significantly to leveraging EHR data for 

predictive analytics. The combination of preprocessing strategies, systematic model 

evaluation, and robust visualization techniques provides a replicable framework for similar 

studies. This study showed that machine learning can be used to support clinical decision-

making, though with due consideration for limitations in any real-world application. 

 

7. Conclusion and Future Work 

7.1 Conclusion 

This study has developed a machine learning model to predict a patient's discharge outcome 

using EHR data. In this work, five models have been developed and tested: Logistic 

Regression, Decision Tree, Random Forest, Support Vector Machine, and Neural Network. 

Random Forest proved the most robust, providing the best balance between precision, recall, 

and overall accuracy. Results confirm the feasibility of the application of machine learning to 

EHR data for predictive analytics but also point out the main challenges that relate to the 

problem of skewness of the data and poor generalization. These limitations open paths toward 

future research efforts, for instance, ensembling using various datasets or the realisation of 

real-time pipelines. 

The described inquiry already provides a successful answer to the research question, since it 

shows that ML techniques combined with feature selection and interpretability methods can 

predict patient discharge outcomes using EHR data with high accuracy. Out of the five 

models explored, Random Forest became the most powerful with balanced accuracy and 

AUC-ROC at 0.81, easily interpretable through feature importance analysis. Dimensionality 

reduction techniques such as PCA and VIF highlighted **THROMBOCYTE levels** and 

PCA-derived components as the most important predictors in explaining variances of 

predictions. While promising, these also allude to the limitations of dataset diversity and real-

world validation that need to be addressed in future enhancements for clinical applicability. 

The results of this work will be of great help in understanding and developing actionable 

insights into healthcare analytics, besides providing a stepping stone for further research. In 

fact, the proposed framework with enhanced scalability and validation might be the starting 

point for developing sophisticated clinical support systems, possibly aiding the medical 

fraternity with timely and accurate decisions. 

7.2 Future Work 

Future work on this project should be directed toward the expansion of the dataset through 

the integration of EHR data from multiple healthcare institutions to enhance generalizability 

across diverse clinical environments. Real-time predictive pipelines will be developed to suit 

dynamic healthcare scenarios, enhancing timeliness and relevance in predictions.  

Advanced explainable AI methods, such as SHAP and LIME, can be integrated for clear, 

interpretable insights of model decisions for clinicians and are therefore trust-inducing in the 
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system. Final deployment and validation at real clinical settings are crucial with regards to 

the practical utility, reliability, and scalability of the developed models for wider diffusion. 
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