==y

)
National
Collegeof

Ireland

Configuration Manual for Leveraging
Graph Convolutional Networks for the
Detection of Illicit Bitcoin Transactions

MSc Research Project
Data Analytics

Kavitha Kannekanti
Student ID: x23237422

School of Computing
National College of Ireland

Supervisor: Cristina Hava Muntean

‘-
National College of Ireland \ National

MSc Project Submissi Sheet CollegeOf
c Project Submission ee I
reland
School of Computing
Student Kavitha Kannekanti
L\ =1 1 2 L=

Student ID: x23237422

Programme: Msc Data Analytics Year: 2024 - 2025
Module: Msc Research Project
Lecturer: Cristina Hava Muntean

Submission 29/01/2025
D TE LI 0 T 1 -

Project Title: Leveraging Graph Convolutional Networks for the detection of Illicit
Bitcoin Transactions.

Word Count: ... 730, Page Count: 13,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: K.Kavitha

Date: 29/01/2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual for Leveraging Graph
Convolutional Networks for the Detection of Illicit
Bitcoin Transactions

Kavitha Kannekanti
Student ID: x23237422

1. Introduction

This configuration manual provides a elaborated guide for implementing this research
leverages Graph Convolutional Networks (GCNs) to detect illicit Bitcoin transactions using a
graph-based model. The project involves preprocessing Bitcoin transaction data, constructing
a graph from the data, and training machine learning models (both baseline models and the
GCN model) to classify transactions as illicit or licit.

2. Requirements

This manual assumes that you are working in a Python-based environment, preferably in a
virtual environment or Docker container.

Software Requirements

Python (version 3.7 or higher)

PyTorch (version 1.10 or higher)

PyTorch Geometric (version 2.0 or higher)
scikit-learn (version 0.24 or higher)
Matplotlib (version 3.4 or higher)

Pandas (version 1.2 or higher)

NetworkX (version 2.5 or higher)

Seaborn (version 0.11 or higher)

Hardware Requirements

e A machine with a CUDA-compatible GPU (for faster model training)
e At least 8GB of RAM for running the models

e Sufficient disk space for dataset storage and model checkpoints

3. Environment Setup

e Create a Virtual Environment (Optional but recommended):

python3 -m venv gcn-env

e Install Required Packages: Install dependencies using pip:

pip install torch torchvision torchaudio torch-geometric pandas scikit-learn networkx

e Verify GPU Availability: Ensure PyTorch can access the GPU:

import torch

print(torch.cuda.is_available()})

4. Dataset Preparation

Dataset Files:

The dataset used in this research is based on Bitcoin transaction data from the Elliptic dataset
sourced from Kaggle, which is typically structured as follows:

Features: elliptic_txs_features.csv (contains transaction features)

Classes: elliptic_txs_classes.csv (contains transaction labels such as illicit or licit)
Edgelist: elliptic_txs_edgelist.csv (contains edges representing transactions between
Bitcoin addresses)

felliptic bitcoin dataset
elliptic txs features.csv
elliptic_txs_classes.csv
elliptic_txs_edgelist.csv
/code

5. Code Implementation

e Load the Dataset: Use Pandas to load the transaction features, classes, and edge list:

Define file paths

feature _file = 'elliptic_bitcoin_dataset/elliptic_txs_features.csv’
class file = 'elliptic bitcoin dataset/elliptic txs classes.csv'
edgelist file = "elliptic bitcoin dataset/elliptic txs edgelist.csv'

Load the features, classes, and edges data
features df = pd.read csv(feature file, header=None)
classes df = pd.read csv(class file)

edges df = pd.read csv(edgelist file)

Dataset Shapes:

Features : 283,769 (rows) 167 (cols)
Classes : 283,769 (rows) 2 {cols)
Edgelist : 234,355 (rows) 2 (cols)

e Data Cleaning: Filter and prepare the dataset for model training. Ensure that there are no
missing or malformed entries in the dataset.

e Feature Normalization: Normalize the node features using standard scaling techniques:

Create a mapping of txId to index
tx_id_index = {tx_id: idx for idx, tx_id in enumerate(features_df['transaction_id'])}

Filter edges to keep only those with wvalid txIds

valid edges = edges df[edges df['txIdl'].isin(tx_id_index) & edges df["txId2'].isin(tx_id_index)]
valid_edges['Source’] = valid_edges["txId1l'].map(tx_id_index)

valid_edges['Target’'] = valid_edges[txId2'].map(tx_id_index)

Prepare edge index for PyTorch Geometric
edge_index_tensor = torch.tensor(valid edges[[Source’', "Target']].values.T, dtype=torch.long)

Prepare node features

node_features_tensor = torch.tenser(features_df.drop(columns=["transaction_id"]).values, dtype=torch.float)
print(node_features_tensor.shape)

e Graph Construction: Convert the edge list into a PyTorch Geometric-compatible format:

Basic Graph Properties

Nodes

e Label Encoding: Convert class labels (licit, illicit) into numerical labels:

Encode class labels (handle "unknown' labels)
label _encoder = LabelEncoder()
encoded_labels = label encoder.fit_transform(classes_df['class’])

Convert the encoded labels to a tensor
node_labels _tensor = torch.tensor(encoded_labels, dtype=torch.long)

e Prepare the Dataset for Baseline Models & GTAD Model

5plit the dataset into training, validation, and testing sets (78% train, 15% validation, 15% test)
known_nodes_count = filtered_node_ labels.shape[8]
random_permutations = torch.randperm(known_nodes_count)} # Shuffle the indices

train_count = int(8.7 * known_nodes_count)
val count = int(@.15 * known_nodes_count)
test_count = known_nodes_count - train_count - val _count

Create indices for the splits

train_indices = random_permutations[:train_count]

val indices = random_permutations[train_count:train_count + val_count]
test_indices = random_permutations[train_count + val_count:]

Split the data into train, validation, and test sets
X_train = filtered_node_features[train_indices]
y_train = filtered node_labels[train_indices]

¥_val = filtered node features[val_indices]

y_val = filtered node_labels[val indices]

X_test = filtered _node features[test_indices]

y_test = filtered_node_labels[test_indices]

Distribution of Labels in Training Set Label Distribution in Training Set
30000 29409

25000

20000

Count

15000

10000

5000
3185

Licit lllicit
Label

e Train & Evaluation the Baseline Models

Define the Logistic Regression model
logistic_model = LogisticRegression(class_weight="balanced")

Define the hyperparameter grid
param_grid = {

‘max_iter':[16888],

"c': [8.e1, @.1],

‘penalty’': ['12"],

‘solver': ['lbfgs", 'liblinear'],

Set up the grid search with 5-fold cross-validation
grid_search = GridSearchCV(estimator=logistic_model, param_grid=param_grid,
cv=5, n_jobs=-1, scoring="accuracy', verbose=1)

Fit grid search to the training data
grid_search.fit(X_train, y_train)

Define the Decision Tree model
decision_tree_model = DecisionTreeClassifier(random_state=42)

Define the hyperparameter grid
param_grid = {
‘min_samples_split': [2, 5, 18],

‘min_samples leaf': [1, 2, 4],
‘max_depth':[1,2],
‘criterion’: ['gini', 'entropy’],
‘max_features': ['auto','sgrt’],

Set up the grid search with 5-fold cross-validation
grid_search = GridSearchCV(estimator=decision_tree_model, param_grid=param_grid,
cv=5, n_jobs=-1, scoring="accuracy', verbose=1)

Fit grid search to the training data
grid_search.fit(X_train, y_train)

Define the Random Forest model
random_forest_model = RandomForestClassifier(random_state=42)

Define the hyperparameter grid
param_grid = {
'n_estimators': [5, 18, 28,186,58@],
'min_samples_split’': [2, 5, 18],
‘min_samples leaf': [1, 2, 4],
‘max_depth':[1,2],
‘max_features’: ['auto’, 'sqrt'],

Set up the grid search with 5-fold cross-validation
grid_search = GridSearchCV(estimator=random_forest_model, param_grid=param_grid,
cv=5, n_jobs=-1, scoring="accuracy', verbose=1)

Fit grid search to the training data
grid_search.fit(X_train, y_train)

e Building & Training of the GTAD Model

Define the GTAD Model
Temporal Graph Convolutiom Layer (T-GCM)
class TGConv(torch.nn.Module):
def __init_ {=self, in_channels, out_channsls):
super{TGConv, self)._ init_ ()
self.gcn_conv = GCNConv(in_channels, out_channels)

def forward{self, x, edge_index, edge_attr):
edge_attr can represent the temporal information (like time difference)
return self.gcn_conv{x, edge_index, edge_attr)

Define the combined GCM, T-GCN, and Transformer model
class GTADModel{torch.nn.Module):
def _ _init_ (=self, input_features, output_classes):
super{GTADModel, self)._ imit_ ()

GCN Layer (first laver for learning graph structure)
self.layerl = GCNConv(input_festures, 16)

Temporal GCN Layer (second layer to capture temporal information)
self.temporal_layer = TGConv(le, 32)

Transformer Layer (to capture temporal dependencies)
self.transformer_layer = TransformerEncoderLayer(d_model=32, nhead=4, dim_feedforward=64)
self.transformer_encoder = TransformerEncoder(self.transformer_layer, num_layers=2)

Fimal output layer (classification)
self.fc = torch.nn.linear(32, output_classes)

def forward{self, data):
¥, edge_index = data.x, data.edge_index
edge_attr = data.edge_attr # Temporal information encoded im edge attributes

Apply GCM Layer (first step in graph feature learning)
¥ = self.layerl{x, edge index)
¥ = F.relulx)

Apply Temporal GON Layer (using edge attributes to encode time-related data)
¥ = self.temporal_layer(x, edge_index, edge_atir)

Epoch 18: Loss 8.2857, Train Acc = ©.9233, Val Acc = B8.9288
Epoch 28: Loss 0.1438, Train Acc = ©.9574, Val Acc = B.9689
Epoch 38: Loss @.1161, Train Acc = 9.9678, Val Acc = 8.9594
Epoch 48: Loss 8.1822, Train Acc = ©.9722, Val Acc = B.9712
Epoch 58: Loss @.8913, Train Acc = ©.9753, Val Acc = 8.9744
Epoch 68: Loss £.83839, Train Acc = 9.9731, Val Acc = 8.9758
Epoch 78: Loss 0.8827, Train Acc = ©.9784, Val Acc = B.9758
Epoch 88: Loss 8.8761, Train Acc = ©.9794, Val Acc = 8.9762
Epoch 98: Loss 8.8728, Train Acc = ©.9885, Val Acc = B8.9772
Epoch 18@: Loss 8.8671, Train Acc = @.9818, Val Acc = B.9772
Epoch 11@: Loss 8.8798, Train Acc = @.9794, Val Acc = 8.9764
Epoch 12@: Loss @.8666, Train Acc = @.9887, Val Acc = B.9769
Epoch 13@: Loss 8.8882, Train Acc = @.9825, Val Acc = B.9775
Epoch 14@: Loss @.8571, Train Acc = @.9826, Val Acc = B.9785
Epoch 15@: Loss 8.8563, Train Acc = @.9821, Val Acc = B.9767
Training Loss Over Epochs Accuracy Over Epochs
1.4+ —— Train Loss
0.98 1
1.2 1
1.0 4 0.96
§ é 0.94 -
0.6 <
047 0.92 -
0.2 1
—— Train Accuracy
0.90 A — Validation Accuracy
0.0 :

T
80
Epoch

T
100

T
120

T
140

60
Epoch

T
80

T T
100 120

Evaluation of the Baseline Models

Logistic Regression Test Evaluation:
Classification Report:
precision recall fl-score support
8 g.44 8.95 a.6a 669
1 e8.99 a.87 8.93 6317
accuracy 8.88 6986
macro avg 8.72 8.91 8.77 6986
weighted avg 8.54 8.88 8.08 6586

Decision Tree Test Evaluation:

Classification Report:

precision recall +l-score support

8 .54 8.63 e.68 669

1 B8.96 .94 8.95 6317

accuracy 8.91 6986
macro avg 8.75 8.81 8.78 6986
weighted avg 802 a8.91 g.92 6986

Random Forest Test Evaluation:
Classification Report:
precision recall fl-score support
8 8.85 8.32 .47 669
1 8.93 8.99 8.96 6317
accuracy 8.93 6986
macro avg 8.89 B8.66 8.71 6986
weighted avg a.92 8.4a3 a.91 6986

e Evaluation of the GTAD Model

Classification Report:
precision recall Ffl-score support
=) 8.91 8.85 g8.88 669
1 B8.98 8.99 .99 6317
accuracy .98 6986
macro avg 8.95 8.92 .94 6986
weighted avg g.28 8.98 8.98 6986

True lahel

Confusion Matrix

6000
5000
0 571
4000
- 3000
- 2000
1+ 54
- 1000
] 1

Predicted label

Receiver Operating Characteristic (ROC)
1.0 + r
.7
Ca
-
F
”
-
-
-
G.E 7 j.o"
-
Ca
-
e
e ’
5 0.6 - -
= -~
— &
P ~
E 0.4 1 fff
= e
”
-
-
,
-
-
0.2 1 e
'i-
-
-
L
‘..f
e = ROC Curve (area = 0.98)
-
0.0 T T | T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Print Overall Metrics
print{"\nOverall Test Metrics:")
print(f"Accuracy: {test_metrics['accuracy’]:.4f}")
print(f"Precision: {test_metrics['precision’]:.4f}")
print(f"Recall: {test_metrics['recall’']:.4f}")
print(f"F1 Score: {test metrics['fl_score']:.4f}")
Overall Test Metrics
Accuracy: B8.9782
Precision: ©.9778
Recall: ©.9782
F1 Score: @.9779
Conclusion

This manual outlines how to configure and set up the system for detecting illicit Bitcoin
transactions using Graph Convolutional Networks (GTAD Model). By following the steps for
dataset preprocessing, model configuration, and evaluation, you can replicate the research
results and experiment with variations of the model.

References

Python:_https://www.python.org
Dataset Source: https://www.kagqgle.com/datasets/ellipticco/elliptic-data-set

10

https://www.kaggle.com/datasets/ellipticco/elliptic-data-set

