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Abstract 

With the advancement of cryptocurrencies, especially Bitcoin, the rate and instances 

of crimes have increased to become a challenge to the agencies responsible for 

regulation. The heuristic techniques, which are commonly used in detecting frauds are 

traditional methods, take a lot of time and cannot be easily scaled. This research 

proposes a new approach called Graph-based Transaction Anomaly Detection (GTAD) 

that employs Graph Convolutional Networks (GCNs), Temporal Graph Convolutional 

Networks (T-GCNs) and transformers to enhance the identification of Illicit Bitcoin 

transactions. For the modelling of Bitcoin transaction networks, GTAD builds a directed 

graph where temporal dynamics are associated with time-based snapshots. For feature 

learning, this approach employs GCNs to extract meaningful node embeddings, while 

temporal attention helps identify important temporal and spatial patterns in transaction 

data. Also, the hierarchical attention mechanism gives preference to massive transactions 

and concentrates on areas of high fraud risk. The proposed model is trained under 

supervised learning paradigm, with a weighted cross entropy loss function to handle 

class imbalance. Comparing GTAD with various machine learning methods for detecting 

illicit activities shows that GTAD provides higher accuracy and better scalability. The 

performance of the GTAD is higher than that of other models with 98.49% accuracy and 

0.94 macro F1-score. These findings demonstrate the applicability of the model to 

prevent financial crimes in the cryptocurrency context and can help improve the 

detection of fraud in the constantly developing digital currency environment. 

 

Keywords: Fraudulent Transactions, Graph-based Transaction Anomaly Detection 

(GTAD), Graph Convolutional Networks (GCNs), Bitcoin transactions 

 

1 Introduction 
 

Cryptocurrencies have especially Bitcoin expanded rapidly in the financial markets across the 

globe in recent years. Bitcoin has been considered a revolutionary digital currency because of 

its decentralized structure, better privacy, and security measures in its transaction processing. 

Nevertheless, like every other digital currency, Bitcoin has been associated with so many 

benefits but also carries the tag of being an ideal tool for criminal businesses such as money 

laundering, terrorism funding, and fraudsters. The key issues that make the use of Bitcoin 

dangerous include; First, Bitcoin has anonymity, which makes it hard for the regulatory body 

and the police to track the perpetrators of the frauds Second, once the fraud is executed, it is 

irreversible, therefore the victims cannot recover their money. Most of the existing 

approaches for identifying fraudulent transactions in Bitcoin networks are heuristic based and 
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rule-based approaches. Although these methods have given some level of usability, they have 

certain drawbacks which are very crucial. In particular, they are time-consuming, cannot be 

easily integrated with the increasing volume of transactions, and prove to be ineffective in 

addressing the dynamic nature of fraud schemes. Since the adoption of Bitcoin increases, the 

complexity of the crimes rises, and thus, there is a need for better and more flexible methods 

of fraud prevention. 

 

Recently, graph-based methods together with machine learning methods show 

promising results in detecting frauds in the transaction networks (Valem et al., 2023; Shah et 

al., 2023). These models can capture relational and structural characteristics as Bitcoin 

transactions are presented as graphs where nodes are the wallets, and edges are the 

transactions. However, the current graph based models which we inherit still have some 

drawbacks in terms of handling the temporal aspect of the transactions, scalability issues with 

large data sets and the identification of the important transaction patterns which are 

precursors of the potential fraudulent transactions. To this end, this research seeks to fill these 

gaps through the development of a new approach for the detection of illicit bitcoin 

transactions known as GTAD- Graph-based Transaction Anomaly Detection which 

incorporates Graph Convolutional Networks (GCNs), Temporal Graph Convolutional 

Networks (T-GCNs) and transformers. 

 

The purpose of this research is motivated by the fact that existing techniques used to detect 

fraud in Bitcoin networks have their drawbacks. Existing models are not well suited for large 

scale and dynamic networks where such malicious behaviors are masked in layers of 

interactions. The problem with this approach is that traditional methods that rely on manually 

designed heuristics cannot adapt to higher dimensions and changes in scale easily, and many 

current machine learning methods do not incorporate the temporal nature of transactions in 

the Bitcoin system. However, graph-based models, despite being superior to the previous 

models in terms of capturing the structural properties of the transaction networks, do not 

possess the necessary components of capturing the most important regions, such as the areas 

with high frequency of illicit transactions. There is a growing need for a model that can not 

only understand the structural and temporal properties of these network but also rank the 

transactions that are more suspicious in order to increase the accuracy of detection. This gap 

leads to the creation of a more elaborate, expandable, and flexible solution that will involve 

GCNs, transformers, and temporal analysis to enhance identification of licit & Illicit 

transactions in Bitcoin. 

Research Question 

 

This research study aims to explore the following key research question: 

 

“How effectively can proposed GTAD model outperform the baseline models 

including the Logistic Regression, Decision tree and Random Forest?” 
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Addressing these questions is crucial for enhancing our understanding of fraudulent activity 

patterns in Bitcoin transactions and improving the detection capabilities of graph-based 

models. 

Objective: 

The main aim of this research study is design and implement the GTAD (Graph-based 

Transaction Anomaly Detection) model, which employes the Graph Convolutional Networks 

(GCNs) and transformers to recognize the illicit type of Bitcoin transactions. Specifically, the 

research aims to achieve the following: 

 

Graph Construction: Construct directed graphs depicting Bitcoin transaction networks and 

incorporate temporal knowledge by constructing temporal snapshots. These graphs will help 

in providing structural representation of transaction network and will help in identifying 

relationship and pattern similar to fraud. 

Temporal Attention with Transformers: Add transformers to incorporate self-attention 

mechanisms that capture temporal and spatial dependencies in the transaction graph. With 

transformers, further improvements will be made so that the model can pay attention to the 

dynamic aspect of illicit transactions, new fraudulent behaviors. 

Hierarchical Attention for Anomaly Detection: Incorporate hierarchical attention 

mechanisms to input attention map for prioritizing transactions within the network by 

focusing on the significant regions of the model—like hotspots of fraud transactions. This 

will make it easier to identify the prohibited operations to increase the effectiveness of their 

prevention. 

Model Evaluation and Benchmarking: Therefore, the next step is to assess how the GTAD 

model performs against classical methods and other GNN methods that exist in literature. 

The performance of the proposed model will be evaluated by F1-score, precision, and recall 

measures; it will be aimed to prove the higher scalability and accuracy of identifying illicit 

transactions in the massive Bitcoin network using the proposed approach in comparison with 

the related works. 

 

Research Study Structure 

The study is divided into a number of significant parts as follows. In Section 2, related works 

on cryptocurrency transaction detection, the use of graph-based models, and the application 

of GCNs and transformers for anomaly detection are reviewed. Section 3 features the 

proposed approach, the Graph-based Temporal Anomaly Detection (GTAD) model. This 

section describes the construction of the graph, the generation of GCN embeddings, the 

incorporation of temporal attention mechanisms, and the hierarchical attention mechanism 

used for anomaly detection. Section 4 is devoted to the presentation of the experimental 

results & discussion, where the metrics for evaluation and the datasets used are presented, as 

well as the comparison of the performance of the proposed GTAD model with other existing 

methods. Where the detailed discussion and analysis of the experimental findings, while 

emphasizing on what the authors considered to be one of the strengths of the GTAD model, 

and the limitations of it. Lastly, Section 5 provides the conclusion where the main results and 
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implications of the research are outlined along with the possible directions for further studies 

aimed at enhancing the capability to identify illicit activities within cryptocurrencies. 

 

 

2 Related Work 
 

The emergence of cryptocurrencies, especially Bitcoin, has disrupted financial systems 

around the world. However, due to its decentralised and somewhat pseudonymous structure, 

it has also attracted a number of unlawful uses, such as money laundering, fraud and 

ransomware payments (Olsson et al., 2024; Nicholls et al., 2023). To protect the credibility 

and security of blockchain technologies, it is essential to notice these illicit operations. The 

previous approaches applied to identify frauds in the financial sector, for instance, rule-based 

systems, are ineffective because frauds in the more complex and diverse cryptocurrency 

networks require new approaches (Fahmi et al., 2023). This literature review provides a 

critical analysis of the development of methods for identifying fraudulent transactions within 

Bitcoin networks, primarily graph-based approaches and Machine Learning techniques like 

GCNs, T-GCNs, and transformers. It seeks to present the research gap that this section has 

established and the need to develop the Graph-based Transaction Anomaly Detection 

(GTAD) model presented in this thesis. 

2.1 Illicit Activities in Bitcoin Networks 

Bitcoin’s architecture is open, and the decentralized structure has made it the go-to asset for 

unlawful illicit type of activities. Another important issue in cryptocurrency networks is the 

identification of such fraudulent transactions since the number of such operations is 

enormous and continually increasing, and criminals are constantly improving their methods 

(Olsson et al., 2024). The early works in this context used heuristic and rule-based systems 

where the system highlighted the suspicious transactions using the predefined limit, including 

the transaction value or the number of connections in the network (Fahmi et al., 2023; 

Nicholls et al., 2023). However, these methods are not enough scalable and flexible to 

address the growing and changing nature of fraudulent behaviours in Bitcoin networks. Also, 

rule-based systems are likely to produce many false alarms, which is likely to flag genuine 

transactions as suspicious. 

 

2.2 Graph-Based Approaches for Fraud Detection 

In the last few years, graph-based approaches have emerged as an effective paradigm for 

detecting suspicious activities in transaction networks, particularly in the context of Bitcoin 

and other cryptocurrencies. These approaches represent transactions as graphs, where nodes 

are specific objects: wallets or accounts, and edges are transactions between them. This 

makes the capturing of transaction relations and interactivity possible, which is a better 

approach than the traditional methods (Bhatti et al., 2023; Mir & Musa et al., 2023). They 

enable it to identify multi-phase fraud scenarios and other connections between fraudulent 

parties that are often very hard to identify in other ways. The graph-based model proves 

useful for identifying an anomalous behaviour because it can capture changes in the nature of 
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the nodes’ interactions within a TNM model. In contrast to rule-based approach or statistical, 

the graph-based approaches allow to identify fraud scenarios which involve more than one 

link, or a stage, or the fraudster has relationships with several other parties. For example a set 

of transactions which may have looked suspicious to the users or the system may not be 

easily identifiable each time while observing the whole interactions then the problem can 

easily be identified. The decision to analyze the transaction network in its entirety as an 

overall approach significantly enhances the effectiveness of identifying fraud cases (Bhatti et 

al., 2023). 

One of the most common methods of working with graph data is the GCNs, with which 

there is a high accuracy in solving fraud detection problems (Valem et al., 2023; Lee et al., 

2024). GCNs achieve this by convolving the nodes and the neighbors of the graph in such a 

way that the model can be able to learn the local and the overall transactions. This allows 

GCNs to easily focus on potentially fraudulent actions because the structure provides insight 

into the occurrence of illicit actions such as money laundering or acting on network (Nie & 

Li et al., 2023). The major advantage of GCNs is that the structure of a graph can be used to 

detect fraud that may have related entities or transactions. Furthermore, we have seen that 

GCNs are capable of capturing structural evidence of fraudulent behaviors that are usually 

attributed to certain and unusual forms of transactions or flows. In this way, GCNs can warn 

a company of a fraud even if it is low level or if it is spread out in between several accounts. 

Prior works have established that GCNs can be applied to detect fraud inside transaction 

structures and has established that GCNs can capture patterns that are not discernible in other 

ways (Valem et al., 2023; Lee et al., 2024). In conclusion, the graph-based methods, 

particularly GCNs, are more effective compared to the prior methods for fraud detection and 

gives a richer and engaged perspective of the transaction graph. Since these models are based 

on analyzing the relations between the entities and the money flow, these models can identify 

the multilevel fraud schemes, which are not identified by the traditional methods; thus, these 

models are the perspective for protection of the financial systems from fraudulent activities. 

 

2.3 Temporal Graph Convolutional Networks (T-GCNs) & Transformers 

and Attention Mechanisms  

While the GCNs have a good capability in analyzing the fixed graph, their performance is 

relatively poor in analyzing a graph over time. In Bitcoin transaction networks, the malicious 

behaviors have different temporal properties, for instance, spike activity or high density in 

the transaction frequency in small time periods (Shah et al., 2023; Alarab et al., 2024). These 

temporal dependencies are challenging to incorporate for static graph models so that fraud 

can be easily detected. To overcome this, Temporal Graph Convolutional Networks (T-

GCNs) has been invented which integrates temporal information into graph based models. T-

GCNs have been used effectively in many areas such as traffic prediction (Nie & Li et al., 

2023) and financial fraud detection because detecting temporal-sensitive anomalies is crucial 

for accurate fraud identification. Hence, the T-GCNs enhance the capacity of the traditional 

GCNs that can only detect the spatial relation between entities (i.e., how they are connected) 

and the temporal relations which are important to understand how these illicit activities are 

evolved over time. Incorporation of time-based snapshots of the transaction network in T-
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GCNs enhances the learning patterns of GCNs. This is even truer for Bitcoin as it may take 

scammers some amount of time to ramp up their work or they may have bursts of activity, 

meaning that the work needs both temporal and spatial analysis. Hence, it becomes possible 

for T-GCNs to offer a better solution as compared to the existing static models in modeling 

dynamic fraud patterns which the later cannot capture. 

A recent advancement in the application of the machine learning paradigm for anomaly 

detection on graphs is transformers and attention mechanisms. Initially introduced by 

Vaswani et al. (2017), the transformers utilize self-attention to model long dependencies in 

data and are therefore suitable for sequence data processing. Regarding the Bitcoin 

transaction networks, the attention mechanisms will assist the model in focusing on the nodes 

(entities) or edge (transactions) that are most likely to engage in the frauds (Huang et al., 

2023). This capability makes the model ideal to detect anomalies that would be otherwise 

hidden because the transaction graphs are complicated and large. Accordingly, Graph 

Attention Networks (GATs), which were proposed by Huang et al. (2023), can be considered 

as a development of GCNs, where the latter uses both node- level and graph-level attention. 

This is because the use of GATs allows the model to scale the output of nodes and edges, 

which are capable of capturing detailed differences in the patterns of transactions. This is 

especially useful in fraud detection where most of the fraud activities would be perceived to 

slightly manipulate the network. In this manner, GATs improve the model’s capacity for 

focusing on proportional to the irregularity, and thus, decreasing the attention weights based 

on the node or edge relevance. Moreover, the hierarchical attention mechanisms can be 

applied again to zoom in on the particular subgraphs which might contain the fraud zones or 

the group of accounts that are engaged in the same fraud schemes. This is even more 

beneficial to the model as it is able to give attention to the specific parts of the graph and be 

able to capture easily missed fraud patterns. 

 

2.4 Challenges with Comparison in Existing Approaches 

However, some issues are still with graph-based and machine learning models to address 

illicit Bitcoin transactions. I think the first major limitation is the inability to scale up the use 

of the system. For large and complex transaction networks in the Bitcoin environment, 

models must handle a large amount of data; meanwhile, the detection accuracy cannot be 

compromised. All modern models face the problem of inefficiency when scaling, which 

causes problems with performance (Nie & Li et al., 2023). The third issue is the ability to 

apply existing models to newly emerging forms of fraud activities. Criminals always adapt to 

new ways of committing their crimes, thus, models trained on the historical data cannot 

predict new forms of frauds (Olsson et al., 2024). Moreover, many models do not have a 

clear explainability mechanism and, therefore, decision-makers, including regulators and law 

enforcement agencies, cannot rely on their results. This is especially so in areas of high risk 

such as cryptocurrency, where false positives can result in the bona fide accounts being 

frozen unfairly. 

In order to give a better structured overview of the different approaches presented in 

the papers for the detection of illicit Bitcoin transactions this part offers a comparison of the 

most important research papers. To facilitate the comparison of the studies, they are 
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presented in tabular form, where one can find the authors, methodologies used, models 

implemented, metrics measured, limitations of the studies, and the authors’ suggestions for 

future work. 

Table 1: Comparison between Existing Recent Researches 

Authors Methodology Model Used Limitations Future Work 

Olsson et 

al. (2024) 

Analysis of illicit 

Bitcoin flows using a 

manual heuristics-

based approach. 

Heuristic-Based 

Detection 

Model 

High false-positive rate, 

lacks scalability for 

large datasets. 

Proposes automation using 

machine learning for 

enhanced scalability. 

Fahmi et 

al. (2023) 

A comprehensive 

survey of security 

and privacy issues in 

Bitcoin, with focus 

on transaction 

monitoring. 

Rule-Based 

Fraud 

Detection 

Inefficient in detecting 

evolving fraud patterns, 

relies on fixed rules. 

Suggests dynamic learning 

models that adapt to new 

fraud patterns in real-time. 

Valem et 

al. (2023) 

Semi-supervised 

learning on graph 

data using 

convolutional 

networks. 

Graph 

Convolutional 

Networks 

(GCNs) 

Focuses on static 

graphs, lacks temporal 

data analysis. 

Proposes integration of 

temporal dynamics to 

enhance GCNs for time-

sensitive applications. 

Shah et 

al., (2023) 

Analysis of the 

temporal nature of 

fraudulent Bitcoin 

transactions and its 

impact on detection 

efficiency. 

Temporal GCN 

(T-GCN) 

Limited scalability with 

large transaction 

volumes, difficult to 

interpret the results. 

Suggests implementing 

multi-scale GCNs to handle 

both large datasets and 

provide interpretable 

outputs. 

Bhatti et 

al. (2023) 

Extension of GCNs 

for relational data 

modeling with an 

emphasis on graph-

based machine 

learning. 

Relational 

Graph 

Convolutional 

Networks 

Does not incorporate 

attention mechanisms, 

struggles with long-

range dependencies in 

large graphs. 

Proposes exploring 

attention-based models to 

better capture long-term 

dependencies in large-scale 

networks. 

Huang et 

al. (2023) 

Introduced Graph 

Attention Networks 

(GATs), applying 

self-attention to 

graph-based tasks. 

Graph 

Attention 

Networks 

(GATs) 

High computational 

cost, lacks scalability for 

large-scale graph 

networks. 

Recommends optimizing 

computational efficiency 

for GATs to make them 

more scalable and 

applicable to large datasets. 

Nie & Li 

et al. 

(2023) 

Focused on time-

series prediction 

using graph-based 

models with temporal 

and spatial data. 

T-GCN, 

Temporal 

Graph Models 

Only suitable for short-

term time-series 

predictions, limited 

interpretability of 

learned patterns. 

Future work includes 

extending T-GCNs for 

long-term prediction tasks 

and improving 

interpretability. 

Vaswani 

et al. 

(2017) 

Introduced the 

transformer model, 

revolutionizing 

sequence-based tasks 

with self-attention 

mechanisms. 

Transformer 

Lacks direct application 

to graph-based fraud 

detection tasks. 

Suggests adapting 

transformer architectures 

for graph-based fraud 

detection with multi-

attention mechanisms. 

 

Conclusion 

The literature shows an emerging trend of using sophisticated machine learning techniques 

for fraud detection in cryptocurrency networks. Although methods such as GCNs and T-

GCNs have been proven to be useful, the application of these involves some limitations such 

as scalability and flexibility. Such shortcomings can be addressed by the integration of GCNs 
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with other architectures for instance the transformers. The idea for the novel GTAD model is 

an extension of this concept by incorporating temporal information and hierarchical attention 

to improve the detection of malicious nodes and address the scalability issue in Bitcoin 

transaction networks. In this way, GTAD intends to fill the main gaps outlined in the 

literature review and join the fight against illicit activities in the context of cryptocurrencies. 
 
 

3 Research Methodology 
 

This section presents the systematic approach and the technical approach taken in the 

development of the GTAD (Graph-based Transaction Anomaly Detection) model for 

identifying the illicit Bitcoin transactions. The approach is meant to provide for a proper and 

sequenced model development process, from the data collection and preparation, model 

development, training, and evaluation, to the final result interpretation as the outline of the 

research methodology is illustrated in Figure 1. To facilitate an understanding of how the 

study was conducted and how the proposed model was implemented and validated, each 

stage is discussed in detail below. 

 

 

Figure 1: Methodology for Illicit Bitcoin Transaction 

3.1 Dataset  

The dataset employed in this research, to explore and analyze is the Elliptic Data Set obtained 

from Kaggle and comprises of Bitcoin transactions (Weber, M., et al., 2019). This dataset is 

very useful in identifying the flow and activity in the Bitcoin network so that we are able to 

identify the illicit flows within the network. The dataset comprises three primary parts: 

 

Features: Characteristics of  the Bitcoin transactions. 

Classes: Two classes of labels that describe the nature of transactions as either illicit, licit or 

if the information is unknown. 

https://www.kaggle.com/datasets/ellipticco/elliptic-data-set


9 
 

 

Edgelist: These are the representations of the relationships (transactions) that exist between 

Bitcoin addresses. 

 

 

Dataset Overview 

The GTAD model dataset includes several components that are aimed at reflecting both the 

transactional and behavioral characteristics of Bitcoin addresses. The Features Data has a 

total of 203,769 rows and 167 columns which include time stamps, amount of transactions 

and other features that characterizes temporal and transactional behavior of bitcoin addresses 

as represented in Figure 2. These features are used to create the transaction graph and to train 

the machine learning model, as the features deliver valuable information about the 

transactions. 

 

Figure 2:  Shapes of Dataset 

 

 Besides the features, Classes Data comprise 203,769 rows and 2 columns, which 

represent the class labels for transactions. The last class labels represent the nature of a 

transaction, namely, licit (legal), illicit (illegal), or of unknown status. The distribution of 

these labels is highly imbalanced, where the Unknown label accounts for 157,205 

transactions (77.15%), Licit for 42,019 transactions (20.62%) and Illicit for 4,545 

transactions (2.23%). Such distribution is due to the fact that it is difficult to identify the 

abnormal transactions as they are a small subset of all transactions. The Edgelist has 234355 

rows and 2 columns as these contain the relations between the nodes in the graph. Each node 

represents a Bitcoin address while each edge is a transaction between two addresses. With the 

total of 203769 nodes and 234355 edges, of which 7297 are connected, the dataset represents 

the network of Bitcoin addresses and their transactions. For instance, we have the giant 

component of nodes 400 and edges 431, which shows the largest connected subgraph for the 

given Bitcoin transaction network. Such structure of the dataset is appropriate for analysis of 

spatial and temporal patterns of Bitcoin transactions in the GTAD model. 

 

3.2 Graph Construction 

The core of the GTAD model involves constructing a directed graph  based on 

the Bitcoin transactions: 

 

3.2.1 Nodes and Edges 

Nodes:  In the graph, each node is a Bitcoin address, which may be different from every 

other address. This leads to 203,769 nodes; all the entities that are involved in transactions as 

shown in figure 2 below. Directed edges are defined by the transaction flows and these are 

234,355 edges are shown in figure 3. An edge from node to node means that address from 

which Bitcoin was sent is address  
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Figure 3: Distribution of Basic Graph Properties 

 

Edges: Directed edges are established based on the transaction flows which are 234,355 

edges  are presented in Figure 2. An edge from node  to node  indicates that address  

sent Bitcoin to address . The creation of edges enables the representation of relationships 

and transaction patterns within the graph. 

 

3.2.2 Temporal Snapshots 

To incorporate the temporal dimension of transactions: 

The directed graph is partitioned into the time-based snapshots , demonstrating the state of 

the graph at defined intervals. This enables the model to analyze transaction behaviors that 

how it evolves over time, while recognizing the trends and anomalies associated with illicit 

activities. 

 

 

Figure 4: Class based illicit and licit transactions 

In figure 4, plots of subgraphs for illicit and licit bitcoin transactions are shown. The nodes of 

the illicit transaction are sparse and isolated, which could represent the limited connectivity 

between entities. This pattern might suggest that illicit transactions are designed to minimize 

links with others to reduce traceability. The nodes of licit transactions of bitcoin are denser 

and more interconnected, forming a cluster. This likely indicates frequent and legitimate 

interactions between entities, reflecting normal transaction behaviour. 

3.3 Data Preprocessing 

Data preprocessing is a set of operations that prepare the extracted data for analysis using the 

graph-based machine learning models suitable for Bitcoin transaction data. Data Cleaning, 

the first process of the proposed approach, helps to perform further analysis by eliminating 
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the transactions that are invalid, contain missing values, or are replicated. The transactions 

with missing address, amount or time stamps are rejected to keep the quality of data and to 

feed the machine learning algorithm with good data. 

 

Data cleaning is done before and after that Graph Construction is done and the cleaned data is 

converted into a directed graph. This graph shows each Bitcoin address as a node and the 

edges show the transaction between those addresses. One of the most important 

characteristics of this graph is that each transaction connects to the previous one by the 

“Previous Transaction Hash,” the structure of which is temporal and changes over time, as it 

reflects the sequentiality of Bitcoin transactions is given in Figure 5.  

 

Subsequently, Normalization is performed on transactional values, including the amount 

transferred and transaction fees using z-score standard scaling. This makes it possible to 

bring these features to an equivalent scale and make the machine learning models perform 

better than if one of the features dominates the others due to the differences in their values. 

Since Bitcoin transactions happen over time, Temporal Segmentation partitions the data into 

temporal segments. This makes it possible for the model to capture dynamics of the 

transaction network over time, to track the temporal characteristics of transaction behaviour 

over time which is crucial when looking for anomalies or fraud. Moreover, the transaction 

labels, which denote if a transaction is illicit or legitimate, undergo a process known as Label 

Encoding. These labels are converted into binary format to ease the classification process 

during the training of the binary classifiers in machine learning. Lastly, due to the managing 

of the large amount of data efficiently, the Graph Sampling methods are employed to form 

smaller subgraphs from the transaction graph. This helps to reduce the computational load 

during model training but at the same time, enables the model to learn from the large graph 

without overwhelming it with the entire dataset. 

3.4 Model Development: GTAD (Graph-based Transaction Anomaly 

Detection) 

The GTAD (Graph-based Transaction Anomaly Detection) model is designed & 

implemented for identifying transaction abnormalities in the Bitcoin. It uses GCNs and T-

GCNNs to represent the temporal graph of Bitcoin transactions and transformers to detect 

anomalies. The main strength of the presented GTAD model is flexibility in detecting 

different kinds of anomalies in the transaction network, as well as spatial and temporal 

dependencies. The spatial dependencies are defined with regards to the links of the 

transactions in the transaction graph and temporal dependencies are defined with regards to 

the changes in these links with time. In the GTAD model, both of these types of 

dependencies help to detect relatively complex and high-level fraud schemes that are not 

easily recognizable. 

 

3.4.1 Graph Convolutional Networks (GCNs) 

The first primary component of the GTAD model is the Graph Convolutional Networks 

(GCNs) that describe the spatial dependencies of Bitcoin transactions as shown in Figure 5. 

GCNs are types of neural networks that work on the graph data and each transaction can be 

considered as a node and the connection between these transactions (Bitcoin flow from one 

transaction to another) as edges. GCNs function in a way that they take information from all 

the neighbors of a node in the graph and then extract the underlying patterns and 

dependencies in the transaction network from the model. This capability is very useful for 

identifying unusual transactions that are different from typical patterns of transactions, for 

example, groups of transactions or trends of transactions that are different from the normal 
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flow. Thus, GCNs can detect irregularities in the structure of the Bitcoin transaction graph 

that may suggest fraudulent actions or criminal transactions, which can be considered a 

significant advantage over other, purely statistical methods of anomaly detection, which do 

not take into account spatial relations between transactions. 

 

Figure 5: Architecture of Graph Convolutional Networks  

 

3.4.2 Temporal Graph Convolutional Networks (T-GCNs) 
To enhance the capability of the model in capturing anomaly patterns, GTAD integrates 

Temporal Graph Convolutional Networks (T-GCNs), which are improvements of the earlier 

GCNs based approaches with additional temporal domain of Bitcoin transactions. T-GCNs 

are also required to capture temporal dependency in the transaction patterns that might evolve 

over time. Certain types of frauds, for instance, money laundering or pyramid schemes may 

appear in the course of time and, therefore, it is rather difficult to distinguish them with the 

help of the transaction graph at a given moment. T-GCNs meet this challenge through the 

preprocessing where transaction data is segmented based on time. These time-based segments 

are then fed into the T-GCN layers to learn how the connection between transactions 

changes. This temporal analysis assists GTAD models to identify the gradual emergence of 

suspicious activities, the abrupt change of the transaction patterns that may reveal slowing 

down the fraud or money-laundering process. 

 

3.4.3 Transformer Layers 
In addition to GCNs and T-GCNs, the GTAD model utilizes Transformer layers, which are 

renowned for capturing long-range dependency in sequential data. Self-attention allows the 

model to modulate the input parts based on other parts, and in the case of Transformers, the 

model pays attention to the significant nodes and edges in the transaction graph of inputs. 

Self-attention enables the model to capture long-range relationships between the nodes within 

the graph which are useful when dealing with complex fraud schemes which might not be 

related to other fraudulent members. For instance, a fraudulent scheme can be a series of 

transactions that are scattered in different regions of the network, but the Transformer layers 

let the model link these transactions, even though there is no direct connection between them 

in the graph. This inherent ability of looking at long-range dependencies helps enhance the 

model’s performance in identifying the complex fraudulent patterns that cannot be evaluated 

independently of the entire transaction network. 

 

In conclusion, GTAD model employs an efficient approach to provide a effective solution for 

identifying the anomalies of Illicit Bitcoin transactions. For this purpose, the model uses 

Graph Convolutional Networks (GCNs) for spatial analysis, Temporal Graph Convolutional 
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Networks (T-GCNs) for temporal analysis, and Transformer layers with hierarchical attention 

mechanisms to capture local and global features in the transaction graph and changes in these 

features over time. The combination of spatial, temporal, and attention strategies makes 

GTAD best suited to identify singular and multiple fraudulent transactions, simple and 

complex frauds, simultaneously improving efficiency and reducing the amount of data 

analyzed to the most relevant portion of the transaction network. The integration of the 

GTAD model helps in detecting different fraud schemes and other suspicious activities in the 

Bitcoin transactions and can be regarded as a more efficient improvement compared to the 

conventional methods to anomaly detection in the cryptocurrency networks. 

3.5 Model Training and Evaluation  

3.5.1 Model Training 
The GTAD model is trained using supervised training approach since the dataset is pre-

labeled to differentiate between the licit and illicit Bitcoin transactions. The training process 

is initiated with the help of a binary cross-entropy loss function which determines the 

deviation of the identified labels of transactions from the actual labels. This loss function is 

especially used when the output is a binary decision, for instance, one between fraudulent and 

normal transactions. To enhance the performance of this model, the Adam optimizer, which 

is a stochastic gradient descent, is used to minimize the loss function. The hyperparameters 

such as the learning rate are further tuned with the help of the grid search algorithm in order 

to select the best hyperparameters that enhance the performance of the model. 

 

 

Figure 1: GTAD Model Training Loss & Accuracy Over (150 Epochs) 

As for the training configuration, the dataset is divided into 70% training set, 15% validation 

set and 15% testing set. The model is trained in a batch size of 128 for 150 epochs. For 

proposed model, experimented with various learning rates of values 0.1,0.01,0.001 and 

0.0001 and observed 0.01 provided better convergence using Adam optimizer and a weight 

decay of 0.0005. The model was trained for 150 epochs because this was sufficient for 

convergence, where the training and validation losses stopped improving, avoiding 

overfitting. The batch size of 128 was selected based on available system resources and 

provided an effective balance between training speed and memory usage. Dropout helps in 

overfitting since neurons are randomly removed, improving generalization. These settings 

make GTAD to be properly trained, and therefore capable of detecting the presence of 

anomalous transactions in unseen data. 

 

3.5.2 Evaluation Metrics 
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The performance of the GTAD model is evaluated using several standard metrics for 

classification tasks: 

Table 2: Evaluation Metrics 

No. Metrics Description 

1 Accuracy Accuracy metrics which measures the overall correctness of the model’s 

predictions by calculating the proportion of correctly classified transactions. 

2 Precision The ratio of true positive predictions (illicit transactions correctly identified) to all 

positive predictions, providing insight into the model’s ability to avoid false 

positives. 

3 Recall The ratio of true positive predictions to all actual positives, indicating the model’s 

ability to detect all illicit transactions. 

4 F1-Score The harmonic mean of precision and recall, used to balance both metrics and 

provide a single performance measure. 

5 AUC-

ROC 

This metric evaluates the model’s ability to distinguish between positive (illicit) 

and negative (legitimate) transactions across various thresholds. A higher AUC-

ROC indicates better model performance. 

3.6 Baseline Models and Comparative Experimentation 

To compare the performance of the GTAD model, several baseline models are considered 

which are Logistic Regression, Random Forest, and the Decision Tree. Logistic Regression is 

a basic statistical model applied in binary classification problems, which makes it useful in 

identifying legitimate and fraudulent Bitcoin transactions. Logistic Regression is easy to use 

and easy to interpret but it fails to learn complex patterns in graph-structured data, such as the 

one in a network of Bitcoin transactions. 

 

The Random Forest model is a type of ensemble learning and is more effective in modeling 

than Logistic Regression in terms of non-linearity. It uses multiple decision trees whereby 

each tree is learned on different sample data set that has been randomly selected from the 

entire data set, and the output of the different trees is combined in order to come up with the 

final decision. Nevertheless, Random Forests also have issues with temporal or relational 

dependencies inherent in the Bitcoin transaction data, so it cannot track new patterns over 

time. Also, a Decision Tree is employed as another basic model to be tested independently. 

Decision Trees are one of the simplest and powerful techniques of data partitioning which 

uses the feature values to construct a tree like structure to make decisions. Despite being 

simple to use and interpret, using Decision Trees for Bitcoin transactions analysis can lead to 

overfitting since there are many features and many interconnections between them. 

 

For the Random Forest model, the 5-fold cross-validation with grid search focused on the 

number of estimators, tuning values such as 5, 10, 20, 100, and 500. Additionally, other 

hyperparameters like the minimum samples required for a split (min_samples_split), the 

minimum samples required for a leaf node (min_samples_leaf), the maximum depth 

(max_depth), and the method for selecting features (max_features) were tuned to optimise the 

model's performance. For the Decision Tree model, the grid search tuned the minimum 

samples required for a split (min_samples_split), exploring values like 2, 5, and 10, along 

with the minimum samples required for a leaf node (min_samples_leaf), the maximum depth 

(max_depth), and the criterion for measuring the quality of a split (criterion). For baseline 

Logistic Regression (LR) model, the grid search with various hyperparameters of maximum 

number of iterations (max_iter), tuning values such as 10, 100, 1000, and 10000, while also 

regularisation strength (C), and the solver (solver) tuned for optimisation. 
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All three models, Logistic Regression, Random Forest, and Decision Tree, use the same data 

set and performance metrics as the GTAD model. This brings a level of consistency with 

which GTAD’s more sophisticated methods like GCNs and Transformer layers are better 

placed at detecting anomalies. By means of this comparative experimentation, it is 

demonstrated that the GTAD model is more capable of recognizing both spatial and temporal 

dependencies existing within the transaction network as compared to the traditional models, 

thereby making it a better solution to detect anomalies and fraudulent activities in Bitcoin 

transaction domain. 

3.7 Summary 

In this section, the specific procedure applied in the GTAD model was described in detail. It 

is a process of collecting and preprocessing data and then building, training and testing the 

model, which can be considered as a step by step approach towards detecting fraudulent 

Bitcoin transactions. Such techniques as GCNs, T-GCNs, and the transformer layers are 

included in the proposed model, and they form a novel approach to the anomalous detection 

in the cryptocurrency networks. In conclusion, the evaluation methods and comparative 

models ensure the efficiency of the model and the reliability of the GTAD model, and the 

model interpretability methods provide information on the decision-making of the model. 

 

 

4 Experimental Model Results and Discussion  
In this section, present the detailed evaluation of the proposed GTAD (Graph-based 

Transaction Anomaly Detection) model and compare it with the baseline models such as 

Logistic Regression, Decision Trees, and Random Forests. The performance of each model is 

evaluated using more than one measure including accuracy, precision, recall, F1-measure, 

and AUC-ROC. These metrics give overall idea of how each model works to identify the 

fraudulent Bitcoin transactions in nature of dataset which is highly imbalanced and complex 

in relationships among the transactions. 

 

Table 3: Evaluation Metrics for Baseline Models and GTAD Model 

Model 
Precision 

(Class 1) 

Recall 

(Class 

1) 

F1-Score 

(Class 1) 
Accuracy Macro Average 

Weighted 

Average 

Logistic 

Regression 
0.99 0.84 0.91 0.85 

Precision: 0.69, 

Recall: 0.89, F1: 

0.73 

Precision: 0.93, 

Recall: 0.85, F1: 

0.88 

Decision 

Tree 
0.93 0.96 0.95 0.90 

Precision: 0.72, 

Recall: 0.66, F1: 

0.69 

Precision: 0.89, 

Recall: 0.90, F1: 

0.89 

Random 

Forest 
0.96 1.00 0.98 0.96 

Precision: 0.98, 

Recall: 0.82, F1: 

0.88 

Precision: 0.97, 

Recall: 0.96, F1: 

0.96 

GTAD 

Model 
0.98 0.99 0.99 0.98 

Precision: 0.95, 

Recall: 0.92, F1: 

0.94 

Precision: 0.98, 

Recall: 0.98, F1: 

0.98 

 

4.1 Evaluation on Test Set for Baseline Models 
Logistic Regression 

On the test set the Logistic Regression model attains an accuracy of 85 per cent. However, 

the results for class “1,” which represents illicit transactions, illustrated that the method had a 
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lower recall rate than the precision one. In particular, the model was 0.99 precise and 0.84 

recall for illicit transactions. This means that while the model’s precision is high, meaning 

that when it classifies a transaction as illicit, it is usually right most of the time, the model 

misses a large number of illicit transactions compared to when it identifies them (as observed 

by the low recall). A high value of precision and a comparatively low value of recall indicate 

that the Logistic Regression model is quite selective in detecting the illicit transactions and 

may actually miss out on a majority of them while at the same time, providing very few false 

alarms.  

 

 
 

This problem is also evident in the confusion matrix for Logistic Regression where the model 

correctly classified 644 legitimate transactions (TN) and 5302 illicit transactions (TP) but at 

the same time; it misclassified 50 illicit transactions as legitimate (FP) and 988 legitimate 

transactions as illicit (FN). This indicates that the model tends to miss out on some 

misclassifications of illicit transactions out rightly in an imbalanced dataset where most of the 

transactions are legal. 

 

Decision Tree 

The Decision Tree model performed better than the Logistic Regression with the test set 

accuracy of 90%. It had an precision of 0.93% and a recall of 0.96% for the illicit transaction. 

This means that, the Decision Tree model had a better capacity of identifying cases of illicit 

transactions than the Logistic Regression model; with more capacity of not missing out cases 

(as depicted by the greater recall of the model). The F1-score for illicit transactions was 0.95 

that means it was equally effective at both recalling illicit transaction while controlling the 

number of false positives. 

 

 
 

However, the difficulty was still present in the Decision Tree model as it contains false 

positives. The matrix of confusion shows that there were 441 false positives, which means 

that the model marked a large number of genuine transactions as fraudulent. The results 

showed that the model had reasonable precision and recall values, but there were false 

positives, which means that there would be too many investigations that were not necessary, 

thus compromising the efficiency of using such a model in the field. 
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Random Forest 

Among the baseline models, Random Forest had the highest accuracy at 96%, and the highest 

Precision of 0.96, and Recall of 1.00 for illicit transactions. The high value of precision 

shows that when the model suggests an illicit transaction, it is probably true most of the 

times, while the value of recall is very high, meaning that most of the illicit transactions will 

be recognized by the model. However, the main problem of Random Forest, as noted in the 

results, is the high number of false positives, with 253 false positives in the confusion matrix. 

This is rather problematic in fraud detection as it implies that the model endorses a myriad of 

genuine transactions as fraudulent. 

 

 
 

 

Thus, the obtained results have relatively high overall accuracy, but low macro-average 

recall, which equals 0.82. The model performs poorly with legitimate transactions because of 

the dataset’s imbalance. From the results presented above it can be concluded that Random 

Forest model tend to overfit more to the majority class, thus less focus is given to the 

minority class of illicit transactions. Therefore, as while it has good accuracy in identifying 

the illicit transactions, high false positive rate and low recall value of the legitimate 

transactions make it less useful in identifying the Bitcoin transaction frauds. 

 

4.2 Training of the GTAD Model 
The GTAD model was trained using a graph-based deep learning approach to capture the 

relationship and patterns of Bitcoin transactions. In this case, training and validation accuracy 

increased gradually through 150 epochs of training. For the final epoch, the model has 

attained the training accuracy of 98.49% and the validation accuracy of 97.87% which will 

ensure the model will generalize well to unseen data. This strong performance indicates that 

the model is learning the latent features of illicit transactions from the training set and can 

generalize well to the validation set. The loss function, which calculates the difference 

between the predicted and actual labels, also reduced gradually with the epoch, showing the 

model is reducing the loss and improving the prediction. This consistent training behavior, 

along with high accuracy on both the training and validation set, proves the stability and 

effectiveness of the GTAD model. 

 

Table 4: History of Training Details of the GTAD Model 

Epoch Loss 
Training 

Accuracy 

Validation 

Accuracy 

10 0.2057 0.9238 0.9280 

20 0.1438 0.9574 0.9609 

30 0.1161 0.9670 0.9694 

40 0.1022 0.9722 0.9712 
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The GTAD model was trained using a graph-based deep learning model, where a clear 

increasing pattern in both training accuracy and validation accuracy were observed after 150 

epochs. Table 4 illustrates that the training accuracy rose from 92.38% at epoch 10 to 98.49% 

at epoch 150, with validation accuracy rising from 92.80% to 97.87% during the same 

process. The loss function in training continued to reduce throughout the epochs, from 0.2057 

at epoch 10 to 0.0509 at epoch 150, showing that the model reduced the errors. Such a trend 

indicates that the GTAD model was gradually learning the structure of the illicit transactions 

and was able to generalize well to new data instances. The high accuracy on the training and 

validating sets also confirms the model’s stability and applicability to real-life fraud 

identification. 

 

4.3 Evaluation of the GTAD Model 
When the GTAD model was tested on the test set the results were better than baslines. The 

model proposed in this research study obtained an overall accuracy of 98.49% which is 

higher than the baseline models. For illicit transactions, the GTAD model yielded an 

accuracy level of 0.98, recall of 0.99, and an F1 score of 0.99. These metrics suggest that the 

GTAD model is very good at predicting the illicit transactions and also at capturing nearly all 

the predicted illicit transactions. This is a strength of the GTAD model as it reduces both FP 

and FN hence the reliability of the model in identifying fraudulent transactions. 

 

 
 

The GTAD’s confusion matrix states that the model successfully detected 6263 illicit 

transactions and 571 legal transactions, while the false positive was 98 and the false negative 

54. This shows that the proposed GTAD model is very accurate in the identification of the 

legal and the illegal transaction, with little misclassification. Since the model can identify 

illicit transactions with very low rates of false positives, it would be effective in a real-world 

fraud-detection setting where minimizing false alarms is important for system efficiency. 

 

50 0.0913 0.9753 0.9744 

60 0.0839 0.9781 0.9758 

70 0.0827 0.9784 0.9758 

80 0.0761 0.9794 0.9762 

90 0.0720 0.9805 0.9772 

100 0.0671 0.9818 0.9772 

110 0.0798 0.9794 0.9764 

120 0.0666 0.9807 0.9769 

130 0.0602 0.9825 0.9775 

140 0.0571 0.9842 0.9792 

150 0.0509 0.9849 0.9787 
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Figure 2: ROC AUC Curve for GTAD Model 

Also, the AUC-ROC of 0.98 shows how well the GTAD model is capable of differentiating 

between the illicit and legitimate transactions in different decision thresholds. The value of 

AUC is high therefore the model is very efficient in its ability to classify data sets between 

the two classes regardless of the nature of the tests made. All of this contributes to the further 

strengthening of the model and its performance in general. 

 

 

4.4 Discussion 
 

From result it is evident that proposed GTAD model able to achieve 98.49% accuracy 

compared to baseline models like Logistic Regression, Decision Trees, and Random Forests 

with results of 85%, 90% and 96% respectively as reported in Table 3.  The GTAD model 

outperforms the baseline models because it is designed to capture spatial and temporal 

dependencies between transactions using Graph Convolutional Networks (GCNs), Temporal 

Graph Convolutional Networks (T-GCNs), and Transformer layers. 

 

The grid search was performed, with hyper parameter tuning performed and it helped to 

improve results of decision tree and random forest with 5-fold cross-validation with grid 

search. The results from the k-fold cross-validation with grid search optimization 

demonstrate more consistent performance over all metrics across all folds.  

 

The results of the baseline models show that there is a significant difference in the ability of 

the models to detect the illicit transactions. Logistic Regression model had an accuracy of 

85%, the precision of 0.99 and recall of 0.84 for the illicit transactions. Although it 

demonstrated promising performance by precisely detecting all the flagged illicit 

transactions, the relatively low recall values implied that it failed to point out a large number 

of such cases, which is obviously a major drawback in fraud detection. The F1-score of the 

model was 0.91 that showed the conflict of interests between precision and recall. The 

Decision Tree model was better still with an average accuracy of 90%, a precision of 0.93 

and recall of 0.96 for the illicit transactions. The F1-score was higher with 0.95 which means 

better detection rate of illicit transactions but still it gave false positives 441 which can be 

costly in real world usage. Another important feature is that Random Forest model had the 

highest accuracy of 96%, the precision of 0.96 and the recall of 1.00 for the illicit transactions 

which shows high efficiency in detecting illicit transaction. However, it reported 245 false 

positives and was unable to distinguish between genuine transactions and fraudulent ones as 

evidenced by a macro-average recall of only 0.66 which indicates overfitting to the majority 

class.  
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GTAD Model’s Superior Performance: 

However, the result of the proposed GTAD model was significantly better than the baseline 

models. Due to its ability to apply attention mechanisms to concentrate on the relevant 

elements of the transaction graph, the architecture of the GTAD model allows for the 

detection of illicit activity patterns. This leads to the creation of a model which is highly 

accurate and highly sensitive, hence, few false positives and less false negatives. The GTAD 

model had a high accuracy of 98.47%, precision of 0.98, recall of 0.99, and F1-score of 0.99 

for illicit transactions. The confusion matrix for GTAD also illustrates the model’s 

performance, as it accurately finds 6263 illicit transactions and 571 legitimate transactions 

with 98 false positives and 54 false negatives. This demonstrates that the GTAD model was 

able to capture most of the illcit type of bitcoin transactions while excluding the licit ones 

with a high level of accuracy. Further, the AUC-ROC of the proposed model was 0.98, which 

ensures that the model can identify the illicit transaction from the legal one even if the dataset 

was imbalanced. The high AUC score also confirms that the model is very good in different 

decision thresholds, which is highly desirable in the real-world fraud detection system where 

false positive is very costly while at the same time high detection rate is crucial. 

 

Conclusion 
Thus, the proposed GTAD model helps moving forward to identify Bitcoin transaction 

anomalies from the baseline models. The results have revealed the high value of the 

percentage of accuracy of 98.49%, precision of 0.98, recall of 0.99 F1-score of 0.99 and 

AUC-ROC of 0.98 proving that it can actually catch the bad transactions and reduce false 

positives.  As a result, GTAD is more prepared to analyze transaction graphs and temporal 

dependence, which is crucial in identifying high-level fraud in Bitcoin networks compared to 

baseline models. The GTAD model is, therefore, a promising solution for the improvement of 

the security and trustworthiness of the Bitcoin transactions and could be further expanded to 

other cryptocurrency or financial transaction anomaly detection applications making the 

model highly versatile and useful in the other fields of the financial fraud detection domain. 
 
 

5 Conclusion and Future Work 
 

5.1 Conclusion 
In this study, the performance of the ML models such as Logistic Regression, Decision Tree, 

Random Forest, and the developed GTAD model is assessed to detect the illicit activities 

related to Bitcoin transactions. In the same way, we conducted an experiment using the real-

world dataset to show the performance of these models in identifying the fraudulent 

transactions and the strength and limitations of each model. The performance of the GTAD 

model was higher than the baseline models in each of the evaluation criteria used in this 

study. Obtaining the satisfactory results, including accuracy of 98.49%, precision of 0.98 and 

recall of 0.99, the GTAD model confirmed its high efficiency in the identification of the 

illicit transactions in cryptocurrencies environment. These results show that the model can be 

a valuable asset for regulatory authorities, financial organizations, and cybersecurity 

professionals who aim to prevent fraudulent actions and illicit activities within the 

cryptocurrency environment. However, Logistic Regression, Decision Tree, and Random 

Forest, being the baseline models, are somewhat restricted in their functionality. 

Comparatively, Logistic Regression and Decision Tree models exhibited low recall scores for 

the minority class (illicit transactions) signifying the difficulty in identifying fraudulent 

activities. Conversely, in the Random Forest model, it achieved a high recall for the class of 
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illicit transactions and low precision for the non-illicit class, which means a high likelihood 

of false positives. These results imply that, although the traditional models can be useful in 

fraud detection, they are less effective in dealing with the specifics of cryptocurrency 

transaction data as compared to the GTAD model. The training process of the GTAD model 

also demonstrated enhanced performance, where both training as well as the validation 

accuracy was above 150 epochs. The model’s consistent convergence affirms its capability to 

prevent overfitting and thus, provides a sound solution for illicit transaction identification. 

Furthermore, the ROC-AUC score of 0.98 again supports the model in terms of 

discriminative capability of the model for illicit and non-illicit transactions. 

 

5.2 Future Work 
While the GTAD model shows promising results, there are several avenues for future work 

that could further enhance its performance and practical applicability. One potential direction 

is the incorporation of additional features, such as network-level information, user metadata, 

and behavioral analysis of Bitcoin addresses, which could improve detection capabilities, 

particularly for more sophisticated fraud schemes. Another important area of exploration is 

the real-time application and deployment of the model. Another major direction of further 

research is the practical use and implementation of the model in real time. While it is highly 

effective for static datasets, its implementation in real-time transactional environments 

introduces problems of scale, speed, and flexibility. Furthermore, transfer learning 

approaches could allow the model to be further trained for use on different cryptocurrency 

networks as well as various frauds including Ethereum or Litecoin. Since the type of 

cryptocurrency fraud is dynamic, it is also important to assess the model’s adversarial 

robustness, to verify its accuracy in responding to adversarial strategies to deceive it. Last, 

engaging with the regulatory authorities to incorporate the GTAD model into other antifraud 

models could be helpful in developing a more extensive strategy for dealing with fraudulent 

actions in the cryptocurrency environment. 

 

In conclusion, this study has shown that the GTAD model is a highly effective and 

sophisticated model for detecting illicit Bitcoin transactions, surpassing the traditional 

machine learning models.  
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