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Abstract  

 Deep learning facial emotion recognition is one area of research that has attracted considerable 

interest in recent years because of its usability across healthcare, human-computer interaction, 

and security. This work evaluated the drawbacks of using pre-trained deep learning models, 

especially the VGG16, towards FER applications. The research hypothesis was to establish the 

rigidity factors that limit model generalization and examine how performance can be enhanced 

with more realistic test set restrictions, including class imbalance, diversity, and variations in 

facial expressions.  

 

The VGG16 model was fine-tuned and extensively trained using the FERC dataset, which 

consists of seven emotion classes: militant, Disgust, fear, happiness, neutral, sadness, and 

surprise. The hyperparameters in the models were tuned using the learning rate, dropout rate, 

batch size, and the type of optimizer used (Adam, SGD, RMSprop). While the training accuracy 

exceeded 80%, the validation accuracy stagnated at 32.0%, indicating significant overfitting.  

 

The study identified key limitations, including dataset quality, class imbalance, and the 

complexity of subtle emotional features. Recommendations include exploring alternative 

architectures such as ResNet, EfficientNet, and Vision Transformers (ViT), enhancing datasets 

through augmentation and balancing, and incorporating advanced evaluation metrics like 

precision and F1-score. This research highlights the need for further improvements to address 

overfitting and ensure robust performance in practical applications.  

  

  

1. INTRODUCTION  

1.1 Research Background  

Facial emotion recognition has grown to be a vital part of the subsegment of computer vision 

for many fields, including medicine, security, human-computer interaction, and robotics. 

During the past decade, deep learning, mainly with the use of Convolutional Neural Networks 

or CNNs, has dramatically enhanced the accuracy of facial emotion detection. For example, 

models including VGG16, ResNet, EfficientNet and EmotionNet have shown impressive 

performance by automatically extracting features from image data in a spatial hierarchical way, 

outperforming traditional methods, including HOG and LBP. 

  

Despite these advancements, challenges remain in generalizing pre-trained deep learning 

models to real-world data. Variations in lighting conditions, facial occlusions (e.g., masks, 

glasses), and demographic diversity (gender, age, or ethnicity) limit the generalizability of these 

deep-learning models. Furthermore, these models tend to overfit when trained on specific 

datasets, making them unreliable when tested with diverse conditions. These challenges limit 

the real-world application of facial emotion recognition systems. Therefore, this study focuses 

on understanding the limitations of pre-trained models such as VGG16 for facial emotion 
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recognition, determining what causes those models to fail at generalization, and how to address 

this issue.  

Recognition, determining what causes those models to fail at generalization, and how to address 

this issue.  

 

1.2 Why VGG16 Was Chosen 

 

 

In this paper, the VGG16 architecture was selected because it is a well-structured model with 

high efficiency. It has been widely adopted in many image classification tasks, including facial 

recognition and emotion detection. This model architecture has a deep and uniform 

architecture, consisting of 16 layers but mainly 3×3 convolutional layers and max-pooling 

layers, allowing effective hierarchical feature extraction. Compared to deeper models like 

ResNet, VGG16 is computationally more tractable and, therefore, is a good model to be 

implemented in practical applications with limited computational resources. 

 

VGG16 has also shown awe-inspiring performance on benchmark datasets and often serves as 

a good baseline when checking facial emotion recognition tasks. Besides being practical, it has 

some conspicuous limitations: high memory consumption and vulnerability to overfitting, 

especially when trained on small and imbalanced datasets. Understanding such constraints 

allows targeted improvements; for example, regularization techniques and tuning 

hyperparameters will enhance generalization performance. 

  

1.3 Research Question and Justification Research 

Question:  

  

“What are the primary limitations in applying pre-trained deep learning models like VGG16 

for facial emotion recognition, and how can these limitations be addressed to improve 

generalization?”  

  

Justification  

VGG16 has shown high accuracy in Benchmark data sets in many learning paradigms. 

However, when applied to diverse or real-world conditions, their performance deteriorates due 

to several key limitations:  

 

Overfitting: Major issues include the models tending to memorize features specific to the 

training data rather than learning a general pattern and performing relatively poorly when new 

data is presented.   

 

Dataset Imbalance: Many facial emotion datasets have some or significant class imbalance 

issues, wherein there are vast representations of some emotions, such as happiness, while 

others, such as Disgust, are rarely captured.  

  

1.4 Contribution to Knowledge  

The concept of this research is to improve the understanding of deep learning and facial emotion 

recognition in the following ways:  
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 Identifying Model Limitations: This paper discusses the generalization difficulties of pre-

trained models in detail, including the problems that deep learning models like VGG16 

encounter in facial emotion recognition.   

Proposing Solutions: Adopt and assess algorithms, like hyperparameter tuning. Two techniques 

were also studied that are commonly applied to prevent overfitting, namely data augmentation 

and regularization techniques, to use on the model.  

  

1.5 Structure of the Dissertation  

  

This dissertation is organized as follows:  

Introduction: This section highlights the research background, research question, research 

justification, and the potential contribution of the study.  

  

Literature Review: A survey of prior works that introduced deep learning models for facial 

emotion recognition, their advantages, drawbacks, and future directions.  

  

Dataset Collection and Preprocessing: How the datasets were obtained, how the data were 

prepared for input to the algorithms (e.g., resizing, normalization), and how the imbalance 

problem was solved.  

  

Model Development and Tuning: A talk on how to work with the VGG16 model, what strategies 

to fine-tune the model, how to select hyperparameters, and how to prevent overfitting.  

  

Model Training and Evaluation: Discuss the results obtained in the models by providing the 

observed accuracy and validation accuracy while addressing the observed shortcomings.  

  

Results and Discussion: Report the experimental outcomes by assessing the model failings and 

the influence of incorporated enhancements.  

Conclusion and Future Work: Finally, generalizations, suggestions for future studies, and 

implications of the studies are briefly discussed as a conclusion.  

 

 

  

2. LITERATURE REVIEW  

  

2.1 Introduction  

  

With deep learning techniques, especially pre-trained CNNs such as VGG16, ResNet, and 

MobileNet, facial emotion recognition performance has considerably improved. These have 

increased the possibility of detecting facial expressions and genuine emotions more accurately. 

Nevertheless, limitations persist in generalizing them into natural data due to challenges such 

as overfitting, class imbalance, demographic bias, and environmental changes. This chapter 

reviews the literature on deep learning by highlighting the current advancements in the field, 

the challenges faced in pre-trained models, and the techniques proposed to overcome such 

limitations.  
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2.2 Deep Learning for Facial Emotion Recognition  

 

  

Most recent developments in facial emotion recognition have been due to deep learning 

methods, particularly CNNs. Pre-trained models such as VGG16 by (Simonyan Zisserman, 

2014) employ hierarchical feature extraction for emotion classification. For example, (Parkhi 

et al., 2015) demonstrated that VGGFace could cope well with different variations, such as 

lighting and pose. Likewise, Mollahosseini et al., 2016 proposed EmotionNet, a CNN-based 

model that yielded impressive results in FER but required large-scale labelled data and 

computational resources. 

 

While pre-trained CNNs allow the reduction of training time based on transfer learning, they 

generalize poorly. To address this challenge, it was in (He et al., 2016) that the development of 

what is called Residual Networks (ResNets) became important, leading to deeper models being 

improved with residual links for stability in training. Applications of such architectures still 

often face difficulties in managing occlusions, articulations, and expressiveness of faces. 

Therefore, a new concept of Capsule Networks (CapsNets) was proposed by (Sabour et al., 

2017), where spatial hierarchies are protected and robust features to facial occlusions, 

misalignments or other variations are improved. 

 

While these improvements were obtained, the generalization for pre-trained models such as 

VGG16 is still a problem while testing on datasets containing real-world variability, and more 

investigation is needed.  

  

2.3 Overfitting and Generalization Challenges  

  

 

Overfitting is a severe limitation of deep learning models on the facial emotion recognition 

problem, especially when the data is scarce or imbalanced. (Mollahosseini et al., 2016) Observe 

that CNNs most commonly memorize training data, producing extremely high training 

accuracy but yielding poor performance on unseen data. This problem still increases in emotion 

detection tasks, where rare expressions like "disgust" are underrepresented. 

(Zhang et al.,2019) stated that the VGG16 models tend to overfit when exposed to some 

datasets lacking in diversity. The data augmentation technique of rotation, flipping, and 

brightness adjustment assist models in generalizing reality by simulating the variability of the 

data (Kortylewski et al., 2019). In addressing the overfitting issue, (Luo et al.,2020) suggested 

regularization techniques like dropout and weight decay on deep learning models. 

  

2.4 Dataset Limitations and Preprocessing  

  

It was learned that credibility, variability, and richness of the database are pivotal factors for 

facial emotion recognition model generalization. FER-2013 and LFW often include biases in 

emotions or demographics that do not represent wide ranges of variations from one another 

(Martono et al., 2016) examined higher-level emotions. AffectNet was released recently as one 
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of the largest, with more than a million images labelled. The models trained on the affected did 

worse in the several conditions tested.  

  

Data preprocessing is vital in handling challenges on the dataset's side. Normalization, resizing, 

and data augmentation enhance the input consistency and the model immune system. For 

example, (Mollahosseini et al.,2016) showed that normalization makes an algorithm less 

sensitive to lighting conditions, and augmentation enhances the algorithm's generalization. 

However, utilizing Generative Adversarial Networks for data synthesis helps balance the 

underrepresented classes (Kortylewski et al., 2019).  

  

2.5 Recent Advances in Model Architectures  

 

Some of the new developments in deep learning applications are related to efforts to search for 

alternatives to traditional CNNs to avoid generalization and overfitting issues. In a more recent 

study (Sahan et al., 2021), CNN-RNN models were employed, and the hybrid models included 

both spatial and temporal to enhance the recognition of dynamic emotions. Likewise, Graph 

Convolutional Networks (GCNs) (Yan et al., 2020) modelled relationships between the facial 

landmarks; the additional accuracy is prominent for fine-grained emotional expression.  

  

It has been a common approach to implement attention mechanisms in facial emotion 

recognition to attend to the most important features. (Zhang et al.,2021) introduced attention 

mechanisms with CNNs to overcome problems such as occlusion arising during feature 

extraction of the facial regions. Further, transformer-based models, for instance, the Vision 

Transformer (ViT) by (Dosovitskiy et al.,2021), showed more striking improvements compared 

to CNNs, particularly in solving those tasks that require long-range dependencies. Besides, the 

model (Le, 2019) named EfficientNet leverages neural architecture search coupled with 

compound scaling to raise the bar higher with computational efficiency. EfficientNet yielded 

better accuracy with higher generalization than traditional CNNs, and it can be considered one 

of the promising alternatives for facial emotion recognition. Vision Transformers (ViTs) use in 

facial emotion recognition is also gaining traction, as they leverage self-attention mechanisms 

to capture complex spatial relationships between facial features, improving recognition 

performance in challenging conditions. 

 

These are promising architectures, yet their potentials are still restricted due to overfitting and 

imbalance in the data on pre-trained datasets such as VGG16. The necessity of hyperparameter 

tuning and robust evaluation supports such facts. 

 

  

2.5 Ethical and Practical Challenges  

  

One of the major ethical concerns in using pre-trained models in facial emotion recognition 

problems is bias and data privacy. (Buolamwini and Gebru, 2018)  Demonstrated significant 

racial and gender biases in commercial models, where performance declined for darker-skinned 

individuals.  (Gong et al.,2021) suggested using domain adaptation methods as remedies for 

these biases to achieve equal performance across demographics. 

Besides, practical deployment also faces the challenge of handling privacy. Differential privacy 

(Abadi et al., 2016) techniques and federated learning (McMahan et al., 2017) aim to tackle 
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data privacy issues so that the models are securely trained. However, most of the above 

approaches have remained underexplored for emotion recognition using pre-trained models.  

 

2.7 Summary  

 

This review, therefore, focuses on the advantages and disadvantages related to the use of 

VGG16 and other pre-trained deep-learning models for facial emotion recognition. These 

models are excellent for feature extraction from an image, but over-fitting, unbalanced datasets 

and biases still pose challenges. Some solutions are given by recent developments of hybrid 

architectures, data augmentation, and regularization, but these issues should be researched. 

Besides, newly emerging architectures such as EfficientNet and Vision Transformers are 

promising alternatives that could help generalize and be robust. Overcoming such shortcomings 

remains indispensable for enhancing applicability and generalization in deep learning models. 

 

  

3. RESEARCH METHODOLOGY  

 

This research, therefore, attempts to assess the deficiency of the pre-training methods, which 

in this context uses deep learning models, VGG16 for FER, and point out some overfitting 

problems and develop much better generalization. A tight workflow was put forward for this 

study, including data gathering, preparation, modelling, and optimization, with assessment. 

  

3.1 Data Gathering  

  

3.1.1 Dataset Description  

 

This dataset was chosen for this study due to its structured nature and labelled categories of 

facial expressions, including Anger, Disgust, Fear, Happiness, Neutral, Sadness, and Surprise 

in the FERC Dataset. The data is organized into two folders: train and test, containing 35,887 

images. The class representing Disgust is underrepresented, possibly leading to prejudice 

during model formation. 

  

3.1.2 Data Collection and Storage  

 

The dataset was downloaded from the repository Kaggle, renowned for public data sets. Great 

precautions were taken to adhere to licensing ordinances and the ethical issues of using face 

images. Making data publicly available allowed data origin and usage to be open, enhancing 

the work's reproducibility. 

The format of the downloaded data set was definite, containing two different folders for training 

and test data. Each folder was subdivided into subfolders corresponding to seven emotion 

classes: anger, Disgust, fear, happiness, neutral, sadness, and surprise—even the preliminary 

labelling of images allowed convenience in sorting and categorizing according to the 

classification hierarchy. 

The structured organization facilitated efficient data loading and processing during the training 

phase. For example: 

Training Data: Images to train the model were kept in a different folder so that the model could 

catch the features that belong to each class. 
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Testing Data: Testing was carried out by creating an independent test folder. It allows 

independent judgment by a model of things it had never seen before.  

  

3.2 Data Preprocessing  

Proper preprocessing was critical to ensuring data consistency, improving model performance, 

and addressing class imbalances. The following steps were implemented:  

  

3.2.1 Data Cleaning  

  

Image Integrity Check: All corrupted, mislabeled, or unreadable images were removed from 

the dataset to ensure that only clean and usable data was used for training. This eliminated 

noisy or incomplete data that could negatively affect the learning process.  

  

Normalization: All images' pixel values were normalized to range 0 – 1. Normalization helps 

scale values so that the distribution of data is more balanced. When training a model, the input 

values do not grow very large, allowing the model to converge faster.  

  

 Resizing: The images were also scaled to reduce the size of 224 X 224 pixels to fit the entry 

size of the VGG16 cast stone model. Resizing brings the dimensions of input into a norm that 

is compatible with the model size of the pre-trained model and adequate for computations.  

  

3.2.2 Data Augmentation  

To improve generalization and simulate real-world conditions, dynamic augmentations were 

applied during training:  

 Rotation: Regarding rotation angles, I chose random angles between -20° and +20° to cover 

head tilts and different poses. This ensured the model's realism when tested on authentic 

images.   

Horizontal Flipping: Different mirrored images were produced to create appearances of routine 

modifications to test their ability to discern symmetrical facial expressions.  

 Zooming: Random zoom within a range of 0.2 was introduced as a variant of the model, which 

slightly influenced the pixel-level details and helped the model identify the features at different 

zoom levels.   

Shifts: While translating the faces in the x and y directions, up to 10% horizontally and 

vertically healthy displacement assured that minimal positional alterations did not impede the 

model.  

 

 

3.3 Model Development  
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3.3.1 Model selection  

  

The decision on which model to implement was based on the desire to identify the seven 

emotions correctly and do so in real-world scenarios. The following architectures were chosen 

and implemented:   

  

Convolutional Neural Networks (CNNs)  

  

The well-known artificial three-layered perception network, CNNs CNNs, was chosen because 

of its high accuracy in image recognition tasks. The fact that CNNs can train raw image data 

to differentiate between higher-level features was also an advantage in this research. This study 

adopted a deep CNN approach relying on the VGG16 model, and the pre-trained model was 

fine-tuned for the emotion recognition task. CNN comprised more convolutional layers fol, 

lowed by several pooling layers to minimize the dimensionality, and fully connected layers 

completed the final classification of emotions.  

 

Justification for CNNs  

CNNs are particularly effective at capturing spatial hierarchies in images, making them the 

most suitable architecture for facial recognition tasks. Using a pre-trained model (VGG16), we 

leveraged transfer learning to accelerate training and improve model performance on the 

relatively small FERC dataset.  

  

3.3.1 Model Architecture  

Base Layers: The convolutional layers from VGG16, pre-trained on the ImageNet dataset, 

were frozen. These layers retained their ability to extract general features such as edges, shapes, 

and textures without retraining.  

  

Custom Top Layers: To adapt VGG16 for facial emotion classification, additional layers were 

added:   

A flattened layer to convert spatial features into a one-dimensional vector.  

  

A Dense layer with 512 units and ReLU activation to enable higher-level feature extraction.  

  

A dropout layer with rates between 0.3 and 0.7 prevents overfitting by randomly turning off 

neurons during training.  

  

A final Dense layer with softmax activation to classify facial expressions into the seven 

emotion categories.  

 

 

 

 

 

Figure 1: Showing vgg166 model architecture  
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3.4 Model Training   

 

The models will be trained using high-performance computing resources such as GPUs to train 

acceleration and leverage online platforms like Google Collab. 

 

Why HPC? Training a deep learning model like VGG16 involves many computations since the 

dataset is large and the model architecture is complex. 

 

GPU Usage: The training involved employing graphics processing units, which support parallel 

computation, hence decreasing training time for a factor compared to the central processing 

units. 

 

Platform: Training was done using Google Colab, a popular cloud-based platform with free 

GPU access, enabling training without highly computationally powerful hardware. 

 

The following are the training parameters: 

  

Optimizer (Adam)  

  

The Adaptive Moment Estimation-Adam optimizer was used because it automatically adjusts 

the learning rates for each parameter at runtime. The Adam optimization algorithm combines 

the ideas of adaptive learning rates with those of momentum, which smooths gradient updates. 

This allows it to converge faster and more efficiently. By its nature, it is well-suited for sparse 

gradients. For this reason, it will be very effective for our application in recognizing facial 

emotion. Other optimizers, such as RMSprop and SGD, were tried before choosing the best 

parameters for this model. 

 

 

  

Learning Rate Scheduling  
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Here, the initial learning rate was selected as 0.001 so that the model can learn fast in the initial 

stages of training. The approach followed then is a strategy of learning rate decay, which is fed 

with a reduction factor of 0.1 after every ten epochs. Decreasing the learning rate helps fine-

tune the model to converge well and avoid overshooting during training.  

  

Batch Size: 4 

 

A batch size of 4 was used, meaning four images were processed before updating the model 

weights. A moderate batch size keeps the memory load on the GPU in check. Smaller batches 

mean more minor updates more frequently, speeding up training with a stable gradient descent.  

 

Loss Function: Cross-Entropy Loss  

 

The loss to be used measured the categorical cross-entropy between the predicted probabilities 

and accurate class labels. It is a default choice of loss for multi-class problems because it tries 

to make models penalize predictions when those turn out wrong, thus improving their accuracy 

with iterations.   

  

3.5 Model fine-tuning  

  

As the vgg16 model initially showed overfitting in training, extensive hyperparameter tuning 

and several techniques were used to enhance its generalization capability. This section 

discusses the methods applied and the reasoning for each approach. 

  

3.5.1 Hyperparameter Tuning  

 

In this process, a series of combinations were methodically checked to determine the best 

hyperparameters for the VGG16 model. The tuned hyperparameters were: 

  

1. Learning Rate  

A learning rate grid was tested to find a good balance between convergence speed and stability: 

0.00001, 0.001, 0.01. While overshooting the optimal loss could be avoided with lower learning 

rates, higher rates were watched for quick convergence. 

 

    2. Batch Size  

 

Batch sizes (4, 8, 16, 32) were tested to balance computational efficiency and gradient stability. 

Smaller batch sizes provided more frequent updates but could lead to noisier gradients, while 

larger batches offered smoother convergence. Since the model from the first epoch showed 

overfitting signs, the batch size was gradually reduced to a batch size of 4. This lower batch 

size helped slightly reduce the rate of overfitting. 

  

3. Dropout Rate  

Dropout rates (0.3, 0.5, 0.7) were introduced to regularize the network by randomly turning off 

neurons during training. This helped prevent overfitting by forcing the model to learn robust 

features rather than memorizing the training data. With a lower dropout rate, the model is less 
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likely to overfit. Since our model was overfitting, a lower dropout rate of 0.3 was finally 

selected to reduce the rate at which the model overfitted. 

 4. Dense Units  

Fully connected layers with 512 and 256 units were evaluated to test the network’s ability to 

extract higher-level features before classification. When the model was trained on 256 units, it 

did not perform well; it was likely underfitting, so 512 units were selected.  

 

 5. Optimizers  

Different optimizers (Adam, SGD, RMSprop) were tested to evaluate their performance in 

minimizing the loss function. Adam's adaptability to sparse gradients was complemented by 

SGD's ability to generalize and RMSprop's ability to handle non-stationary objectives. Among 

these three optimizers, the Adam optimizer gave better results than RMSprop and SGD, thus 

being selected as our final optimizer. 

 

  

  

3.5.2 Techniques Implemented to Reduce Overfitting  

  

1. Data Generators:  

Custom data generators were used to load training and testing data in batches, ensuring memory 

efficiency and scalability for large datasets. These generators also applied augmentations like 

random flips, rotations, and brightness adjustments, enriching the training data to improve 

model robustness. The data argumentation was done during the preprocessing using the data 

generator functions.  

  

  

2. Layer Freezing:  

The convolutional layers of the pre-trained VGG16 model were frozen to retain their learned 

features, reducing the risk of overfitting on a small dataset. Only the newly added dense layers 

were trainable, which limited parameter updates to task-specific layers.  

  

 

3. Dropout Regularization:  

Dropout layers were introduced after the dense layers to reduce the co-adaptation of neurons 

and promote generalization. With a lower dropout rate, the model is less likely to overfit. Since 

our model was overfitting, a lower dropout rate of 0.3 was finally selected to reduce the rate at 

which the model overfitted. 

 

  

4. Mixed Precision Training:  

Mixed precision (float32) was used to optimize memory usage and improve computational 

efficiency, allowing faster experimentation without compromising model performance.  
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5. Learning Rate Scheduling:  

A ReduceLROnPlateau callback was implemented to lower the learning rate when the 

validation loss plateaued dynamically. This ensured finer adjustments during later stages of 

training, preventing oscillations or divergence. The model was tested on all three learning rates; 

a higher learning rate caused the model to underfit, and when the learning rate was 0.001, the 

model gave a training accuracy of 20 – 26% from the first to the 10th epoch. We then decided 

to lower the learning rate to 0.00001, which at least allowed the model to have a training 

accuracy of 80% on the 10th epoch and a validation accuracy of 32%. Despite overfitting, the 

lower learning rate gave better results than the higher learning rate. 

  

6. Early Stopping:  

The training was terminated early if the validation loss did not improve for five consecutive 

epochs, preventing overfitting by stopping training once the model's performance on unseen 

data stopped improving.  

  

7. Model Checkpointing  

The best-performing model for each hyperparameter configuration was saved based on 

validation loss, ensuring that subsequent analysis used the most effective model.  

  

8. Class balancing  

  

Only the disgust category was underrepresented. It only had 493 instances, which would have 

introduced some biases in the model. Class balance was achieved through sampling, where the 

minority class of Disgust was upsampled to 3500 for equal class distribution.  

  

Figure 2: Class distribution before sampling  
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Figure 3: Class distribution after sampling  

  

3.6 Model Evaluation  

 

3.6.1 Quantitative Metrics  

 

Model performance was assessed using the validation accuracy metric, which is the proportion 

of correctly classified images on unseen data. This metric effectively illustrated the model's 

capability for generalization. The model was further evaluated with precision, recall, and f1-

score metrics. Training curves for training accuracy/loss and validation accuracy/loss were also 

used to assess the model overfitting trend.  

  

3.8 Summary  

 

Resizing images, normalization, and augmentation were done to prepare the dataset for training 

by making the input data consistent and diverse. The architecture hyperparameters-learning 

rate, dropout rate, and batch size were fine-tuned systematically to enhance performance by 

avoiding overfitting. This included dropout regularization, freezing of layers, dynamic learning 

rate scheduling, and early stopping. Overfitting remained a challenge even with all these 

techniques, reflected in the gap between training and validation performances. Limitation: 

Therefore, This will remain a topic of future research involving more advanced architectures, 

different regularization methods, and varied datasets. 

In summary, though the methodology improved aspects of the model's performance, the 

challenges faced underscore the complexity of achieving robust and generalizable results in 

facial emotion recognition, mainly when using pre-trained deep learning models. These issues 

need to be addressed in further research to develop more reliable systems in real-world 

applications. 

 

 

  

4. RESULTS AND CRITICAL ANALYSIS  
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Accordingly, extensive hyperparameter tuning and regularization techniques were used to 

avoid overfitting and enhance the generalization of the VGG16 model. This section critically 

reviews model performance and the effectiveness of applied methods. 

 

4.1 model performance before tuning   

  

During the first training set, the VGG16 model showed severe overfitting, steadily improving 

training accuracy with near-flat validation accuracy. It showed that it learned features from the 

training data but failed to generalize on unseen data. The high validation loss indicates that 

better regularization and finer tuning are required. 

  

Key Results Best Configuration (Learning Rate: 0.001, Batch Size: 4, Dropout: 0.3, 

Dense Units: 512, Optimizer: Adam)  

Table 1: Showing initial model results before hyperparameter tuning  
 

Epoch  Training 

Accuracy  

Validation 

Accuracy  

Training Loss  Validation Loss  

Epoch 1  25.94%  24.0%  3.89 1.82  

Epoch 3  25.69%  24.58%  1.97 1.82 

Epoch 5  25.68%  24.50%  1.84 1.81  

Epoch 8  25.93%  24.53%  1.79  1.81  

 Table 1: Showing model performance before hyperparameter tuning 

  

4.2 After Hyperparameter Tuning  

 

A large-scale hyperparameter grid search was performed. The tuned parameters include 

learning rate, batch size, dropout rate, optimizer, and dense layer units. 

 

Learning Rate: The learning rate was kept very low, 1e-5, for stable and smooth convergence. 

Batch Size: Smaller batch sizes, 4, allowing for more frequent weight updates and hence better 

efficiency in training on the case of a limited dataset 

.  

Dropout Rate: A moderate dropout rate of 0.3 was applied to regularize the fully connected 

layers.  

Optimizers: Three optimizers, Adam, SGD, and RMSprop, were tested. The Adam optimizer 

demonstrated better stability and faster convergence than SGD and RMSprop.  
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Figure 4: Showing model performance after hyperparameter tuning 

Learning Rate: 1e-05, Batch Size: 4, Dropout: 0.3, Dense Units: 512, Optimizer: Adam  

 

Epoch  Training 

Accuracy  

Validation 

Accuracy  

Training Loss  Validation 

Loss  

Epoch 1  27.18%  25.89%  3.62  1.81 

Epoch 2  34.11%  28.37%  1.66  1.76 

Epoch 3  47.20%  30.55%  1.37 1.75 

Epoch 4  58.35%  31.19%  1.11  1.76  

Epoch 5  67.96%  31.72%  0.89 1.78 

Epoch 6  74.59%  31.80%  0.71 1.84 

Epoch 7  81.10%  31.83%  0.57  1.85 

Epoch 8  85.19%  32.08%  0.47 1.90 

 

Table 2: show model performance in accurately predicting 

 

Confusion matrix showing model performance  

  

 
Figure 1: Confusion matrix 

 

The above matrix visually represents how well the model classifies each emotion. Darker 

squares along the diagonal indicate correct classifications, while lighter off-diagonal values 

show misclassifications. The model performs well in detecting "Happiness" but struggles with 

other emotions like "Disgust" and "Surprise." 
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Most and Least Accurately Classified Emotions 

 

Most Accurately Classified Emotion 

• Happiness 

The model correctly classified 685 instances of "Happiness," the highest number among all 

emotions. This is reflected in the high recall (0.78), meaning most actual instances of 

"Happiness" were correctly identified. Precision is moderate at 0.32, indicating some false 

positives, but overall, the model performs best for this class. 

 

Least Accurately Classified Emotion 

• Disgust 

The model struggles significantly with "Disgust," correctly classifying only seven instances 

while misclassifying the rest. This is reflected in the precision, recall, and F1-score of 0.00, 

meaning the model barely identifies "Disgust" correctly and often confuses it with other 

emotions. Given the small number of correctly classified samples, this class likely suffers from 

data imbalance or poor feature representation. 

 

Other Observations 

Fear, Neutral, and Sadness have moderate accuracy but are often misclassified as 

"Happiness" or other emotions. Surprise has a low recall (0.10), meaning most true instances 

of "Surprise" are misclassified. Anger also struggles with low precision (0.27) and recall 

(0.10), meaning it is frequently misclassified. 

 

The model is most potent at identifying "Happiness" but struggles with other emotions, 

particularly "Disgust". Addressing class imbalance, refining feature extraction, or using 

more advanced models could improve classification for poorly predicted emotions. 

 

 

Classification report 

 

The overall model accuracy was 30%. 
 

expression precision recall F1-score 

Anger  0.27 0.10 0.15 

Disgust  0.00 0.00 0.00 

Fear  0.26 0.19 0.22 

Happiness 0.32 0.78 0.45 

Neutral  0.29 0.21 0.24 

Sadness  0.26 0.15 0.19 

Surprise  0.66 0.10 0.17 

 

Table 3: Showing model performance in the classification task 

 

Precision measures the accuracy of optimistic predictions (e.g. when the model predicts 

"Anger," how often is it correct?). Recall measures how well the model captures all instances 

of a given emotion—the F1-score balances precision and recall, showing overall classification 
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performance. The model has the highest F1-score for "Happiness" (0.45), while "Disgust" has 

the lowest (0.00), meaning it was not detected well. 

 

 

Performance with SGD and RMSprop Optimizers  

  

SGD optimizer: The model achieved a peak validation accuracy of 27.51%, with a slower 

learning curve and relatively stable loss reduction. The RMSprop: While training accuracy 

tried to reach 28.09%, the validation accuracy stagnated at 24.94%, and the model displayed 

unstable loss values.  

 

 

 

4.3 Critical Analysis of Performance  

1. Training Behavior:  

The VGG16 model demonstrated strong learning capability during training, with training 

accuracy exceeding 80–90% in later epochs. However, validation accuracy remained low 

(peaking at ~32%), which indicates significant overfitting despite applying dropout 

regularization and learning rate schedule.  

 

 

 

Training vs. Validation Accuracy and Loss 

 

 

 
Figure 2: Training and validation loss curves 

 

The accuracy plot shows how the model's performance improves on the training set over epochs 

while validation accuracy stagnates, suggesting potential overfitting. 

 

The loss plot indicates that while training loss decreases significantly, validation loss remains 

almost constant or slightly increases, indicating overfitting. 
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2. Impact of Hyperparameter Tuning:  

Using a low learning rate (1e-5) ensured stable convergence, but the model struggled to escape 

local minima, limiting improvements in validation accuracy. While dropout slightly reduced 

the risk of overfitting, it was insufficient to generalize well on unseen data. The Adam optimizer 

outperformed SGD and RMSprop regarding training speed and stability, but no optimizer 

significantly improved validation accuracy. 

 

 3. Generalization Gap  

The persistent gap between training and validation accuracy reflects the challenges posed by 

the dataset. The VGG16 model appears to have memorized training patterns but failed to 

generalize due to the following factors:  

  

Dataset Size Although the dataset had 35k samples, it may be too small to train a deep 

architecture like VGG16 effectively.  

  

Dataset Quality: Emotion recognition is inherently challenging due to subtle and ambiguous 

facial expressions.  

Class Imbalance: If certain emotion classes dominate, the model may need to learn 

underrepresented courses effectively. The disgust class was underrepresented, so to avoid 

biases in our model, the class needed to be balanced.  

  

  

4. Regularization Techniques  

Dropout and ReduceLROnPlateau helped stabilize the model, as evidenced by the gradual 

decrease in training loss. Data augmentation further reduced the level of overfitting. 5. 

Comparison to Literature  

Studies using VGG16 on benchmark datasets like AffectNet often achieve 60–75% validation 

accuracy. The underperformance observed in this study suggests that the dataset used may lack 

the diversity or size needed to achieve similar results.  

 

 

  

4.4 Implications of Results  

 

1. Model Suitability 

 

While VGG16 is strong in architectures for image classification tasks, such depth and 

complexity demand more extensive and diverse datasets. This constraint of the current dataset 

inhibits generalization. 

 

2. Dataset Limitations 

These results indicate that the quality and balancing factor affects emotion detection. Increasing 

the dataset and using advanced techniques for data augmentation could improve generalization. 
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3. Hyperparameter tuning 

The tuning process was enlightening, showing how different learning rates, batch sizes, 

dropouts, and optimizers influence the performance. Further experiments with smaller 

architectures or more advanced models could be done using EfficientNet, which might result 

in better performance. 

 

Conclusion 

After extensive hyperparameter tuning, VGG16 models became more notorious in training 

performance but still overfitted; the best validation accuracy reached 32.0%. Also, the 

enhancement in quality and augmentation of the dataset is required for more vigorous 

regularization techniques to reduce overfitting and explorations of alternative architectures 

better suited for emotion detection. While VGG16 could learn features from the dataset, limited 

generalization clarifies the main issues to be pursued in this work. 

 

 

  

4. DISCUSSION  

  

The results presented here critically analyze the limitation inherent in using a VGG16 pre-

trained deep learning model in identifying facial emotion recognition. Even with large-scale 

hyperparameter tuning and several regularization methods, it faces significant overfitting, as 

evidenced by the great difference in validation and training performance. While the accuracy 

during the training of later epochs was well beyond 80%, the accuracy over validation remained 

at 32.0%, thereby showing a model's inability to generalize to the unseen data effectively. 

 

 

  

5.1 Causes of Overfitting in VGG16  

  

 

While VGG16 works well for feature extraction on big and diverse datasets, it has some 

specific architectural limitations when working with smaller or imbalanced datasets, such as 

FERC. Some significant reasons for overfitting include: 

 

Model Complexity 

 

VGG16 has 138 million parameters and is incredibly computationally expensive; it easily 

overfits when trained on datasets that are not large or diverse enough. A likely scenario is that 

the model memorized the features rather than learned to generalize them. The VGG16 

architecture, though adequate for large and diverse datasets like ImageNet, proved overly 

complex for the current dataset. Its depth and high number of parameters led to the following: 

 

Overfitting: The model memorized the training data by its high training accuracy while failing 

to generalize to new samples. This overfitting VGG16 might not be appropriate for relatively 

small or imbalanced datasets. 
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The learning was inefficient, and even a very low learning rate, 1e-5, generally used for 

stability, struggled to get it out of the local minima. Further, VGG16 is a computationally 

intensive model; hence, training problems with limited data are also contributing here. 

 

Dataset Size and Class Balance 

 

Even though there were 35,887 images in the dataset, the class "Disgust" was poorly 

represented. These class imbalances might make the model biased toward classes like 

Happiness or Neutral, diminishing its ability to identify the minority classes correctly. 

 

Lack of Real-World Variability 

The dataset did not have enough variations in terms of facial expressions, lighting conditions, 

occlusions, and demographic diversity to further restrict the model from generalizing on unseen 

real-world conditions. 

 

Transfer Learning Limitations 

 

VGG16 was pre-trained on the ImageNet dataset, mainly comprised of generic object 

categories. The features learned may not fully align with the subtle nuances required for facial 

emotion recognition, leading to suboptimal performance. 

 

Limitations of Hyperparameter Tuning and Regularization 

 

Extensive hyperparameter tuning provided some insight into the model's behaviour but did not 

significantly improve the validation accuracy.  

 

Some of the key strategies included: 

 

Dropout Regularization: This was applied to offer more generalization ability and avoid 

overfitting; the rates ranged from 0.3–0.7, though the dataset constrained the impact. 

 

Optimizers: Adam outperformed the other two, SGD and RMSprop, regarding convergence 

speed and training stability; none of the optimizers tested significantly improved the 

performance on the validation set. 

 

Learning Rate Scheduling: The ReduceLROnPlateau callback helped smoothen the training by 

dynamically adjusting the learning rate in the event of a plateau in loss, but the difference in 

generalization remained. 

 

Nature of the Task 

Facial emotion recognition is fundamentally a complex problem due to emotional expression's 

inherent subtlety and dynamic characteristics. Relatively straightforward emotions, such as 

those corresponding to states of happiness and sadness, are very recognizable, whereas more 

subtle states like Disgust or fear require better refinement in feature extraction. In processing 

such finer features, the VGG16 configuration would call for adding attention mechanisms or 

using a more advanced structure of CNNs, such as Vision Transformers or Capsule Networks. 
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5.2 Addressing the Limitations  

  

The challenges in this study have been highlighted with the view of taking into consideration 

certain limitations that future research should try to address: 

 

Dataset Improvement 

Collect or augment an extra diverse and balanced dataset, including all emotion classes. Use 

the most advanced techniques, such as GAN, to generate synthetic samples for the 

underrepresented classes. 

 

Model Simplification 

Smaller and lighter architectures, such as MobileNet or EfficientNet, should be generalized 

better to smaller datasets. 

Leverage methods such as transfer learning by fine-tuning the convolutional layers to learn 

from the task-specific features. 

Advanced Regularization Techniques 

The robustness of the model could further be improved by employing data augmentation 

techniques in an even more aggressive manner, simple manipulations of brightness, and 

simulation of occlusions up to rotation. 

Employ attention mechanisms or hybrid models like CNN-RNN that can more powerfully 

model minute variations of facial features. 

 

Alternative Evaluation Metrics 

Besides validation accuracy, metrics such as precision, recall, and F1-score also indicate the 

performance of each emotion class. 

 

Addressing Class Imbalance 

The observed results were strongly related to the class imbalance, especially for the 

underrepresented class of Disgust. The following strategies could be applied in order to handle 

this: 

Data Resampling: Upsampling the minority class, as in this study, ensures that all classes have 

equal importance during the training. Performing other ways of generating further synthetic 

data using GANs could be better for class balancing. 

 

Exploring Alternative Model Architectures 

 

While this work takes VGG16 as the backbone, there is better architecture for generalized 

performance with fewer parameters; hence, it would be doing a better job for facial emotion 

recognition: 

 

ResNet Residual Networks introduce skip connections to combat vanishing gradients in deeper 

architectures, which enables stable training and improves generalization on smaller datasets. 

 

EfficientNet represents the right balance between accuracy and efficiency; it scales the depth 

and width of the model while keeping a lower number of parameters, thus being less subject to 

overfitting. 
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Hybrid Models Combining CNNs with an attention mechanism or RNN may give better 

representations, especially in capturing spatial and temporal relationships in facial expression 

studies.  

 

1.1 5.2 Recommendations  

  

Consider exploring alternative architectures: Modern deep learning architectures like 

EfficientNet, ResNet, and ViT provide improved generalization with fewer parameters. These 

models leverage advanced design and feature extraction capabilities to perform better, 

especially on smaller or imbalanced datasets. 

 

Hybrid Models: One can integrate CNN with RNN or attention mechanisms to model facial 

expressions' spatial and temporal characteristics. This type of approach could find subtle 

changes in facial features over time. 

 

Fine-Tuning Strategy: Instead of freezing all base layers, fine-tune part of deeper layers from 

the pre-trained VGG16 model to adapt better to the task-specific features yet preserve pre-

learned general features. 

 

Robustness Testing: The task entails conducting systematic robustness testing of the models 

trained using the enhanced dataset creation. The testing has to be performed regarding 

occlusions like masks and glass and variable lighting conditions, and demographic variations 

that prove the real-world reliability of the model must be taken into account. 

Cross-Validation: This is done via k-fold cross-validation to estimate model performance 

better, reduce the variance due to a particular data split, and make the results more reliable.  

  

  

  

5.3 Conclusion  

 

Conclusion 

 

This work critically assessed the performance of the VGG16 model on facial emotion 

recognition and aimed to highlight its shortcomings and defects for further improvements. 

Extensive hyperparameter tuning and regularisation techniques against overfitting were 

performed by applying dropout, data augmentation, and learning rate scheduling. While it 

achieved more than 80% in training accuracy, it resulted in merely a 32.0% validation accuracy 

with this model, which shows the big generalization gap and poor performance on unseen data. 

 

The findings underscore three significant challenges: 

Limitations of Dataset: Class imbalance, limited diversity, and subtlety of emotions impeded 

the generalisation model's generalisation capability. 

 

Model Complexity: While the VGG16 architecture was to deal with larger and more complex 

datasets, this became a problem while overfitting the generally small and imbalanced dataset 

presented in this work. 
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Performance Metrics: Relying exclusively on validation accuracy obscured performance 

differences across individual emotion classes. 

Future research should emphasise better quality and diversity of the datasets, advanced 

architectures like ResNet, EfficientNet, or Vision Transformers, and robust evaluation 

strategies. This can be further improved by the integration of hybrid models and refinement of 

fine-tuning techniques that enhance the generalization capability of the model, hence 

improving the performance of the facial emotion recognition system in real-world applications.  
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