Hybrid Deep Learning MRI Classification Using DenseNet201,
EfficientNetB2, and Vision Transformer for Early Detection of
Alzheimer

1. Introduction

This document describes the system requirements, software, hardware, and step-by-step
configuration for the hybrid deep learning model developed for MRI classification. The goal of
this model is to integrate DenseNet201, EfficientNetB2, and Vision Transformer to enhance
classification accuracy by leveraging spatial, mid-level, and global features.

2. System Configuration
2.1 Software Specification

o Operating System: Windows 10/11 or Ubuntu 20.04+
o A Gmail account to access data uploaded to google drive.
o Google Colab for model training and evaluation using GPU support
o Cloud GPU ,Tesla T4 GPU with 16 GB VRAM (Google Colab Pro)
e Libraries and Frameworks:
TensorFlow 2.9
PyTorch 1.11 (for Vision Transformer)
Scikit-learn, NumPy, Pandas for data preprocessing and evaluation
Matplotlib, Seaborn for visualization
ImageNet Pretrained Models: DenseNet201 and EfficientNetB2
Hugging Face Transformers for Vision Transformer
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2.2 Hardware Specification

e Minimum Requirements:
o CPU: Intel Core i5 or equivalent
o RAM: 8GB
o GPU: NVIDIA GTX 1050 with 4GB VRAM
e Recommended Requirements:
o CPU: Intel Core i7 or AMD Ryzen 7
o RAM: 16GB or higher
o GPU: NVIDIA RTX 3060 with 8GB VRAM or higher

3. Software Installation

Step 1 Create a Gmail account as shown below, and proceed to fill in the prompted requirements
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Figure 1: How to create gmail account

Step 2 After Successful account creation, On your browser open Google Colab
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Google Colab
Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free
access to computing resources, including GPUs and TPUs.

Figure 2: How to access Colab
Step 3. Open Google Colab and Subscribe to Pro to access T4 GPU with 16 GB VRAM

I. On settings tab, click on colab pro as shown
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Figure 4: Colab Pro

I1. Subscribe to Colab Pro as highlighted in figure() below
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Figure 5: Subscribe to Colab Pro
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Figure 6: Verification of subscription
4.Software Configurations
To configure the T4 GPU on google colab

Stepl. Select Change run type on the drop-down menu as illustrated
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Figure 7: Set runtime

Step 2 click on T4 GPU
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Project Development

Install Required Libraries

© inmport os
import zipfile
import random
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from tensorflow.keras.applications import DenseNet2e1, EfficientNetB2
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense, Dropout, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from transformers import ViTFeatureExtractor, ViTModel
from tensorflow.keras.utils import Sequence
from PIL import Image
import torch

Figure 9: Code showing how to import necessary libraries

Data Extraction



Step2; Extract the image file paths from the zip file

ZIP_FILE = “"cnn.zip” # Zip file
EXTRACTION_PATH = "OriginalDataset™ # Path where the dataset will be extr‘actec‘

[ 1 # Extract Dataset

if not os.path.exists(EXTRACTION_PATH):
with zipfile.ZipFile(ZIP_FILE, "r") as zip_ref:
zip_ref.extractall (EXTRACTION_PATH)
print(f"Dataset extracted to: [EXTRACTION_PATH}")

v Dataset extracted to: OriginalDataset

Figure 10: Extraction of filepaths from zipped file

Modelling

Stepl: Initialize Pretrained models; Load DenseNet201 and EfficientNetB2 from TensorFlow's

a

[ ] # Initis

4]
H

pplications module. Load Vision Transformer from Hugging Face.

ize Pretrained Models

densenet_base = DenseNet281(weights="imagenet”, include top=False, input shape=(IMG SIZE, IMG SIZE, 3))
efficientnet_base = EfficientNetB2(weights="imagenet”, include_top-False, input_shape=(TMG SIZE, TMG SIZE, 3))
vit_feature_extractor = VilTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k™)

vit_model = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")

: Downloading data from hitps://storage.googlespis.com/tensorflow/keras-applications/densenet/densenet28] weights tf dim ordering tf kernels _notop.hs
74836368/74836368 —————— 15 fus/step
Downloading data from https://storage.googlespis.com/keras-applications/efficientnetbd notop.hd
31790344/31790344 ——————— @5 dus/step

Jusr/local/1ib/python3.18/dist-packages/huggingface_hub/utils/ auth.py:94: Useriarning:
The secret "HF_TOKEN® does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to access public models or datasets.
warnings.warn(

preprocessor_conigjson:100% |  150/160 [00:00<0000, 13 5kB%]

Jusr/local/lib/python3.18/dist-packages/transformers/models/vit/feature extraction vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor it
warnings.warn(

conig json100% | 502502 [30:00<00:00, 42 BJs]
mode safetensors: 100 |  346+/346M [00-01<00 00, 230MBis]

Figure 11: Code Showing initializing pretrained base models

Create Model

Step 1 : Define and verify the full hybrid model

[13] hybrid_model = Model(inputs=[densenet_input, efficientnet_input, vit_input], outputs=output)
# Print model summary

hybrid_model.summary ()

Figure 12: Code Showing Hybrid Model Definition

Training



Step 1; Phase 1: Freeze pre-trained layers, train only dense layers.

[ ] from tensorflou.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReducelROnPlateau, EarlyStopping
# Optimizer and learning rate scheduler
optimizer = Adam(learning rate=le-5)
1r_scheduler = ReducelROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val loss', patience=5, restore_best weights=True, verbose=1)
# Freeze pretrained layers
for layer in densenet_base.layers:
layer.trainable = False
for layer in efficientnet_base.layers:
layer.trainable = False

# Compile the model
hybrid_model.compile(optimizer=Adam(learning_rate=le-4), loss="categorical crossentropy”, metrics=["accuracy”])

# Train for a few epochs
hybrid_model.fit(train_generator, validation_data=val_generator, epochs=5, class_weight=class_weights_dict)

Step 2:Phase 2: Unfreeze pre-trained layers, fine-tune entire model.

[ 1 # Unfreeze and fine-tune
for layer in densenet_base.layers:
layer.trainable = True
for layer in efficientnet_base.layers:
layer.trainable = True

# Compile again with a lower learning rate
hybrid_model.compile(optimizer=Adam(learning_rate=1le-6), loss="categorical crossentropy”, metrics=["accuracy"])

# Train again
hybrid_model.fit(train_generator, validation_data=val_generator, epochs=18, class_weight=class_weights_dict)

Save the hybrid model

1 # Save the trained model

2 hybrid_model.save("hybrid_model.h5")

3  print("Model saved as hybrid_model.h5")
4
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WARNING:absl:You are saving your model as an HDF5 file via "model.save()  or "keras.saving.save_model(model) . This file format is considered lega
Model saved as hybrid_model.h5

Evaluation

Stepl: Generate the Classification Report with Precision, recall, F1-score

[ 1 report = classification_report(y_true, y_pred_classes, target_names=label_encoder.classes_)

print(report)

Step 2: Generate Predictions



° Ipip install scikit-learn tensorflow pandas

import numpy as np

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt

import seaborn as sns

from tensorflow.keras.models import load_model
import pandas as pd

# Load your hybrid model
loaded_model = load_model("hybrid model.hs5™)

# Extract image paths and labels from the DataFrame
test_image_paths = test_df["filepaths™]

test_labels = test df["encoded_labels™]

# 1. Preprocess and predict on all test images
predictions = []

true_labels = []

for image path, true_label in zip(test image paths, test_labels):
preprocessed_data = preprocess_single_image(image_path)
prediction = loaded_model.predict(preprocessed_data)

predicted_class = np.argmax(prediction)

predictions.append(predicted class)
true_labels.append(true_label)

# 2. Convert predictions and true labels to NumPy arrays

predictions = np.array(predictions)
true_labels = np.array(true_labels)

Step 2: Confusion Matrix

‘> cm = confusion_matrix(y_true, y pred _classes)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues”,

xticklabels=1abel_encoder.classes_, yticklabels=label_enceder.classes_)

plt.title("Confusion Matrix")
plt.xlabel("Predicted Label™)
plt.ylabel("True Label™)
plt.show()

Troubleshooting

Cannot connect to GPU backend

o1 to a GPU due to usage limits in Cofa

Figure 16: Error Alert

Possible Cause and Solution

Cause

Solution

GPU Quota Limit Reached

- Upgrade to Colab Pro or Pro+ for extended GPU limits.

- Reduce GPU usage by optimizing batch sizes or clearing caches
during training.

High Server Load

- Wait for 1-2 hours and retry connecting to the GPU backend.

- Switch to a different runtime (e.g., TPU or CPU) temporarily.

Connectivity Issues

- Checkyour internet connection and ensure it is stable.

- Restart the runtime via Runtime > Manage Sessions.




