Hybrid Deep Learning MRI Classification Using DenseNet201,
EfficientNetB2, and Vision Transformer for Early Detection of
Alzheimer

1. Introduction

This document describes the system requirements, software, hardware, and step-by-step
configuration for the hybrid deep learning model developed for MRI classification. The goal of
this model is to integrate DenseNet201, EfficientNetB2, and Vision Transformer to enhance
classification accuracy by leveraging spatial, mid-level, and global features.

2. System Configuration
2.1 Software Specification

o Operating System: Windows 10/11 or Ubuntu 20.04+
o A Gmail account to access data uploaded to google drive.
o Google Colab for model training and evaluation using GPU support
o Cloud GPU ,Tesla T4 GPU with 16 GB VRAM (Google Colab Pro)
e Libraries and Frameworks:
TensorFlow 2.9
PyTorch 1.11 (for Vision Transformer)
Scikit-learn, NumPy, Pandas for data preprocessing and evaluation
Matplotlib, Seaborn for visualization
ImageNet Pretrained Models: DenseNet201 and EfficientNetB2
Hugging Face Transformers for Vision Transformer

o O O O O O

2.2 Hardware Specification

e Minimum Requirements:
o CPU: Intel Core i5 or equivalent
o RAM: 8GB
o GPU: NVIDIA GTX 1050 with 4GB VRAM
e Recommended Requirements:
o CPU: Intel Core i7 or AMD Ryzen 7
o RAM: 16GB or higher
o GPU: NVIDIA RTX 3060 with 8GB VRAM or higher

3. Software Installation

Step 1 Create a Gmail account as shown below, and proceed to fill in the prompted requirements

Google
Sign in

Use your Google Account

Emall or phone

Forgot email?

Not your computer? Use Guest mode to sign in privately.

Figure 1: How to create gmail account

Step 2 After Successful account creation, On your browser open Google Colab

G‘@gle google colaboratory X & Q

Al Images Videos News Web Books Finance Tools

colab.google
00 s e
ps://colab.google %

Google Colab
Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free
access to computing resources, including GPUs and TPUs.

Figure 2: How to access Colab
Step 3. Open Google Colab and Subscribe to Pro to access T4 GPU with 16 GB VRAM

I. On settings tab, click on colab pro as shown

Settings

Therme
adaptive

B3 Show desktop notifications for completed executions
Al Assistance >

O nNew notebooks use private outputs (omit outputs when saving)

Colab Pro >

Detouit page iayout
GitHub > horizontal

Miscellaneous >
Custom snippet notebook URL.

[use a temporary scratch notebock as the default landing page.

Figure 4: Colab Pro

I1. Subscribe to Colab Pro as highlighted in figure() below

Choose the Colab plan that's right for you

IRSNGE YoUTS: 5 STUGERT, 3 RABBYIST 0 3 ML F25arenss, Golzh Nas pou Soueria

Colab Colab Pro Calab Pros

Figure 5: Subscribe to Colab Pro

lii Verify Subscription

¢ & UntitledO.ipynb
File Edit Wiew Insert Runtime Tocls Help

B comment 2% share X2 @

+ Code + Text Connect ~ 7 Editing ~

Connect to a hosted runtime (= - B9
a ° Connect to a custom GCE VM

Connect to a local runtime
{x}

Disconnect and delete runtime

View resources

Manage sessions

Show executed code history

Resources *

You are subscribed to Colab Pro. Learm mare
Available; 16324 compute units

Usage rate: approximately 0.28 per hour

You have 3 active sessions. Manage sessions

Figure 6: Verification of subscription
4.Software Configurations
To configure the T4 GPU on google colab

Stepl. Select Change run type on the drop-down menu as illustrated

co 4. UntitledO.ipynb g

File Edit View Insert Runtime Tools Help .

o Run all
= Table of contents
Run before
<> Section Run the focused cell
Run selection s€
[|

Run after

Interrupt execution
Restart runtime__.
Restart and run all...

Factory reset runtime

e Change runtime type

Manage sessions

View runtime logs

Figure 7: Set runtime

Step 2 click on T4 GPU

Change runtime type

Runtime type

Python 3

Hardware accelerator ()

QO cru O wmooeru (O VicoGPU (@) T4GPU

O TRU

Shape
@ HighRam

T nstalling Stable Diffusion on Google Collabmd - Typora - o X

Project Development

Install Required Libraries

© inmport os
import zipfile
import random
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from tensorflow.keras.applications import DenseNet2e1, EfficientNetB2
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense, Dropout, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from transformers import ViTFeatureExtractor, ViTModel
from tensorflow.keras.utils import Sequence
from PIL import Image
import torch

Figure 9: Code showing how to import necessary libraries

Data Extraction

Step2; Extract the image file paths from the zip file

ZIP_FILE = “"cnn.zip” # Zip file
EXTRACTION_PATH = "OriginalDataset™ # Path where the dataset will be extr‘actec‘

[1 # Extract Dataset

if not os.path.exists(EXTRACTION_PATH):
with zipfile.ZipFile(ZIP_FILE, "r") as zip_ref:
zip_ref.extractall (EXTRACTION_PATH)
print(f"Dataset extracted to: [EXTRACTION_PATH}")

v Dataset extracted to: OriginalDataset

Figure 10: Extraction of filepaths from zipped file

Modelling

Stepl: Initialize Pretrained models; Load DenseNet201 and EfficientNetB2 from TensorFlow's

a

[] # Initis

4]
H

pplications module. Load Vision Transformer from Hugging Face.

ize Pretrained Models

densenet_base = DenseNet281(weights="imagenet”, include top=False, input shape=(IMG SIZE, IMG SIZE, 3))
efficientnet_base = EfficientNetB2(weights="imagenet”, include_top-False, input_shape=(TMG SIZE, TMG SIZE, 3))
vit_feature_extractor = VilTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k™)

vit_model = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")

: Downloading data from hitps://storage.googlespis.com/tensorflow/keras-applications/densenet/densenet28] weights tf dim ordering tf kernels _notop.hs
74836368/74836368 —————— 15 fus/step
Downloading data from https://storage.googlespis.com/keras-applications/efficientnetbd notop.hd
31790344/31790344 ——————— @5 dus/step

Jusr/local/1ib/python3.18/dist-packages/huggingface_hub/utils/ auth.py:94: Useriarning:
The secret "HF_TOKEN® does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to access public models or datasets.
warnings.warn(

preprocessor_conigjson:100% | 150/160 [00:00<0000, 13 5kB%]

Jusr/local/lib/python3.18/dist-packages/transformers/models/vit/feature extraction vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor it
warnings.warn(

conig json100% | 502502 [30:00<00:00, 42 BJs]
mode safetensors: 100 | 346+/346M [00-01<00 00, 230MBis]

Figure 11: Code Showing initializing pretrained base models

Create Model

Step 1 : Define and verify the full hybrid model

[13] hybrid_model = Model(inputs=[densenet_input, efficientnet_input, vit_input], outputs=output)
Print model summary

hybrid_model.summary ()

Figure 12: Code Showing Hybrid Model Definition

Training

Step 1; Phase 1: Freeze pre-trained layers, train only dense layers.

[] from tensorflou.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReducelROnPlateau, EarlyStopping
Optimizer and learning rate scheduler
optimizer = Adam(learning rate=le-5)
1r_scheduler = ReducelROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val loss', patience=5, restore_best weights=True, verbose=1)
Freeze pretrained layers
for layer in densenet_base.layers:
layer.trainable = False
for layer in efficientnet_base.layers:
layer.trainable = False

Compile the model
hybrid_model.compile(optimizer=Adam(learning_rate=le-4), loss="categorical crossentropy”, metrics=["accuracy”])

Train for a few epochs
hybrid_model.fit(train_generator, validation_data=val_generator, epochs=5, class_weight=class_weights_dict)

Step 2:Phase 2: Unfreeze pre-trained layers, fine-tune entire model.

[1 # Unfreeze and fine-tune
for layer in densenet_base.layers:
layer.trainable = True
for layer in efficientnet_base.layers:
layer.trainable = True

Compile again with a lower learning rate
hybrid_model.compile(optimizer=Adam(learning_rate=1le-6), loss="categorical crossentropy”, metrics=["accuracy"])

Train again
hybrid_model.fit(train_generator, validation_data=val_generator, epochs=18, class_weight=class_weights_dict)

Save the hybrid model

1 # Save the trained model

2 hybrid_model.save("hybrid_model.h5")

3 print("Model saved as hybrid_model.h5")
4

I

WARNING:absl:You are saving your model as an HDF5 file via "model.save() or "keras.saving.save_model(model) . This file format is considered lega
Model saved as hybrid_model.h5

Evaluation

Stepl: Generate the Classification Report with Precision, recall, F1-score

[1 report = classification_report(y_true, y_pred_classes, target_names=label_encoder.classes_)

print(report)

Step 2: Generate Predictions

° Ipip install scikit-learn tensorflow pandas

import numpy as np

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt

import seaborn as sns

from tensorflow.keras.models import load_model
import pandas as pd

Load your hybrid model
loaded_model = load_model("hybrid model.hs5™)

Extract image paths and labels from the DataFrame
test_image_paths = test_df["filepaths™]

test_labels = test df["encoded_labels™]

1. Preprocess and predict on all test images
predictions = []

true_labels = []

for image path, true_label in zip(test image paths, test_labels):
preprocessed_data = preprocess_single_image(image_path)
prediction = loaded_model.predict(preprocessed_data)

predicted_class = np.argmax(prediction)

predictions.append(predicted class)
true_labels.append(true_label)

2. Convert predictions and true labels to NumPy arrays

predictions = np.array(predictions)
true_labels = np.array(true_labels)

Step 2: Confusion Matrix

‘> cm = confusion_matrix(y_true, y pred _classes)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues”,

xticklabels=1abel_encoder.classes_, yticklabels=label_enceder.classes_)

plt.title("Confusion Matrix")
plt.xlabel("Predicted Label™)
plt.ylabel("True Label™)
plt.show()

Troubleshooting

Cannot connect to GPU backend

o1 to a GPU due to usage limits in Cofa

Figure 16: Error Alert

Possible Cause and Solution

Cause

Solution

GPU Quota Limit Reached

- Upgrade to Colab Pro or Pro+ for extended GPU limits.

- Reduce GPU usage by optimizing batch sizes or clearing caches
during training.

High Server Load

- Wait for 1-2 hours and retry connecting to the GPU backend.

- Switch to a different runtime (e.g., TPU or CPU) temporarily.

Connectivity Issues

- Checkyour internet connection and ensure it is stable.

- Restart the runtime via Runtime > Manage Sessions.

