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Hybrid Deep Learning MRI Classification Using  

DenseNet201, EfficientNetB2, and Vision Transformer for  

Early Detection of Alzheimer  
 

Lauryn Jelagat X23205423  
  

Abstract  
Alzheimer’s disease is a global crisis in the medical field which can be managed with early 
detection or diagnosis. However, the change of the brain is often so subtle to identify hence 
posing a great challenge in the early detection of the disease. This study proposes a hybrid 

model that integrates DenseNet201, EfficientNetB2, and Vision Transformer (ViT) to enhance 
MRI classification. DenseNet201 extracts fine-grained spatial details, EfficientNetB2 captures 
mid-level structural patterns, and ViT models global contextual dependencies, enabling the 
model to comprehensively analyze MRI images.  
The hybrid model was trained and evaluated on a large, imbalanced dataset, achieving an overall 
accuracy of 95%. It demonstrated high recall (97%) for the underrepresented "Moderate 
Demented" class, addressing a critical challenge in imbalanced datasets. The weighted F1-score 
of 0.95 further confirms the model's ability to balance precision and recall across all diagnostic 
categories. However, the study also highlights limitations, such as the high computational cost 
and dependency on pre-trained ImageNet weights, which may restrict generalizability to diverse 
MRI datasets.  

This research demonstrates the potential of hybrid deep learning models in advancing the early 
diagnosis of neurodegenerative diseases and suggests future directions, including optimization 
for resource-constrained environments and the incorporation of explainability techniques to 
enhance clinical adoption.  

Keywords: Magnetic Resonance Imaging, Vision Transformer (ViT), EfficientNet, DenseNet  

  

1  Introduction  

1.1  Background and Motivation   

Alzheimer’s disease is a degenerative illness of the brain that is statistically said to affect from 

50M individuals in 2018 to 152M in 2030, a 204% rise in cases, this poses a threat to the human 

population (The Lancet Public Health ,2022). There is no known cure for Alzheimer’s. However, with 

early detection and diagnosis, measures can be taken to delay or stop the degeneration of brain tissues. 

Need for early detection of the changes, which are very subtle, in the brain structure or distribution of 

matter is very crucial (Baker et al,2024). This can only be achieved by accurately detecting the very 

small changes in MRI scans  

The most promising approach when it comes to image classification is Convolutional Neural 

Networks (CNN) as it has shown excellent results in Tumor detection. However, classification of 

brain MRI faces challenges mainly caused by the severe class imbalance, which is common in medical 

imaging datasets. (Kulasinge et al ,2024) Generally, normal conditions are depicted more frequently 

while late line stages such as Alzheimer’s disease are rare. This leads to the situation where the main 

classes are not given special attention as they should, just because the training set is imbalanced.  



2  

  

  

The base models selected in this study have shown promising state of the art accuracies in 

MRI image classification for Alzheimer’s detection as seen from prior researches done where  

Denesenet201 achieved 91.7% accuracy but still struggled with high computation costs (Pacal 2022),  

Efficientnet has an accuracy of  89.6% but struggled to classify detailed spatial relationships 

(Priyadarsini & Nisha ,2024) and ViT in combination with other CNN models achieved an accuracy of 

92.3%  but however the model has very high resource demands i.e. GPU resources(Yuan et al 

,2021).Due to their high computational demand, which is over twice that of conventional CNNs, it is 

currently not feasible to implement them in areas with scarce resources such as rural hospitals or small 

clinics (Zhou et al., 2024).  

This research therefore proposes a hybrid model, DenseNet201 and EfficientNetB2 to extract 

features at dense and efficient levels from input MRI scans. These features are then concatenated and 

fed into the ViT component to learn global dependencies and contextual information. The sequential 

processing patterns make it possible for the trained model to grasp a holistic picture of the data, 

encompassing minute local details as well as the overarching global context. The integrated features 

are then processed through other fully connected layers for classification purposes. To reduce 

overfitting and improve generalization, dropout and bath normalization methods are used during the 

training process. To further better the models classification, a two phase training strategy is employed 

with Phase 1, Stabilization training, where pretrained features were frozen, This phase stabilized the 

model's learning without disrupting pre-trained features and Phase 2, Fine-Tune training , the frozen 

pre trained features unfrozen to allow fine-tuning, ensuring the feature extraction layers adapted to the 

diversity of MRI data.(Wanqing et al ,2023).This prevents overfitting of the model.  

1.2  Research Question  

To what extent can classification performance on MRI scans be improved through a hybrid deep 

learning model combining DenseNet201, EfficientNetB2, and Vision Transformer (ViT) features?   

1.3  Research objectives for Hybrid MRI classification model  

To address the question, the following objectives are going to be handled,  

• Design a hybrid deep learning model that combines base models efficientNet, DenseNet201 

and Vision Transformer to improve classification of MRI images  

• Improve classification accuracy relative to the standalone models state of the art accuracy, 

state of the art, ViT+Efficientnet 94.0% (xu et al 2022) by optimizing the model with 

hyperparameter tunings  

• Implement and evaluate training strategy 1 (training with all layers) and training strategy 2 ( 

in two phases ,Stabilizing and Fine-tuning)   

• To evaluate the hybrid model using key performance metrics Accuracy, F1-Score, Precision 

and Recall determining its effectiveness in MRI classifications  
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1.4  Structure of the Study  

The flow of this study is as follows with fig 3 representing the timeline of the study progress  

1. Introduction: I shall refine the following sections: background of the study, statement of the 

problem, purpose of the study, research question and justification of the study.  

2. Literature Review: Reviews previous studies on deep learning methodologies for classifying 

brain MRI, points out the shortcomings, and offers a rationale for the hybrid design.  

3. Methodology: Describes the dataset selection, feature preparation, the architecture of the 

hybrid model, training algorithms, and assessment techniques.  

4. Results and Discussion: Discusses implications and limitations, outlines future work and 

assesses the results against the current benchmark methods.  

5. Conclusion and Future Work: Sum up the conclusion of the study, highlight the research 

contributions, and suggest areas of further study.  

2  Literature Review  
  

Medical imaging is one of the most active areas of deep learning application especially when a high 

level of accuracy is expected like in the case of the brain MRI classification. Other architectures such 

as DenseNet201, EfficientNetB2 and Vision Transformers (ViT) has shown the ability to improve 

classification accuracy. Nonetheless, problems that arise from such standalone models include 

computational complexity, class imbalance, and difficulties in modeling both local and global features 

in images. In this section, we discuss and review the architecture, their implementation for brain MRI 

classification, and the background for the proposed hybrid model.  

2.1  Relevance of Study  

Neurodegenerative diseases including Alzheimer’s strike older people and given the growing 

aging population globally, there is pressure on health care systems to enhance the accuracy and speed 

of the diagnosis. The world health organization stated that only Alzheimer’s disease impacts more 

than 55 million people worldwide and this figure is estimated to increase to nearly 100 million by 

2050. It is necessary to diagnose the patients in the early stage to help improve the prognosis of the 

disease; However, the conventional MRI based on human observation is tedious, subjective, and 

erroneous particularly where there is small alteration in the brain structure (Çetiner & Çetiner, 2022). 

Such limitations emphasize the need for automated, accurate classification systems to assist clinicians 

and researchers.  

Neurologists and radiologists may experience immense work pressure, with several research 

works revealing that diagnostic errors occur in as many as 10% of imaging assessments because of 

fatigue and the high volume of cases (Yang et al., 2021). A convolutional neural network combined 

with a recurrent one can potentially predict brain MRI scans with high accuracy, thus helping to 

identify potential abnormal areas for subsequent examination. For example, as discussed by Hindarto 

(2023), the combination of CNNs and transformers in their gradient-based models yielded enhanced 
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diagnostic performance in distinguishing early signs of Alzheimer’s even when compared to the time 

consuming manual assessments. This means that routine classifications can be handled automatically, 

freeing up the clinicians to work on difficult cases therefore enhancing the diagnostic results.  

Large scale screening for neurodegenerative diseases presents several challenges in terms of 

feasibility and cost, especially in LMICs. For instance, as per the analysis of data from India and the 

United Kingdom, the incorporation of AI tools in public health programs could potentially enhance 

screening by 40% and decrease operational expenses by as much as 30% (Hastomo et al., 2024). Such 

a highly efficient system, as the envisioned automated system, based on an optimal combination of the 

proposed hybrid model, would be capable of analyzing thousands of MRI scans daily or within weeks 

and at a comparatively low cost, thus advancing early detection in underdeveloped regions. To ensure 

that the model is feasible to implement in resource-limited settings such as rural clinics or small 

healthcare facilities, the model is deployed using computationally efficient architectures such as 

EfficientNetB2.  

Powerful computer programs used in classification tasks may also assist researchers in 

uncovering new evidence related to the evolution of neurodegenerative diseases, which may be 

otherwise difficult to perceive due to small variations in the structure of the brain. For instance, 

research indicates that it is possible to gain up to 15% accuracy improvement in detecting progression 

markers using hybrid models compared to CNN models alone in tasks such as developing targeted 

therapies and prevention strategies (Petrini et al., 2022). These insights are critical especially in the 

development of personalized medicine where treatment strategies can be introduced depending on 

one’s MRI scan result.  

2.2  Peer Reviews of standalone base models  

DenseNet201 is a convolutional network that connects each layer directly to subsequent layers 

for feature propagation and reuse. This architecture has proved quite effective in medical imaging 

because it preserves or detects the smallest details of space.  

Nasiraei-Moghadam et al. (2020) showed its effectiveness for breast cancer diagnosis at an 

accuracy of 94.5% and specificity of 92.3% as reported by Babu Vimala et al. (2023). In a study 

involving brain MRI classification, Pacal (2022) also used fine-tuning strategies with 91.7% accuracy 

in diagnosing Alzheimer’s disease. This shows its ability to identify very small deviations that are 

essential for diagnosing diseases at initial stages. While DenseNet201 primarily uses local features, 

the dependencies in the features might not accurately describe other aspects, especially the disease 

stages. Secondly, its computational complexity rises with the depth of the network, which may prove 

problematic in contexts where resources are scarce such as rural clinics.  

The structural depth of EfficientNetB2 achieved through compound convolutions always 

balances the depth, width, and resolution to provide high-performance models with fewer parameters.  

This makes it particularly attractive for applications that may not have a lot of computational power.  
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In Medical Imaging, Abioye et al. (2023) employed EfficientNetB2 for COVID-19 detection 

obtaining 96.5% accuracy which even in mid-level feature extraction presents its reliable 

performance. In recent work, Preetha, Priyadarsini & Nisha (2024) tested it on the classification of 

brain MRI and reported a maximum accuracy of 89.6% while acknowledging its weaknesses in 

depicting the intricate spatial relationship necessary for demarcating different stages of a disease. In 

contrast, EfficientNetB2 is computationally efficient but overall, cannot capture the fine-grained and 

global structure well and thus is not proficient when used alone for complicated tasks like classifying 

neuro  

Vision Transformers (ViT) utilize the self-attention mechanism and, therefore, can be applied 

to problems that require capturing a global context. Yin et al. (2022) also supported this by showing 

that ViT performs better in settings where long-range dependencies exist. Yuan et al (2021) used ViT 

for Alzheimer’s MRI classification with 92.3% accuracy when integrated with CNNs. This 

underscores its advantage in identifying key features that pervade different regions, which are 

essential for disease progression. In contrast to FLVs, VITs need vast-scale pretraining and are 

computationally demanding, which is not optimal for real-time or low-resource conditions. Another 

limitation of deep learning is that there is a strong dependency on labeled data because their databases 

are large but not always annotated, which is a problem in medical imaging where data often lacks 

annotations.  

2.3  Hybrid and Ensemble Models in MRI Classification  

Hybrid and ensemble models present another way of overcoming the challenges posed by standalone 

architecture by leveraging on their strengths.  

Chen et al. (2021) used CNN for spatial feature learning and RNN for temporal analysis and got 

94.6% accuracy on the BraTS dataset. Though, the model has several drawbacks in terms of 

computational complexity and overfitting in small datasets, which is why there is a need for more 

efficient approaches like ViTs. For Alzheimer diagnosis, Xia et al. (2024) used ResNet50, VGG16, 

and DenseNet201, which obtained a 93.2% accuracy. Although showing increased accuracy, the 

ensemble approach was computationally expensive and needed optimal tuning of the parameters, 

making it less scalable.  

Using EfficientNetB4 and ViT together for Alzheimer’s MRI classification, Li et al. (2022) obtained a 

high accuracy of 94.3%. This was done to show that the combination of CNNs and Transformers is 

effective, but the resource consumption issue persists. Likewise, Li et al. (2023) incorporated Swin  

Transformer with 3D CNN, yielding a 92.7% accuracy rate for Parkinson’s identification, though, at a 

higher computational complexity.  

The hybrid models have incorporated attention mechanisms to improve interpretability and to pay 

attention to the specific regions. For the classification of brain MRI images, Xu et al. (2022) 

employed DenseNet architecture with an attention mechanism that yielded an accuracy of 93.7%.  

However, the effectiveness was limited due to the handcrafted attention maps on which it was trained.  
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However, the attention mechanisms that are a part of ViTs prevent models from learning the important 

features on the fly, thus making them more flexible and efficient. The table1 below shows several 

studies, their weakness and strengths.   

Model(s)  Study  
Used 

Dataset  
Task  Accuracy  Strengths  Weaknesses  

DenseNet201  
Kassani et al. 

(2020)  

Breast  

Cancer  

Dataset  

Tumor  

Classification  
94.50%  

High 

computational  

feature 

extraction  

High 

computational 

cost  

DenseNet201  
Qayyum et al. 

(2021)  

ADNI  

Dataset  

Alzheimer's 

Classification  
91.70%  

Local feature 

modeling of 

global 

dependencies  

High 

computational 

cost  

EfficientNetB2  
Apostolopoulos 

et al. (2021)  

COVID-19  

Chest X-ray 

Dataset  

Classification  96.50%  
Computational 

efficiency  

Poor spatial 

relationships 

modeling  

EfficientNetB2  
Singh et al. 

(2022)  

Brain MRI 

Dataset  

Alzheimer's 

Classification  
89.60%  

Robust mid- 

level feature 

extraction  

Struggles with 

detailed spatial 

relationships  

EfficientNetB4  

+ Vision  

Transformer  

Xu et al. (2022)  
Kaggle 

Dataset  

Alzheimer's 

Classification  
94.30%  

Combines  

local/global 

features  

High resource 

demands  

DenseNet +  

Attention  

Mechanism  

Huang et al. 

(2021)  

ADNI 

Brain MRI 

Dataset  

Improved  

Classification  
93.70%  

Focus on key 

regions  

Limited 

generalizability  

Ensemble of  

CNNs  

(DenseNet201)  

Bazgir et al. 

(2021)  

ADNI  

Dataset  

Alzheimer's 

Diagnosis  
93.20%  

Global feature 

modeling  

High 

computational 

cost  

Swin  

Transformer + 

3D CNN  

Li et al. (2023)  

UK  

Parkinson’s 

Dataset  

Disease  

Classification  
92.70%  

Dependence 

on localized 

features  

Computationally  

intensive for 3D  

MRI  

Table1 : A table summarizing research findings  

2.4  Summary and Gaps   

As evidenced by the review above, it is of high importance that accurate classification for MRI is 

developed. Base models have shown promising results in trying to achieve this goal. However, the 

models as standalone architecture still face difficulties like high computational cost for densenet , 

inability to feature spatial relationships in efficientnet and high resource demand by Vision 

Transformers .  

3  Research Methodology  
This research will employ the CRISP-DM framework will be applied to carry out the development of 

the proposed hybrid model that includes concatenation of features from base models; EffinentnetB2, 

Densenet201 and ViT transformers. This is illustrated in figure1 below  
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Figure 1: Shows a CRISP-DM Methodology as applied in research  

3.1  Dataset Description  

The dataset used for this study comprises MRI brain scans categorized into four classes based on the 

severity of dementia: The subcategories include Non-Demented, Very Mild Demented, Mild  

Demented, and Moderate Demented. This dataset is obtained from the Kaggle archive (MRI  

Alzheimer’s Classification Dataset, Kaggle, 2023)1. The number of images found in the dataset comes 

to 6,400 and it has the following distribution as illustrated below.   

Class  Images  

Non-Demented  3,200 

Very Mild Demented  2,200 

Mild Demented  800 

Moderate Demented  200 

Table 2: Table showing image directories  

The original dataset was in a compressed format in CNN.ZIP format, which was uncompressed into a 

directory structure in OriginalDataset directory. There are four subfolders in this directory and each of 

them corresponds to one of the diagnostic classes.  

Previous research has employed comparable datasets to evaluate the performance of machine learning 

algorithms for neurodegenerative disease categorization, thus emphasizing its relevance to this field 

(Xu et al., 2022). The fact that the dataset has an imbalance class distribution is also advantageous 

since it can show if the suggested hybrid deep learning model works well to tackle the class imbalance 

problem.  

3.2   Data Loading and Extraction Process  

The source data was a compressed archive in the form of a file CNN.ZIP, which was unpacked into a 

directory called. /OriginalDataset. This directory contains four subfolders, each representing one 

diagnostic class of dementia progression: The subcategories include Non-Demented, Very Mild 

Demented, Mild Demented, and Moderate Demented. The obtained folders contain subfolders with 

the given names and images so that it is quite easy to work with them. The figure below shows 

directory of unpacking the images.  

 
1 https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset/data  
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Figure 2: Structure of File Directory  

3.3  Data Cleaning  

To ensure data integrity, the following steps were performed:  

Missing values in the filepaths and Labels column of the dataset were assessed by using the Pandas 

method.isna () which denotes Rows containing missing values and then drops to enhance the quality 

of the data.   

The folders were placed on a Pandas DataFrame. The DataFrame had two features, the first one was 

the ‘Filepath’ which was the relative path to the image file and the second one was the ‘Label’, which 

was the diagnostic class obtained from the folder name. the table below shows the file path of 

retrieving image files.   

Filepath Label 

./OriginalDataset/Non-Demented/image1.jpg Non-Demented 

./OriginalDataset/Very Mild Demented/image1.jpg Very Mild Demented 

./OriginalDataset/Mild Demented/image1.jpg Mild Demented 

./OriginalDataset/Moderate Demented/image1.jpg Moderate Demented 

Table 3: A table showing DataFrame   

3.4   Exploratory Data Analysis   

To be more familiar with the dataset, several checks were conducted to assess the number of classes, 

sizes of images and how it would affect the performance of the models after preprocessing.  

3.4.1 Class Distribution  

This distribution entails that the proportion of the “Moderate Demented” class in the dataset is 
extreme, whereby the class only accounts for 3.1%. A bar chart visualizing the class distribution is 

shown below:  

  
Figure 3: Graph showing distribution of classes   
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Another challenging group is the “Moderate Demented” group, which includes extremely few cases, 

so strategies like using a weighted loss function or data augmentation during the training phase must 

be applied to enhance the recognition rate.  

3.4.2 Random Sample Visualization  

To ensure that the chosen images are correctly labeled, the visualization of selected random images 

and their labels were shown as presented in figure 4 below. A visual examination of the content of the 

images also validated their classification into the respective diagnostic codes. As described in the 

following examples, some pictures outlined as “non-demented” possessed no indicative structure 

aberration whereas the Images outlined as “Moderate Demented” depicted visible cortical atrophy and 

increase in ventricle size, which are symptoms of severe dementia. The figure below illustrated 

different classes of dementia among different patients.   
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Figure 4: Images showing different categories of Alzheimer progression  

  

3.4.3 Image Size Analysis  

The original dimensions of the MRI images were different from each other; the widths, and heights 

were within the range of 176 to 256 pixels. Due to this variability, all the images were then resized to 

the standard size of 224 x 224 pixels that was required by most of the pre-trained models such as 

Dense  

3.5  Feature Engineering  

This section involves the steps done to prepare the data for modelling and training  

3.5.1 Class Label Encoding:  

Labels were transformed from string format like "non-demented”, into integer format using Label 

Encoder for compatibility with machine learning models. The mapping between the string labels and 

their numeric representations was stored for future reference as follows; Class Mapping: Mild  

Demented’: 0, Moderate Demented’: 1, ‘Non Demented’: 2, ‘Very Mild Demented’: 3.  

3.5.2 Resizing:  

All images were resized to (224, 224) pixels to match the input size requirements of pre-trained 

models (DenseNet201, EfficientNetB2, and Vision Transformer).  

3.5.3 Data Augmentation  

TensorFlow's ImageDataGenerator, a versatile tool for on-the-fly augmentation, was implemented to 

prepare the data for processing. The ImageDataGenerator was configured to include  

Random rotation within the flip range of (-10, +10) degrees to mimic the variation in positioning of 

the patients during the scanning process h and v flip to add diversity in the data to the model. Random 

scaling of 0.9 to 1.1 was applied to mimic different viewpoints, and changes in brightness with factor 

of 0.8 to 1.2 were used to simulate various lighting conditions during the image acquisition. This 

provided a means of creating new augmented data during the model training while avoiding the need 

to store them, which contributed to the suitability of the model for large-scale medical imaging 

dataset.  

Augmentation was performed ONLY on the training set to avoid information leakage from 

validation/testing sets  

3.5.4 Data Splitting:  

The dataset was divided into training, validation, and testing sets, Training: Training: 70%, validation: 

15%, testing: 15% as shown in the figure below. This means that the data was partitioned in a way that 

retains the class distribution.  

Training samples:   4480 

Validation samples:   960 

Test samples:  960 

Table 4: Table showing split data   
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4  Design Specification  
The design of this hybrid model involves sourcing a Kaggle MRI dataset and preprocessing it for 

classification of Alzheimer’s classes by extracting features from pretrained base models Efficientnet, 

Densenet201 and Vision Transformers and concatenating them then passing them through a fully 

connected dense layer with ReLu activators with a 50% dropout rate and Batch Normalization.   

  
  

Figure 5: Model Design Framework  

4.1  Modelling Technique  

To utilize the base models features on MRI classification, we first have to import Imagenet pretrained 

models of efficientNet, Densenet and ViT . The models were then finetunes as follows:  

4.1.1 DenseNet201  

Originally trained on DenseNet201, the weights were transferred and further optimized on the MRI 

dataset for classification. Transfer learning was a process of fixing the initial layers to retain common 

image characteristics and fine-tuning the later layers that were adjusted to operate with MRI images in 

the medical field. The output of the model was post-processed by incorporating the global average 

pooling (GAP) layer that subsampled the feature maps and reduced them into feature vector which 

preserved the most discriminative spatial features. This vector was then passed to the hybrid model for 

its computation and final prediction results. The figure below shows the architecture of Densenet   

  

Figure 6: Figure shows DenseNet201 modelling architecture  
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4.1.2 EfficientNetB2  

EfficientNetB2 is the mid-level feature extractor that aims at balancing the computational cost and 

accuracy of the model. It has a compound scaling technique that suggests the optimum scaling of 

depth, width, and the resolution of the network to reduce computational and memory costs. In detail, 

EfficientNetB2 model is most appropriate for detecting mid-level features, which includes the layout 

of the areas in the brain, in conjunction with DenseNet201 for detailed features or high-resolution 

images. These layers were reapplied on the MRI dataset to tune the model to the geometrical 

properties of the images. Finally, EfficientNetB2 was passed through a GAP layer to generate a vector 

which contains mid-level Structural Patterns. In the figure below, EfficientNetB2 modelling 

architecture has been illusrated.   

  
Figure 7: Figure shows EffiientNetB2 architecture  

4.1.3 Vision Transformer (ViT)  

To capture this global information, the Vision Transformer (ViT) was incorporated as it is capable of 

modeling long-range dependencies through self-attention operations. Unlike traditional convolutional 

neural networks that use local receptive fields, ViT trains images as sequences of patches. Each patch 

is considered as a token like how individual words are considered in natural language processing and 

allows ViT to understand the relationships and dependencies that occur throughout the brain image.  

For fine-tuning, the ViT model was modified to allow for MRI images to be preprocessed into 

patches. Every patch was flattened, and positional encodings were appended to maintain spatial 

information. For the ViT model, the weights pretrained on ImageNet were retrained on the MRI 

dataset, with the self-attention layers and the classification head retrained to capture features specific 

to neurodegenerative conditions. Finally, the CLS token, which encapsulates the aggregate of all the 

patches’ features, was extracted and converted into the feature vector to be incorporated into the 

hybrid model. Vision Transformer (ViT) image classification architecture has been illustrated below.   

  

Figure 8: Figure shows ViT modelling architecture  
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4.1.4 Hybrid Model Architecture   

 
Figure 9: Figure shows Hybrid modelling architecture  

  

In the figure above, the model begins with three separate input layers tailored to each architecture: one 

input layer for DenseNet201 and EfficientNetB2 that takes an image of 224 x 224 pixels and another 

input layer for ViT that takes feature vector of size (768,) (768,) These inputs make sure that the 

resulting images are compatible with the pre-trained architecture without distorting the images. In 

feature extraction, DenseNet201 and EfficientNetB2 architecture employs pre-trained weights to 

extract features from the input images in a hierarchical manner. To extract the compact feature vectors 

that focus on capturing the essential spatial and structural information, they add the Global Average 

Pooling (GAP) layers in DenseNet201 and EfficientNetB2. The ViT input that directly encodes each 

patch and global relationships relates to the feature vectors generated by DenseNet201 and 

EfficientNetB2 into a final merged feature vector. This concatenation helps to integrate the local 

features obtained from Densenet201, mid-level feature from EfficientNet, and global features from 

ViT into a single vector for further processing.  

These features are then concatenated and feed into a fully connected layer of 512 units with ReLU 

activation to introduce non-linearity and capture higher level feature interactions.  

 To further improve the model performance and generalize the model, the Batch Normalization layer 

is used after the dense layer to normalize the features. Next is Dropout layer with 50% drop out of 

50% where during training it shuts down 50% of the neurons for a time during training so as to 

prevent overreliance on these neurons within the model.  

Finally, the output layer, which is also a dense layer with the softmax activation function, provides the 

probability of each of the target classes for the proper classification of MRI scans into one of the 

chosen diagnostic categories.  

  

5  Implementation   
5.1  Tools Used  

The model was trained using TensorFlow for DenseNet201 and EfficientNetB2 networks and  

PyTorch for Vision Transformer. The data pre-processing used Python packages namely NumPy,  

Pandas and Scikit-learn for analysis, and Matplotlib and Seaborn for visualization. The weights of 

DenseNet201 and EfficientNetB2 models were initialized with weights pre-trained on ImageNet, 

  

GAP   
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while the ViT model was implemented with the help of the Hugging Face Transformer’s library. 

Training was done on Google Colab and GPU acceleration was used with Tesla T4 GPUs for 

enhanced computations.  

5.2  Hyperparameter Tuning  

The benefits of hyperparameter tuning in model enhancement cannot be understated. Basing on 

external validity issue, Schratz et al. (2019) underlined the role of parameter tuning as the method to 

prevent classification biases.  

A few parameters tuned with to enhance the working of models are shown in the figure below:  

Model  Hyperparameters  Optimal Value   

DenseNet201  learning_rate   1.00E-04 

   batch_size   32 

   epochs   20 

   dropout_rate   0.3 

   optimizer  Adam   

EfficientNetB2  learning_rate   1.00E-04 

   batch_size   32 

   epochs   20 

   weight_decay   0.01 

   optimizer  Adam   

Vision Transformer  learning_rate   1.00E-05 

   batch_size   16 

   epochs   30 

   hidden_dim   256 

   num_heads   8 

   dropout_rate   0.2 

   optimizer  AdamW   

Hybrid Meta-Model  meta_learning_rate   1.00E-03 

   meta_hidden_layer_sizes  (128, 64)   

   meta_epochs   20 

   activation_function  relu   

   loss_function  categorical_crossentropy   

Figure 5: Table showing tuned hyperparameters  
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5.3   Model Training  

5.3.1 Training Strategy 1  

The chosen hybrid deep learning model was tested and trained with TensorFlow / Keras’s fit () method 

on train_multi_gen and val_multi_gen to create training and validation data in bits. The training was 

done for 20 epochs, in each epoch, a specific number of batches for training (steps_per_epoch) and 

validation (validation_steps) were used. This was done with the purpose of monitoring the 

generalization capability of the model during the validation after every epoch. Another two important 

callbacks known as early_stopping and annealer describe other procedures aimed at enhancing the 

training process. Firstly, early stopping was employed to halt training if the model’s accuracy on the 

validation data set fails to improve beyond a particular epoch, thus preventing overtraining and 

conserving computational resources. The learning rate scheduler or annealer was used when the 

validation performance became stuck which helped in lowering the learning rate and fine-tuning the 

weights for convergence.  

5.3.2 Training Strategy 2  

To fine-tune the hybrid deep learning model for the MRI classification, a two-phase training scheme 

was designed. This approach is built upon the DenseNet201 and EfficientNetB2 architectures, with 

proper domain adaptation that is critical for the identification of neurodegenerative diseases. The 

training process included the training stabilization phase and the fine-tuning process.   

Phase 1 (Stabilization Training): In order to preserve the features learned from ImageNet, the 

weights of the pre-trained DenseNet201 and EfficientNetB2 layers were frozen. This ensured that 

while the dense layers were trained on the MRI-specific data, the other layers retained the pre-trained 

knowledge. For exact weight updates, the Adam optimizer with an initial learning rate of 1 × 10⁻⁵ was 

used. reduceonplateu ensured that the learning rate was reduced when the validation loss reached a 

plateau, early stopping on the other hand halted training at epoch 5 without validation improvement. 

This may indicate that the model poorly predicted the minority classes and could not fully utilize 

cross-domain features adequately. Class weights were computed to address class imbalance, ensuring 

minority classes like "Moderate Demented" were not underrepresented. This phase stabilized the 

model's learning without disrupting pre-trained features.  

Phase 2 (Fine-Tuning): The frozen layers of DenseNet201 and EfficientNetB2 were unfrozen to 

allow fine-tuning, ensuring the feature extraction layers adapted to the nuances of MRI data. A 

reduced learning rate of 1 × 10⁻⁶ was used to minimize weight updates and prevent instability. Six 

additional epochs were conducted, with the same loss function categorical_crossentropy and class 

weights applied. This phase fine-tuned both the feature extraction layers and the fully connected 

layers to maximize classification accuracy and enhance generalization.  
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5.4  Evaluation Metrics  

Several evaluation metrics were used to evaluate the model's performance and ensure robustness in 

prediction. The relevant F1 scores, accuracy, and precision for the measurement model performance 

are calculated and have been presented in the respective implementation sections of each model.   

Metric  Description  Purpose  Formula  

Accuracy  

Measures the proportion of 

correctly classified samples 

out of the total samples.  

Provides a general measure of 

overall model performance.  

  

   

Precision  

Evaluates the proportion of 

correctly predicted positive 

samples out of all positive 

predictions.  

Ensures fewer false positives, 

especially important for 

dominant classes.  

 TP / 

(TP + FP) 

   

Recall  

Measures the proportion of 

correctly predicted positive 

samples out of all actual 

positive samples.  

Ensures fewer false negatives, 

critical for underrepresented 

classes.  

 TP / (TP + FN)  

F1-Score  
Harmonic mean of precision 

and recall.  

Balances precision and recall, 

particularly important in the 

presence of class imbalances.  

 2 * (Precision * Recall) /  

(Precision + Recall)  

Confusion 

Matrix  

Tabular representation 

comparing predicted and 

actual classes.  

Provides a detailed view of 

classification performance, 

highlighting errors across   

N/A  

Table showing Evaluation metrics used  

6  Findings  

6.1  Training Strategy 1 Results  

6.1.1 Accuracy and Loss Metrics  

  

Figure 10: Line graphs showing validation accuracy and loss  

Accuracy and Loss Metrics: The accuracy and loss curves for Training Strategy 1 demonstrate 

steady improvement over the epoch as shown in figure 13 above, with the training accuracy reaching 

approximately 80% and the validation accuracy peaking around 75%. However, the noticeable gap 

between the training and validation accuracy curves suggests that the model struggled to generalize 

effectively, indicative of overfitting. The training and validation loss curves follow a similar pattern, 

with a decline over epochs, but the disparity between the two highlights a lack of robustness in the 

model's performance on unseen data.  
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6.1.2 Classification Metrics  

Class  Precision  Recall  F1-Score  

MildDemented  0.12  0.13  0.13  

ModerateDemented  0  0  0  

NonDemented  0.52  0.48  0.5  

VeryMildDemented  0.37  0.4  0.38  

Accuracy        0.4  

Macro Avg  0.25  0.25  0.25  

Weighted Avg  0.41  0.4  0.4  

Figure 11: Table showing classification metrics   

  

The classification metrics as shown in the table above further reveal the limitations of Training 

Strategy 1. While the "NonDemented" class shows moderate performance with a precision of 52% 

and recall of 48%, the other classes, particularly "ModerateDemented," exhibit near-zero precision, 

recall, and F1-score. As explained by the results of Training Strategy 1, the model fails to perform 

well on the validation set and experiences issues with class imbalance. The low performance for 

minority classes implies that there is a need for a better framework when training the model. These 

limitations are eliminated in Strategy 2 with features such as the fine-tuning of pre-trained layers, 

gradual modulation of learning rates and better incorporation of specific domains. This sort of 

finetuning is particularly important to enhance the generalizability and the performance on the 

lessrepresented classes.  

6.2  Training Strategy 2 Results   

6.2.1  Accuracy and Loss Metrics  

In the figure below the training and validation accuracy curves show a continuous improvement 

during Strategy 2 up to the training accuracy of 98% and validation accuracy of around 95%. These 

results illustrate the effectiveness of the learning process of the model, which does not lead to 

overfitting or excessive adaptation to training data. The loss curves similarly show consistent 

decreases, with validation loss converging to a stable value. The smooth alignment between training 

and validation loss underscores the hybrid model's generalization to unseen data, validating the 

efficacy of fine-tuning pre-trained layers in Strategy 2.  

  

Figure 12: Line graphs showing validation accuracy and loss  
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6.2.2 Classification Metrics  

A detailed classification report (Figure 16) highlights the model's precision, recall, and F1-score for 

each class:  

Class  Precision  Recall  
F1- 

Score  

MildDemented  0.91  0.96  0.93  

ModerateDemented  0.86  0.97  0.91  

NonDemented  0.97  0.96  0.96  

VeryMildDemented  0.95  0.94  0.94  

Accuracy        0.95  

Macro Avg  0.92  0.96  0.94  

Weighted Avg  0.95  0.95  0.95  

Figure 13: Table showing classification metrics   

The Mild Demented class attained an accuracy of 91 percent and a recall of 96 percent, implying that 

the model was accurate in identifying such cases. Moderate Demented is the class with the least 

number of samples, but by scoring 97 percent recall, the model guarantees identification of these 

critical instances. However, the precision of 86% highlights potential misclassifications into other 

categories. Non-Demented With the largest support (3200 samples), the model maintained a high 

precision (97%) and recall (96%), reflecting its strength in classifying dominant classes.Very Mild 

Demented: The values of precision and recall for this category were 0.95 and 0.94, respectively, 

meaning the results are reliable and exhaustive.The validation of accuracy was done using the 

weighted average F1-score since the classes were imbalanced; the score achieved was 95% of the 

total.The low precision for the ‘Moderate Demented’ class may be driven by class imbalance in the 

given dataset. Since this class has relatively fewer samples compared to other classes, the model leans 

more towards the prevailing classes. To tackle this, methods like margin thresholds or using 

augmented data to train models on the rare class could assist in achieving reliability and fairness in 

predictions.  

6.2.3 Confusion Matrix  

The confusion matrix (Figure 16) provides a granular view of the model's classification performance:  

  

Figure 14: Figure showing Confusion Matrix  

Meaningfully, the confusion matrix reveals tendencies that the constructed model may have when 

classifying particular samples. For instance, the model was nearly perfect for the Mild Demented class 
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where it classified 856 out of 896 and few overlapped with other classes. There was also high 

classification accuracy in the Very Mild Demented and Non-Demented classes as indicated in the 

confusion matrix where the diagonal elements are much higher for those classes. However, what is 

significant to note is that the Moderate Demented class, which is the smallest class and hence has few 

sample sizes, had slight changes that misclassified some samples into the Very Mild Demented class, 

which points to the reality that small samples often present classification difficulties.  

6.3  Analysis of Results  

The superior performance of Training Strategy 2 compared to Training Strategy 1 is attributed to its 

multi-phase approach, which allowed for a more tailored adaptation of the pre-trained DenseNet201 

and EfficientNetB2 layers to the MRI dataset. In Strategy 2, the pre-trained weights were initially 

frozen during the stabilization phase to preserve generalizable features from the ImageNet dataset. 

Following this, the weights were unfrozen, and the hybrid model underwent fine-tuning with a 

reduced learning rate of 1×10−61 \times 10^{-6}1×10−6. This step enabled the model to refine its 

feature representations, capturing subtle patterns specific to neurodegenerative diseases. By allowing 

task-specific adjustments, Strategy 2 enhanced the model's ability to distinguish between similar 

diagnostic categories, such as "Very Mild Demented" and "Mild Demented," which Strategy 1 

struggled with due to its static pre-trained layers.  The features extracted from ViT with the local and 

mid-level features from DenseNet201 and EfficientNetB2 that were extracted increased Strategy 2's 

learning rate in unseen data. The incorporation of class weights during both phases mitigated the 

impact of class imbalance, particularly for underrepresented categories like "Moderate Demented." In 

contrast, Strategy 1, which retained frozen pre-trained layers throughout training, lacked the flexibility 

to adapt to domain-specific nuances. This limitation led to suboptimal integration of global and local 

features and a reduced ability to generalize effectively to validation and test datasets. By leveraging 

fine-tuning and adaptive learning, Strategy 2 proved more robust and better aligned with the 

complexities of MRI data classification. Table below summarizes the analysis   

   Training Strategy 1  Training Strategy 2  

Pre-trained Layer Usage  

Layers remained frozen throughout 

training. Retained generalizable 

features from ImageNet but limited 

domain adaptation.  

Layers were initially frozen, then unfrozen for 

finetuning, allowing adaptation to domain-specific 

MRI features.  

Learning Rate  
Fixed learning rate is used for the 

entire training process. 1×10−5  

Initial learning rate of 1×10−51 \times 

10^{5}1×10−5, reduced to 1×10−61 \times 

10^{6}1×10−6 during fine-tuning for precise 

updates.  

Fine-tuning  
No fine-tuning performed; dense 

layers were trained on their own.  

Fine-tuning involved jointly training pre-trained 

layers and dense layers, optimizing for 

neurodegenerative disease classification.  

Class Imbalance Handling  

Used class weights but lacked a 

stabilization phase to mitigate the 

influence of dominant classes.  

Class weights combined with a stabilization phase 

and fine-tuning improved classification of 

underrepresented classes like "Moderate  
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  Demented."  

Generalization  

Risk of overfitting dense layers; 

limited generalization to unseen 

validation and test data.  

Improved generalization due to incremental 

updates and harmonization of global and local 

feature extraction.  

Feature Integration  

Limited feature integration as frozen 

layers did not adapt to hybrid model 

requirements.  

Seamless integration of global (ViT) and local 

(DenseNet201, EfficientNetB2) features through 

fine-tuning.  

Performance on Minority 

Classes  

struggled to classify underrepresented 

classes effectively.  

Higher recall for "Moderate Demented" due to 

better optimization of classification boundaries.  

Table 15: Table summarizing the two training strategies  

7  Conclusion and Future Work  

7.1  Discussion  

This study aimed to address the research question: To what extent can classification performance on  

MRI scans be improved through a hybrid deep learning model combining DenseNet201,  

EfficientNetB2, and Vision Transformer (ViT) features? The primary objective was to overcome the 

limitations of existing models, including low classification accuracy, , and challenges posed by class 

imbalances, by developing a hybrid model that integrates local, mid-level, and global features. The 

proposed hybrid model met all of these objectives through the utilization of DenseNet201 for the 

detailed spatial information, EfficientNetB2 for mid-level structural components, and ViT for the 

global context comprehension. It was found that the model had an accuracy of 95% with MRI scans, 

which is highly efficient with classes that are rarely represented in models, such as the ‘Moderate 

Demented’ class, with a recall of 97%. This corroborates the used model’s application and capacity to 

categorize neurodegenerative disease phases precisely, making it an efficient solution to the study’s 

issue. Nevertheless, there are several drawbacks that were reported in the study; the usage of 

pretrained weights from the ImageNet database and high computational complexity can be regarded as 

potential limitations.  

7.2   Key Findings  

The hybrid model used in this research provided near-optimal performance as it yielded approximate 

95% accuracy in staging the neurodegenerative diseases MRI scans. This performance indicates how 

the model is able to utilize secondary features from DenseNet201, EfficientNetB2, and the Vision 

Transformer (ViT). Some of the primary issues, like overfitting to the big classes, involved the use of 

weighted loss functions and data augmentation to help boost the recall of the small classes. The 

integration of these architectures was quite effective, because each of them brought in its own 

strengths that is detailed, mid-level, and global features for classification. However, one crucial 

drawback of the model is its computational demand which can be a challenge where resources are 

scarce. The model performs with very high accuracy and sufficiently captures features but could be a 

limitation due to the resource requirements, thus pointing to the explicit trade-off between accuracy 

and scalability.  
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7.3  Implications of Research  

The implications of the findings have profound impact on medical field. The hybrid model presented 

above could be a valuable asset in automating the classification of neurodegenerative diseases. In this 

case, its performance in underrepresented classes proves that it is able to pick important cases that 

might not otherwise be considered, which aids in improving diagnostic precision and ultimately 

patient outcomes. However, its application in clinical contexts necessitates dealing with the model’s 

computational complexity.  

7.4   Limitations  

While the study demonstrates promising results, several limitations must be addressed:  

1. Fine-tuning with the ImageNet pre-trained weights restricted the learning of MRI scan 

domain-specific characteristics in the model.  

2. Expensive and less deployable architectures such as DenseNet201, EfficientNetB2, and ViT 

that form the key components of the hybrid model.  

3. Although the collected dataset was large, all the videos were retrieved from a single database. 

The inclusion of subjects from different age groups, ethnic origin, and a wider range of 

imaging phenotypes would enhance generalizability.  

7.5  Future Work  

To address these limitations, several meaningful avenues for future research are proposed: The future 

research on the hybrid deep learning models in medical imaging could focus on the pretrained models 

suitable for the medical imaging datasets like ADNI or OASIS. These datasets preserve additional 

features specific to MRI scans, which helps the models to learn the fine details characteristic of 

neurodegenerative diseases. Thus, such models might substantially enhance accuracy and fine-grained 

feature learning in accordance with more specific datasets than ImageNet. For cases where 

computation is a concern, it is recommended to incorporate lighter frameworks such as MobileNet or 

use other methods like pruning or quantizing models. These approaches ensure that the models remain 

very accurate while at the same time require fewer resources, thus making them applicable in low-

resource scenarios such as rural clinics or small-scale hospitals.  

Another potential future direction is the improvement of the interpretability of the hybrid model. 

Integration of explainability approaches such as Grad-CAM or SHAP can further help clinicians 

decipher the features behind the model’s decisions, making the system highly interpretable. Such 

transparency helps to build confidence and pave the way towards practical implementation of clinical 

AI diagnostic systems.  

Secondly, using various samples from diverse patients and ensuring that the model trained on patients 

who vary in age, sex, or other parameters would enhance its robustness and fairness. If the dataset is 

made to mimic natural variability, the model can perform reasonably well across any population and 

in various imaging environments.  
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7.6  Conclusion  

Hence, this study demonstrates that hybrid deep learning models have the potential to revolutionize 

medical imaging due to the numerous benefits realized. Nevertheless, this optimistic sign leads to 

some limitations that call for the enhancement and the integration of these progresses for better 

application. Subsequent studies can build up based on this study and utilize domain-specific data, tune 

architectures to improve performance, and to accelerate early diagnosis of neurodegenerative diseases.  

8  References  
  

The Lancet Public Health. (2022). Estimation of the global prevalence of dementia in 2019 and 

forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. The 

Lancet Public Health  

Baker, D., Chen, W.-B., & Gao, H. (2024). Early Alzheimer's detection: The promise of AI-powered 

MRI analysis.  

Kulasinghe Wasalamuni Dewage, K. A., Hasan, R., Rehman, B., and Mahmood, S. (2024)  

‘Enhancing brain tumor detection through custom convolutional neural networks and 

interpretability-driven analysis’, Information.  

Bi, W., Xv, J., Song, M., Hao, X., Gao, D., & Qi, F. (2023). Linear fine-tuning: A linear 

transformation-based transfer strategy for deep MRI reconstruction. Frontiers in 

Neuroscience.  

Abioye, O. A., Thomas, S., Odimba, C. R., & Olalekan, A. J. (2023). Generic hybrid model for breast 

cancer mammography image classification using EfficientNetB2. Dutse Journal of Pure and 

Applied Sciences, 9(3b), 281-289.  

Awang, M. K., Rashid, J., Ali, G., Hamid, M., Mahmoud, S. F., Saleh, D. I., & Ahmad, H. I. (2024). 

Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning 

technique. Plos one, 19(9), e0304995.  

Babu Vimala, B., Srinivasan, S., Mathivanan, S. K., Mahalakshmi, Jayagopal, P., & Dalu, G. T. 

(2023). Detection and classification of brain tumor using hybrid deep learning models. 

Scientific Reports, 13(1), 23029.  

Banerjee, S., & Monir, M. K. H. (2023, July). CEIMVEN: An Approach of Cutting Edge  

Implementation of Modified Versions of EfficientNet (V1-V2) Architecture for Breast Cancer  

Detection and Classification from Ultrasound Images. In International Conference on 

Computing, Intelligence and Data Analytics (pp. 310-323). Cham: Springer Nature 

Switzerland.  

Benhassine, N. E., Boukaache, A., & Boudjehem, D. (2024, August). Breast cancer image 

classification using DenseNet201 and AlexNet based deep transfer learning. In the 

International Conference on Emerging Intelligent Systems for Sustainable Development 

(ICEIS 2024) (pp. 129-143). Atlantis Press.  

Çetiner, H., & Çetiner, İ. (2022). Classification of cataract disease with a DenseNet201 based deep 

learning model. Journal of the Institute of Science and Technology, 12(3), 1264-1276.  

Chen, J., He, Y., Frey, E. C., Li, Y., & Du, Y. (2021). Vit-v-net: Vision transformer for unsupervised 

volumetric medical image registration. arXiv preprint arXiv:2104.06468.  

Chen, Z., Duan, Y., Wang, W., He, J., Lu, T., Dai, J., & Qiao, Y. (2022). Vision transformer adapter for 

dense predictions. arXiv preprint arXiv:2205.08534.  

Hastomo, W., Karno, A. S. B., Sestri, E., Terisia, V., Yusuf, D., Arman, S. A., & Arif, D. (2024). 

Classification of Brain Image Tumor using EfficientNet B1-B2 Deep Learning. Semesta 

Teknika, 27(1), 46-54.  

Hindarto, D. (2023). Model Accuracy Analysis: Comparing Weed Detection in Soybean Crops with 

EfficientNet-B0, B1, and B2. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 

7(4), 734-744.  



23  

  

  

Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-

19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular 

Structure and Dynamics, 39(15), 5682-5689.  

Li, J., Xia, X., Li, W., Li, H., Wang, X., Xiao, X., ... & Pan, X. (2022). Next-vit: Next generation 

vision transformer for efficient deployment in realistic industrial scenarios. arXiv preprint 

arXiv:2207.05501.  

Lu, T., Han, B., Chen, L., Yu, F., & Xue, C. (2021). A generic intelligent tomato classification system 

for practical applications using DenseNet-201 with transfer learning. Scientific Reports, 11(1), 

15824.  

Pacal, İ. (2022). Deep learning approaches for classification of breast cancer in ultrasound (US) 

images. Journal of the Institute of Science and Technology, 12(4), 1917-1927.  

Petrini, D. G., Shimizu, C., Roela, R. A., Valente, G. V., Folgueira, M. A. A. K., & Kim, H. Y. (2022). 

Breast cancer diagnosis in two-view mammography using end-to-end trained efficientnet-

based convolutional network. Ieee access, 10, 77723-77731.  

Preetha, R., Priyadarsini, M. J. P., & Nisha, J. S. (2024). Automated Brain Tumor Detection from 

Magnetic Resonance Images Using Fine-Tuned EfficientNet-B4 Convolutional Neural 

Network. IEEE Access.  

Salim, F., Saeed, F., Basurra, S., Qasem, S. N., & Al-Hadhrami, T. (2023). DenseNet-201 and Xception 

pre-trained deep learning models for fruit recognition. Electronics, 12(14), 3132.  

Sanghvi, H. A., Patel, R. H., Agarwal, A., Gupta, S., Sawhney, V., & Pandya, A. S. (2023). A deep 

learning approach for classification of COVID and pneumonia using  

DenseNet‐201. International Journal of Imaging Systems and Technology, 33(1), 18-38.  

Tadepalli, Y., Kollati, M., Kuraparthi, S., & Kora, P. (2021). EfficientNet-B0 Based Monocular Dense-

Depth Map Estimation. Traitement du Signal, 38(5).  

Xia, C., Wang, X., Lv, F., Hao, X., & Shi, Y. (2024). Vit-comer: Vision transformer with convolutional 

multi-scale feature interaction for dense predictions. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (pp. 5493-5502).  

Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M. H., & Ma, J. (2022, October). V2x-vit: Vehicle-

toeverything cooperative perception with vision transformer. In European conference on 

computer vision (pp. 107-124). Cham: Springer Nature Switzerland.  

Yang, L., Yu, H., Cheng, Y., Mei, S., Duan, Y., Li, D., & Chen, Y. (2021). A dual attention network 

based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture. 

Computers and Electronics in Agriculture, 187, 106316.  

Yin, H., Vahdat, A., Alvarez, J. M., Mallya, A., Kautz, J., & Molchanov, P. (2022). A-vit: Adaptive 

tokens for efficient vision transformers. In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition (pp. 10809-10818).  

Schratz, P., Muenchow, J., Iturritxa, E., Richter, J. and Brenning, A. (2019). Hyperparameter 

tuning and performance assessment of statistical and machine-learning algorithms 

using spatial data. Ecological Modelling, 406, pp.109–120.  
Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z. H., ... & Yan, S. (2021). Tokens-to-token vit: 

Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF 

international conference on computer vision (pp. 558-567).  

Zhou, J., Gu, X., Gong, H., Yang, X., Sun, Q., Guo, L., & Pan, Y. (2024). Intelligent classification of 

maize straw types from UAV remote sensing images using DenseNet201 deep transfer 

learning algorithm. Ecological Indicators, 166, 112331.  

  

  


