~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Alphons Zacharia James
Student ID: x23169702

School of Computing
National College of Ireland

Supervisor: Furgan Rustam

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Alphons Zacharia James
Student ID: x23169702
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Furqan Rustam
Submission Due Date: 12/12/2024
Project Title: Wrong-Way Vehicle Detection Using YOLOv7 for Enhanced
Traffic Safety
Word Count: XXX
Page Count: [13]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Alphons Zacharia James

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Alphons Zacharia James
x23169702

1 Introduction

This Manuel provides instructions for configuring and deploying the research project
”"Wrong-Way Vehicle Detection Using YOLOv7 for Enhanced Traffic Safety”.This helps to
recreate experimental setup used for the research.The research experiments model train-
ing with three different versions of YOLO models YOLOv5,YOLOv7 and YOLOvS8.The
manual contains the hardware,software and cloud requirements needed for the successful
recreation.

2 System Requirements

The model training part of the research is done using with the help of cloud computing
and the implementation of the application developed for wrong way vehicle detection is
executed locally.

2.1 Cloud Requirement

T4 GPU enabled Google Colab environment is used for model training process.

2.2 Hardware Requirements

The application part of the proposed system is executed locally in a Microsoft Windows
11 OS enabled MI Notebook Pro,the device specifications are given below .

e Processor: 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz 3.11 GHz
e Installed RAM: 16.0 GB (15.8 GB usable)

e System Type: 64-bit operating system, x64-based processor

2.3 Software Requirement

The following software’s are required to be installed locally for the execution.
e Python:Version 3.11.7

e Anaconda:Distribution of Python with pre-installed libraries and tools.

2.4 Python Packages Required
2.4.1 ’Execution of Notebook File in Google Colab’

Following libraries are used in Google-Colab for successful model training.

Library Purpose

Open CV Library for real-time computer vision tasks
Imgaug Used for image augmentations

numpy Numerical computations

google.colab.files | To upload and download from Colab

Table 1: Libraries and Their Purposes

2.4.2 Local execution of ’app.py’

The following python libraries and packages are required for successful execution of the
application. These libraries are included in file "requirments.txt” along with code-artifact
shared.

Package Name Version
absl-py 2.1.0
asttokens 2.4.1
astunparse 1.6.3
cattrs 23.2.3
certifi 2024.8.30
charset-normalizer 3.4.0
colorama 0.4.6
contourpy 1.3.1
cycler 0.12.1
Cython 3.0.10
decorator 5.1.1
dnspython 2.6.1
executing 2.1.0
filelock 3.16.1
filetype 1.2.0
flatbuffers 24.3.25
fonttools 4.55.0
fsspec 2024.10.0
gast 0.5.4
google-pasta 0.2.0
grpcio 1.64.0
h5py 3.11.0
idna 3.7
imbalanced-learn 0.12.2
imutils 0.5.4
ipython 8.29.0
jedi 0.19.2

Package Name Version
Jinja2 3.14
keras 3.3.3
kiwisolver 1.4.7
libclang 18.1.1
Markdown 3.7
MarkupSafe 3.0.2
matplotlib 3.9.2
matplotlib-inline 0.1.7
ml-dtypes 0.3.2
mpmath 1.3.0
namex 0.0.8
networkx 3.4.2
numpy 1.23.5
opencv-python 4.10.0.84
opencv-python-headless 4.10.0.84
opt-einsum 3.3.0
optree 0.11.0
packaging 24.2
pandas 2.2.3
parso 0.8.4
pillow 11.0.0
pmdarima 2.0.4
prompt_toolkit 3.0.48
protobuf 4.21.2
psutil 6.1.0
psycopg?2 2.9.9
pure_eval 0.2.3
Pygments 2.18.0
pymongo 4.6.3
pyparsing 3.2.0
python-dateutil 2.9.0.post0
pytz 2024.2
PyYAML 6.0.2
requests 2.32.3
requests-cache 1.2.0
retry-requests 2.0.0
roboflow 1.1.48
scipy 1.14.1
seaborn 0.13.2
Six 1.16.0
stack-data 0.6.3
sympy 1.13.1
tensorboard 2.16.2
tensorboard-data-server 0.7.2
tensorflow 2.16.1

Package Name Version
tensorflow-intel 2.16.1
tensorflow-io-ges-filesystem | 0.31.0
termcolor 2.4.0
thop 0.1.1.post2209072238
torch 2.5.0
torchaudio 2.5.0
torchvision 0.20.0
tqdm 4.67.0
traitlets 5.14.3
typing_extensions 4.12.2
tzdata 2024.2
url-normalize 1.4.3
urllib3 2.2.3
wewidth 0.2.13
Werkzeug 3.1.3

2.5 Steps to Install and Setup Environment

1. Install Anaconda from website https://www.anaconda.com/download

2. Open Anaconda prompt and create conda environment using command:

conda create --name env python=3.11.7

3. Activate the environment using command:

conda activate env

4. Run the command:

conda install pip

5. Install requirements from file requirements.txt using command:

pip install -r requirements.txt

3 CodeArtifact Folder

The contains the contents of the shared folder.The table [3| explains the contents of the
folder and its purpose.

https://www.anaconda.com/download

Name

Type

Description

Results model training | Folder Contains results of model training

Saved _model Folder Contains best.pt loaded in app.py
violations Folder Violation images

Yolov7 Folder Cloned from git to load the model in app.py
app.py Python file Application

dataset.ipynb

Jupyter Notebook file

Contain dataset description

dataseturl.txt

Txt file

URL of dataset

requirements.txt Txt file Packages for pip install
t1l.mov Video file For Testing application
T2.mp4 Video file For Testing application

vomodel.ipynb

Jupyter Notebook file

Model training YOLOv)

v7model.ipynb

Jupyter Notebook file

Model training YOLOvT

V8model.ipynb

Jupyter Notebook file

Model training YOLOvS8

Table 3: Summary of files and their descriptions.

4 Code Files

The project contains four files: three Jupyter Notebook files which are executed in Google
Colab, and one Python file that can be executed locally. The details of each file are as

follows:

5

1. dataset.ipynb: This file contains code to understand the dataset, its classes, and

annotations.

vbmodel.ipynb: This file is used for model training with YOLOv5. The best
weights and results are downloaded after training the model.

v7model.ipynb: This file is used for model training with YOLOv5. The best
weights and results are downloaded after training the model.

v8model.ipynb: This file is used for model training with YOLOv5. The best
weights and results are downloaded after training the model.

app.py: This file loads the best-trained model weights and detects violations from
input videos. When running the application, the user will be asked to enter the
video file name and the reference direction. The allowed reference direction is set
by clicking two points on the screen, and it will display the allowed direction.

Data Sources

The dataset used in for model training is downloaded from Roboflow.The URL for the
dataset [1] .It contains 1961 images with 6 classes of vehicles annotated.

The video footage used for testing of the system is downloaded which are publicly
available.Both videos t1.mov | and t2.mp4 [}| are added with the code folder shared.

!Dataset url: https://universe.roboflow.com/aliyahhalim/vehicle-detection-q8q4n

2t1.mov:https://www.pexels.com/video/a-double-lane-highway-for-road-travelers-4261446/
3t2.mp4:https://www.videezy.com/travel/5651-cars-pass-under-an-overpass

bt

https://universe.roboflow.com/aliyahhalim/vehicle-detection-q8q4n
https://www.pexels.com/video/a-double-lane-highway-for-road-travelers-4261446/
https://www.videezy.com/travel/5651-cars-pass-under-an-overpass

6 Code Execution

The jupyter notebook files can be executed in Google Colab (https://colab.google/).you
can upload the 'ipynb’ files and execute the code directly .The dataset will be downloaded
to the cloud resource directly and processed.There is no need to upload dataset. The
python application ’app.py’ file can be executed locally in the activated Anaconda python
environment which is discussed before.

1. Change directory to the saved unzipped code-artifact folder using the cd command:

cd "path"

2. Run the code using the following command:

python app.py

One the application is up and running user will be prompted to give file name give
name of the video files with format of video(eg: t1.mov) and then user will be prompted to
enter reference direction.The direction has to be entered by clicking two points on screen
which has to align with the vehicle movement direction.If the first click is considered as
A and second is considered as B.The allowed movement direction is from A to B and the
opposite direction is considered as wrong way.

7 Codes

The file dataset.ipynb contains the exploration of dataset before training .File is executed
on Google Colab and dataset is loaded directly into the cloud resource and understanding
of the dataset and the augmentation which is done on each model training code.

Download dataset

° lcurl -L "https://universe F2ke: \nt" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip

= Archive: roboflow.zip
— extracting: README.dataset.txt
extracting: README.roboflow.txt
extracting: data.yaml
creating: test/
creating: test/images/
extracting: test/images/10_jpg.rf.64fba72851601394a225180284599534. jpg
extracting: test/images/110_jpg.rf.03bldef97b49de7caf6ef1507f8cf5ad. jpg
extracting: test/images/20121009Ambulance-PMI-@01_jpg.rf.67b8f321f3fceb838bbo0d850422e3bc.jpg
extracting: test/images/271863111_474925741016438_1496469177481529490_n_jpg.rf.9840516b7118a478d8d18blcadc60e5d. jpg
extracting: test/images/3 jpg.rf.06fb5d86a3f71d75561e6a30efb7c617.pg

Figure 1: Dataset downloading and unzipping .

7.1 Augmentation

Using imgaug library augmentation for the train image set of the dataset is done.lt
includes making changes to the dataset images along with updating the label file.For
label file initial label file is parsed and after making sufficient changes it is converted
back to YOLO format.

count_images_in_folder(folder_path):
image_extensions = {'.jpg', ".jpeg', '.png', '.gif', '.bmp', '.tiff'}
image_count = @
for filename in os.listdir(folder_path):
file_extension = os.path.splitext(filename)[1].lower()
if file_extension in image_extensions:
image_count += 1

return image_count

folder_path = r'/content/train/images’

folder_pathl = r'/content/val images'

folder_path2 = r'/content/test/images'

image_count = count_images_in_folder(folder_path)

image_count =image count+count_images_in_folder(folder_ pathi)
image_count =image_count+count_images_in_folder(folder_path2)
print(f"Number of images in the folder: {image_count}")

3% Number of images in the folder: 1961

Figure 2: Code for counting number of images .

Figure 3: Sample data from Dataset.

augmentation = iaa.Sequential([
iaa.Multiply((0©.8, 1.2), per_channel=0.2),
iaa.LinearContrast((©.75, 1.5)),
iaa.AddToHueAndSaturation((-20, 20)),
iaa.Affine(scale=(0.8, 1.2),
translate_percent=(-0.2, 0.2),
rotate=(-30, 30),
shear=(-10, 10)),
.GaussianBlur(sigma=(@, 1.5)),
.MotionBlur(k=5),
.AdditiveGaussianNoise(scale=(10, 50)),

.JpegCompression(compression=(70, 99)),

Figure 4: Augmentations applied to images.

f parse_yolo_label(label_path, img_width, img_height):
boxes = []
with open(label_path, 'r') as file:
for line_number, line in enumerate(file, start=1):
parts = line.strip().split()
if len(parts) != 5:
ontinue i

class_id, x_center, y center, width, height = map(float, parts)
x_center *= img_width

y_center *= img_height

width *= img_width

height *= img_height

x_min = x_center - (width / 2)

y_min = y_center - (height / 2)

x_max = x_center + (width / 2)

y_max = y_center + (height / 2)
boxes.append((int(class_id), x_min, y_min, x_max, y_max))
t ValueError

return boxes

Figure 5: Parsing label file for updating labels after augmentation

f convert_to_yolo_format(bbs, img_width, img_height):
yolo_boxes = []
for bb in bbs:
x_center = ((bb.x1 + bb.x2) / 2) / img_width
y_center = ((bb.yl + bb.y2) / 2) / img_height
width = (bb.x2 - bb.x1) / img_width
height = (bb.y2 - bb.yl) / img_height
yolo_boxes.append((x_center, y_center, width, height))
return yolo_boxes

Figure 6: Converting Back to YOLO Format

11-22-2019 Fri 12:05:53

Figure 7: Sample image after augmentation

7.2 Model Training

The model training for each Model versions of YOLO are also done in cloud resource with
T4 GPU.The 'vbmodel.ipynb’,’v7model.ipynb’ and ’'v8model.ipynb’ does the model train-
ing and after sucessful completion of execution the results of the training is downloaded
from cloud system as zip file and saved for evaluation

Cloning v5 from git

lgit clone https://github.com/ultralytics/yolov5s

Cloning into 'yolov5'...

remote: Enumerating objects: 17075, done.

remote: Counting objects: 100% (53/53), done.

remote: Compressing objects: 100% (41/41), done

remote: Total 17075 (delta 27), reused 27 (delta 12), pack-reused 17022 (from 1)
Receiving objects: 100% (17075/17075), 15.69 MiB | 19.10 MiB/s, done.

Resolving deltas: 100% (11722/11722), done.

Installing Requirments

Ipip install -r /content/yolov5/requirements.txt

Requirement already satisfied: gitpython>=3.1.3@ in /usr/local/lib/python3.10/dist-packages (from -r /content/yolov5/requ|
Requirement already satisfied: matplotlib .3 in /usr/local/lib/python3.10/dist-packages (from -r /content/yolov5/requir
Requirement already satisfied: numpy>=1.23.5 in /usr/local/lib/python3.10/dist-packages (from -r /content/yolov5/requirem|
Requirement already satisfied: opencv-python>=4.1.1 in /usr/local/lib/python3.18/dist-packages (from -r /content/yolov5/r|

Figure 8: Cloning YOLOvV5 from original repository

Training model

%cd /content/yolov5/
Ipython train.py --img 416 --batch 16 --epochs 100 --data '
F*Cfg /content/yolov5/models/custom_yo! 5s.yaml --weights yolov5s.pt --name ds2augresults --cache

5

85/99 2.04G 0.03536 0.03617 0.006969 : 56% 96/170 [00:20¢< 0,
with torch.cuda.amp.autocast(amp):

85/99 2.04G 0.03537 0.03616 0.00697 : 57% 97/170 [00:20<00:21
with torch.cuda.amp.autocast(amp):

85/99 2.04G 0.03534 0.03617 0.006966 58% 98/170 [00:20<00:19,
with torch.cuda.amp.autocast(amp):

85/99 2.04G 0.0353 0.03606 0.006951 58% 99/170 [00:21<00:19,
with torch.cuda.amp.autocast(amp):

Figure 9: Sample image after augmentation

Validating on validation dataset

EOE S = - Y

© !python val.py --weights /content/yolovs/runs/train/ds2augresults/we /best.pt --data /content/data.yaml
--task val --name yolo_det --img 416 --batch 16

val: data=/content/data.yaml, weights=['/content/yolov5/runs/train/ds2augresults/weights/best.pt'], batch_size=16, imgsz=416, conf_thres=0.e
YOLOVS # v7.0-389-ge62a31b6 Python-3.10.12 torch-2.5.1+cul2l CUDA:@ (Tesla T4, 15102MiB)

Fusing layers...
custom_YOLOVSs summary: 182 layers, 7260003 parameters, @ gradients
val: Scanning /content/valid/labels.cache... 412 images, 1 backgrounds, @ corrupt: 100% 412/412 [00:00<?, ?it/s]
Class Images Instances 3 R mAPS@ mAPS@-95: ©% 0/26 [00:00<?, ?it/s]WARNING A NMS time limit 1.30@s|
Class Images Instances 3 R mAPS@ mAP5@-95: 100% 26/26 [00:10<00:00, 2.48it/s]
all 412 3952 L9013 715 0.793 0.582
Ambulance 412 88 L9018 .761 .839 .59
Bus 412 93 017 .709 .791 .585
car 412 3121 .914 .757 .837 .626
Motor 412 440 .896 .645 .723 .447
Truck 412 127 907 .693 .791 .588
Vvan 212 83 0.924 .723 0.778 .649
Speed: 8.3ms pre-process, 4.3ms inference, 8.3ms NMS per image at shape (16, 3, 416, 416)
Results saved to runs/val/yolo_det

Figure 10: Model Evaluation Code YOLOv5

Cloning v7 and installing requirments

[1

lgit clone https://github.com/Wol
%cd yolov7
Ipip install -r requirements.txt

Figure 11: Cloning v7 from git repository

Training dataset

/content/yolov7
Ipython train.py --batch 16 --img 416 --epochs 100
--data /content/yolov7/ cle-detection-7/data.yaml --weights 'y --device @ --project " " --name "

/content/yolov7
2024-12-09 17:24:46.551630: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factor|
: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factof
E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register fac
7:24: : I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-12-09 17:24:47.632660: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

Figure 12: Model training Code YOLOv7

Evalating model

Ipython test.py --img-size 416 Wbatch 16 --weights /content/yolov7/runs/train/v750/weights/best.pt
t/yolov7/vehi 7/data.yaml --device © --name validresult

—Z:v Namespace(weights=["'/content/yolov7/runs/train/v750/weights/best.pt'], data="/content/yolov7/vehicle-detection-7|
YOLOR # v@.1-128-ga207844 torch 2.5.1+cul2l CUDA:@ (Tesla T4, 15102.0625MB)

Figure 13: Code for validating using best.pt model after training

cache, exists = torch.load(cache_path), True # load
val: Scanning ‘vehicle-detection-7/valid/labels.cache’ images and labels... 412 found, © missing, 1 empt]
Class Images Labels R mAP@.5 mAP@.5:.95: 100% 26/26|
all 412 3952 0.815 0.876 0.717
Ambulance 412 88 . 0.894 0.929 0.768
Bus 412 93 5 0.828 0.86 0.704
Car 412 5 0.835 0.89 0.713
Motor 412 . 0.75 0.818 0.581
Truck 412 127 . 0.787 0.879 0.722
Van 412 83 . 0.795 0.877 0.811
Speed: 6.6/3.7/10.3 ms inference/NMS/total per 416x416 image at batch-size 16
Results saved to runs/test/validresult

Figure 14: Screenshot of validation result of YOLOv7

Installing ultralytics and importing

>

Ipip install ultralytics==8.2.103 -q

from IPython import display
display.clear_output()

import ultralytics
ultralytics.checks()

Ultralytics YOLOv8.2.103 # Python-3.10.12 torch-2.5.1+cul2l CUDA:@ (Tesla T4, 15102MiB)
Setup complete ® (2 CPUs, 12.7 GB RAM, 32.6/235.7 GB disk)

Figure 15: importing YOLOvVS to python Environment

Training custom dataset
[1 !yolo task=detect mode=train model=yolov8s.pt data=/datasets/vehicle-detection-7/data.yaml epochs=100 imgsz=416 batch=16 plots=True

Downloading https:;

100% 21.5M/21.5M [00:00¢
New https j t t available @ Update with 'pip install -U ultralytics’

Ultralytics YOLOVS.2.103 # Python-3.10.12 torch-2.5.1+cul2l CUDA:@ (Tesla T4, 15162MiB)

engine/trainer: task=detect, mode=train, model=: yclovss pt, data=/datasets/vehicle-detection-7/data.yaml, epochs=108, time=None, patience=16@, batch=16, ir
Downloading ht ts/Arial.tt */root/ .config/Ultralytics/Arial . ttf"

100% 755k/755k [68:00<00:00, 38.6MB/s]

Overriding model.yaml nc=80 with nc=6

to 'yoloves.pt'...

Figure 16: SModel training for YOLOvS

10

Validating with validation dataset

© !yolo task=detect \
mode=val \
model=/datasets/runs/detect/train/weights/best.pt\
data=/datasets/vehicle-detection-7/data.yaml

Ultralytics YOLOV8.2.103 # Python-3.10.12 torch-2.5.1+cul2l CUDA:@ (Tesla T4, 15162MiB)
Model summary (fused): 168 layers, 11,127,906 parameters, © gradients, 28.4 GFLOPs
val: Scanning /datasets/vehicle-detection-7/valid/labels.cache... 412 images, 1 backgrounds, @ corrupt: 100% 412/412 [00:00<?, 2it/s]
WARNING A Box and segment counts should be equal, but got len(segments) = 240, len(boxes) = 3952. To resolve this only boxes will be used and all sd
Class Images Instances Box(P R mAPS® mAP50-95): 100% 26/26 [00:07<00:00, 3.43it/s]
all 412 3952 0.911 0.807 0.866 0.708
Ambulance 82 88 .885 0.875 0.938 0.749
Bus 92 93 0.824 0.849 0.868 0.71
car 342 3121 0.913 0.814 0.897 0.734
Motor 252 440 0.887 0.709 0.78 0.559
Truck 114 127 0.978 0.787 0.872 0.714
Van 71 83 0.98 0.807 0.84 0.781
Speed: 1.ems preprocess, 4.4ms inference, @.8ms loss, 3.8ms postprocess per image
Results saved to runs/detect/val
® Learn more at https s.ult

Figure 17: Model Validation YOLOvS

7.3 Python File (app.py)

The app.py contains the detection part of the project and will load the model and process
videos frame by frame and detect violations .Few snapshots of the application is attched.

DESIRED_HEIGHT = 720

device = torch.device(:0" if torch.cuda.is_available()
model = torch.hub.load(» 'custom', f'

video_path = input("P1l 1ter the path to the vi
cap = cv2.VideoCapture(video_path)
t cap.isOpened(
print(f"Error not open video file {video_path}")
exit()

Figure 18: Loding the saved YOLOvVT7 model ’best.pt’

The ’best.pt’ five which is saved in the folder saved_model is the same ’best.pt’ which
is available inresultmodeltraining\v7100\train ,obtained after training of model.

f select_points(event, x, y, f , param):
global points, reference_direction
if event == cv2.EVENT_LBUTTONDOWN:
points.append((x, y))

if len(points) == 2:
reference_vector = (points[1][@] - points[@][@], points[@][1] - points[1][1])
norm = np.linalg.norm(reference_vector)
if norm != O:

reference_di i np.array(reference_vector) / norm
on Set: {reference_direction}")

Figure 19: Code to get mouse click from user for reference direction

11

ile cap.isOpened():
ret, frame = cap.read()
10t ret:

frame = cv2.resize(frame, (DESIRED_WIDTH, DESIRED_HEIGHT))

results = model(frame)
detections = results.xyxy[@].numpy()

final_detections = []
f detection detections:
x1, yl, x2, y2, confidence, class_id = detection[:6]
if confidence > 0.5 and class_id [6,1,2,4,5]:
final_detections.append(((x1 + x2) // 2, (yl + y2) // 2, int(x1), int(yl), int(x2), int(y2), int(class_id)))

updated_vehicle_ids = [{}]
for detection in final_detections:
center_x, center_y, x1, yl, x2, y2, class_id = detection

closest_id =
min_distance = float('inf')
vehicle_id, prev_center vehicle_ids.items():
distance = np.linalg.norm(np.array([center_x, center_y]) - np.array(prev_center))
f distance < min_distance i distance < 50:
closest_id = vehicle_id
min_distance = distance

Figure 20: Processing video Frame by Frame

8 Results

The results both train and validation of the model training done using respective YOLO
models are saved in ‘results model training’ folder.These are directly downloaded from
the Google Colab after execution of the model training code.It contains figures precision-
recall curve,precision-confidence curve ,Recall confidence curve,F'1-Confidence curve and
normalized confusion matrix. Also the weights folder contains the saved model with the
best result with name ’best.pt’.It contains both train results and validation results.

train/box_loss train/cls_loss train/dfi_loss metrics/precision(B) metrics/recall(B)
175 1379
1.4 —e— results 0.9 0.8 w
4 th
1.50 smoo; 1.2
121 1254 0.8 0.7
1.14 It
1.09 1.00 1 0.7 ?
4 1.09 0.6
s 0.75 P
0

0.50 4 0.9 06 1
061 % 0.5
0 50 100 0 50 100 0 50 100 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1179
0.7
1.0 4 1.04 1.050 4
0.8
0.04 1.025 4 06
0.9
1.000 4
0.84 0.7 {
0.975
0.8 0.7 { 03571 f
0.6 0.950 4 0.6 f
0.74 0.54 0.925 J 0.4 1
0.5
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 21: Training and Validation Metric Plotted over epochs YOLOVS

12

Figure 22:

0.10

0.08

0.10

0.06

0.04

o

o

-

o

Box
50 100
val Box

50 100

train/box_loss

val/box_loss

50

0.017
0.016
0.015
0.014
0.013
0.012

0.011

0.031

0.030

0.029

0.028

0.027

0.026

0

o

Objectness

—e— results

50 100

val Objectness

train/obj_loss

—e— results
smooth

0.050

0.045

0.040

0.035

0.030

0.025

50

val/obj_loss

50

100

100

0.020

0.015

0.010

0.005

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.04

0.03

0.030

0.025

0.020

0.015

0.010

0.005

o

Classification

0 50

100

val Classification

train/cls_loss

val/cls_loss

p
i
Hin

o

50

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

ﬁ
\\

o

o

Precision

mAP@0.5

metrics/precision

50 1
metrics/mAP_0.5

50 1

0

o

0

0

Recall

0.8
0.6
0.4
0.2

0 50 100

mAP@0.5:0.95

0.6
0.4
0.2
0.0

0 50 100

Training and Validation Metric Plotted over epochs YOLOV7

metrics/recall

0.6

0.4

0.2

o

50 100

metrics/mAP_0.5:0.95
0.6

0.5
0.4
0.3
0.2
0.1

0.0

o

50 100

Figure 23: Training and Validation Metric Plotted over epochs YOLOV5

13

	Introduction
	System Requirements
	Cloud Requirement
	Hardware Requirements
	Software Requirement
	Python Packages Required
	'Execution of Notebook File in Google Colab'
	Local execution of 'app.py'

	Steps to Install and Setup Environment

	CodeArtifact Folder
	Code Files
	Data Sources
	Code Execution
	Codes
	Augmentation
	Model Training
	Python File (app.py)

	Results

