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Accurate Prediction of Significant Earthquakes using
Machine Learning Algorithms

Samrudhi Hawalli Ramachandra
x23242361

Abstract

Earthquakes are, probably, the most damaging of all the natural disasters. Due
to the nature of seismic activities, it’s tough to predict them more or less accurately
because of the various inherent limitations that are present within the traditional
statistical methods. This paper aims to explore the probability of machine learning
algorithms in helping the accuracy of earthquake prediction by using the attributes
of geospatial and temporal data. To meet this requirement, three datasets sourced
from Kaggle have been used: ”Earthquakes 2023 Global”, ”Earthquake Dataset,”
and ”Global Earthquake and Aftershock Data (January 2023)”. All three have rich
data characters such as magnitude and depth as well as spatial coordinates along
with temporal data that aids for more complex models. The machine learning mod-
els tested include ensemble methods like Random Forest and Gradient Boosting;
linear models, including Linear Regression and Lasso Regression; and even more
complex models, like Support Vector Regression. Among all the models, Random
Forest always has been the best performer where R² values have been greater than
0.90 and low Mean Squared Error value. Geospatial and time-related features such
as latitude, longitude, and recurrence interval dominated the model’s performance.
Further insight into the interplay between the features used and the generated seis-
mic patterns was captured through visualizations including heatmaps and scatter
plots. This study reveals unprecedented machine learning-based potential in pre-
dicting earthquakes while underlining the need to combine spatial and temporal
aspects for better performance. Therefore, the results call for real-time embedding
of predictive models into seismic monitoring frames for better preparedness of dis-
asters. More work in advanced techniques of deep learning, richer data sets, and
multi-hazard frameworks will further develop earthquake prediction methodologies.

1 Introduction

Seismic events, which have been characterized by earthquakes among others, are the most
destructive natural phenomena worldwide, causing severe damage to infrastructure and
economies as well as massive loss of human life. Despite these broader impacts of seis-
mic events, earthquake scientists, policymakers, and emergency managers still face the
challenge of forecasting such unpredictable nature of the disaster. The accurate forecast-
ing of seismic activity is very crucial because it opens pathways that may assist in the
conservation of lives or decrease the damage finally enhancing the preparedness activities
(Fox et al.; 2022). Though some conventional methods applied in seismology have been
productive in contributing significant discoveries, their disorder has sparked interest in
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alternative solutions in dealing with this universal problem. Latest developments in ma-
chine learning revealed new horizons toward enhancement of precision in the forecasting
of earthquakes. Though not founded on traditional approaches in historical experience or
statistical structure, machine learning algorithms prove very powerful in analyzing large
sets of data and identifying intricate patterns or learning from new data (Rundle and
Crutchfield; 2022) which is a characteristic that could make this a promising approach
for model improvements in predictive modeling, enabling much more accurate prediction
of time and location of such seismic events.

Including geospatial and temporal characteristics is fundamental in the process of
seismic event forecasting. Geospatial characteristics provide information regarding the
spatial distribution of these seismic occurrences, including fault line locations, the dynam-
ics of interaction between tectonic plates, and historical patterns that have been linked
to the incidence of seismic activities. Temporal attributes include time-series data that
contains historical intervals of earthquake recurrence, current seismic activity, and envir-
onmental factors such as the build-up of stress along fault lines (Tanaka and Matsumoto;
2024). All these factors put together give an overall view of the complex interactions
involved in the phenomenon of earthquakes. However, the current earthquake forecasting
models do not use the full potential of this high-dimensional input data. Most traditional
methods do not account for relationships and nonlinear links that constitute geospatial
and time series data sets, hence making the forecasts less reliable (Şengöz; 2024). This
therefore creates a gap that requires a study on systematically assessing the implications
of adding these variables in machine learning models to achieve higher precision and re-
liability of forecasts. This study is motivated by the vast potential to accurately forecast
earthquake which would help in better disaster preparation and response. Improving the
geospatial and temporal variables in the machine learning model opens up the resource-
allocation opportunity, allowing the design of advanced early warning systems and even
some pre-event evacuation plans. The major gap that should be addressed is still a huge
aspect concerning the incorporation of an overall feature set within the forecasting system
of earthquakes. The present report discusses the research question:

• How do the addition of geospatial and temporal attributes to machine learning
frameworks impact the accuracy of when seismic activities will happen and whether
they will happen?

It would be through this question that the research would try to improve earthquake
forecasting techniques towards a more secure and solid future.

2 Related Work

2.1 The Role of Machine Learning in Earthquake Damage As-
sessment

Earthquake damage assessment has changed much with machine learning, especially in
city areas, due to thorough evaluation that is needed to plot recovery. In this regard,
Moradi and Shah-Hosseini (2020) presented an example with CNNs, especially on the
UNet model on very high-resolution satellite imagery analysis in assessing building dam-
ages after an earthquake. Thus, their approach tackled some shortcomings of traditional
manual inspections that entail much man-hours and time. The precision was at 68.71%
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by the model. Again, it hinted towards the possibility of fast self-automatic damage
evaluations. The other important issue of the problem-situation is the reliance on pre-
dicative data and failure to detect some of the partly damaged buildings. Updates about
the future might involve the integration of multispectral and LIDAR data along with the
development of its usability. It can be generalized toward earthquakes with the aid of
transfer learning.

2.2 Hybrid Approaches to Earthquake Prediction

Hybrid machine learning techniques combine strengths from different algorithms that
can balance the inherent difficulties inherent with earthquake prediction. Salam and
Abdelminaam (2021) proposed a hybrid architecture integrating Support Vector Ma-
chines, Artificial Neural Networks, and Decision Trees. This approach leveraged the
synergy among the components, such as SVM, which is efficient in processing data with
high dimensions and the ANN, which captures complex nonlinear relationships. Hybrid
performed much better than the single algorithm, especially for early warning signals.
However, each model has problems such as computational overhead and hyperparameter
optimization. Thus, the present study emphasizes tuning models to the specificity of
seismicity conditions, and even domain knowledge can be used to fine-tune predictive
models.

2.3 Spatial and Temporal Dynamics in Earthquake Forecasting

Detailing spatial and temporal aspects has to be done for appropriate earthquake predic-
tion. Yousefzadeh and Farnaghi (2021) highlighted the need to incorporate fault density
and seismic recurrence intervals into DNNs. The experiment conducted by them ex-
plained how the use of spatial and temporal relationships, such as proximity to tectonic
fault lines and aftershock sequences, enhances the predictions related to major earth-
quakes. Integrating these aspects, the paper moves away from the conventional tech-
niques, where these dimensions have been taken care of separately. Limitations include
the computational intensity to assimilate large datasets and enforcing data consistency
over different regions. Real-time integration of global seismic networks and hardware
acceleration progress can be taken as work for the future.

2.4 Use of Geospatial and Remote Sensing Data

Remote sensing techniques have brought new avenues in the prediction of earthquakes
by tracking ionospheric and crustal changes that occur before seismic events. Asaly and
Reuveni (2022) employed SVMs along with GPS TEC data, which highlighted the role
of ionospheric anomalies as a possible precursor to an earthquake. The model presented
achieved high accuracy levels, which indicates the possibility of remote sensing in the
development of early warning systems. However, there is a need to address the challenge of
noise in TEC data caused by solar activities and geomagnetic storms. The techniques used
for data pre-processing need to be improved upon, and other remote sensing techniques
such as SAR will enhance confidence and accuracy in the detection of seismic precursors.
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2.5 Advances in Artificial Intelligence for Earthquake Predic-
tion

Application of Artificial Intelligence The most innovative and changeable approach which
has shown high effectiveness in dealing with intricacy in earthquake prediction challenges
more than the usual methods is in seismic predicting areas. According to Banna et al.
(2020), artificial intelligence methodologies encompass rule-based systems, machine learn-
ing strategies, and deep learning architectures, which have been shown to have exceptional
abilities in identifying patterns in extensive and complex datasets. Such an ability makes
it possible for artificial intelligence to predict the magnitude, location, and time of earth-
quakes with an accuracy that exceeds that of traditional statistical methods. However,
this field remains largely open for improvement. Some of the major limitations in this
regard lately have been the limitation due to not enough abundant data for very large to
extreme earthquakes; therefore, it’s difficult for AI to learn how to predict values toward
that rare moment, yet probably key instances of high activity. A further important issue
is concerning the overfitting issues and limited interpretation, especially among many
deep learning algorithms, thus undermining the whole integrity as decision-support tools
under critical choice conditions. Infusion of domain knowledge about the seismic domain
into the design of AI models and standardization of datasets across regions would obviate
such barriers. Such approaches augment the capabilities, accuracy, and feasibility of the
AI models developed within this earth science disaster readiness framework. By integrat-
ing AI advancements in domains with modern expertise, it would potentially enable this
discipline to achieve an extremely high amount, especially with increased safety through
overall region exposure in exposed regions.

2.6 Predicting Earthquake Timing and Size

Corbi and Lallemand (2019) reported that there was a big step forward in earthquake
prediction by employing machine learning techniques for the laboratory-scale simulation
of subduction zones. Their model, that is, to study spatiotemporal deformation dynam-
ics has a higher resolution than the slip-deficit techniques, and it was considered one
of the important steps toward predicting when and how big the seismic events would
be. It just hints that such understanding on some complicated physical mechanism in
earth-quakes has the capabilities in enhancement of their predictive approaches but the
transfer of it is too challenging for practical approach in implementation. Most chal-
lenges lay around variabilities, disturbances that usually come around from various types
of geologic variability to environmental as well as disturbances in characteristic tectonics.
Furthermore, laboratory experiments usually reduce the complexity that naturally exists
in the phenomenon under study, thus reducing the direct relevance of the conclusions
derived. These challenges may necessitate, on one hand, the inclusion of high-resolution
satellite geodesy data and the development of adaptive algorithms that can adapt to
the natural variability that exists in the systems under study. The implementation of
these upgrades should make it possible to construct practical, robust, and actionable
earthquake forecasting tools.
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2.7 Integration of Deep Learning for Tsunami and Earthquake
Modelling

The deep learning techniques have been very effective in applications, for instance, the
modelling of tsunamis, with critical insights gained from such analyses that can be used
in earthquake predictions. Mulia and Satake (2020) converted low-resolution tsunami
simulation data into high-resolution inundation maps using neural networks and reduced
the computation cost by 90% over traditional methods. This methodology not only
demonstrates deep learning efficiency and scalability but also its applicability in real-
time disaster forecasting. Analogous techniques applied in earthquake prediction can
revolutionize early warning systems, making fast and accurate predictions possible even
in areas with scarce data. Such systems would be especially helpful in regions at risk
from both seismic and tsunami threats because prompt predictions could greatly reduce
casualties and damage to property. Future studies might work on multi-hazard models
where earthquake and tsunami models can be integrated together to form a more holistic
approach for prediction, which may ultimately lead towards better disaster management
and mitigation programs.

2.8 Spatiotemporal Neural Networks for Earthquake Prediction

Kail and Zaytsev (2021) developed the earthquake prediction model by using a hybrid
model of spatiotemporal dependencies, incorporating CNNs and RNNs. They targeted
midterm predictions through events that took place in specific regions using historical
seismic data from Japan within 10 to 60 days. Within their structure, convolutional layers
have very efficiently been used for recognizing spatial patterns, and recurrent layers are
highly efficient at picking up the temporal dynamics which provide comprehensive inspec-
tion of seismic trends. This architecture had performed better than standard approaches
over medium term predictions for seismicity. However, the model still had a higher rate of
false positives, which, more importantly, emphasized the need for improvement in input
features and quality of data. Adding mechanisms like attention would further help the
model focus on related patterns and filter out noise. Inclusion of probabilistic models
would lead to the accuracy of predictions made by the model through the quantification
of uncertainties that help make better choices. That notwithstanding, it still emphasizes
the applicability of deep learning to earthquake forecasting and further improvement in
its use of space-time dynamics.

2.9 Regional Risk Assessment Using Deep Learning

Jena et al. (2021) made groundbreaking research by applying convolutional neural net-
works (CNNs) with geospatial analysis for the assessment of earthquake hazards in North-
east India, which is one of the highly seismically active regions in the world. The innov-
ative framework adopted a holistic approach, wherein hazard, vulnerability, and coping
capacity metrics were used to generate complex risk maps. Such maps are regarded
as quite powerful tools for enhancing the strategies regarding disaster preparedness and
response. It depicted how CNNs can process robust amounts of multi-dimensional geospa-
tial data that could possibly not be unearthed using the usual methods and, importantly
proved practical insight in regions. Despite its success, the study faced several challenges,
to which most were attributed to data quality and scalability. Accuracy and applicability
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is an issue in rural areas; very extensive geospatial information is lacking. Improvement
of the deficiency by integrating crowd-sourced data along with efficiency improvements
regarding computation might boost the robustness of the model and expand the deploy-
ment to even more high-risk areas across the world for better disaster preparedness.

2.10 Real-time Seismic Source Mechanism Analysis

The Focal Mechanism Network is a new framework from deep learning developed by
Kuang et al. (2021), which transforms real-time assessment of earthquake source mech-
anisms. Innovation mainly deals with accuracy in fault geometry and prediction within
stress distribution in milliseconds after the actual acquisition of seismic data; hence, it
significantly improves response times regarding an emergency. Unlike classical approaches
requiring much human interaction and time, FMNet provides a fully automated, highly
scalable solution, so it is suitable for seismic areas. Framework was validated for earth-
quakes having magnitudes larger than Mw 5.4 and shown to be feasible and potentially
viable for widescale application. But such theory in the real world, in the case of usually
changing seismicity, creates a big issue: FMNet relies on artificially generated training
data. Improving robustness and flexibility means supplementing this with richer kinds of
real-world data put into its training schedule. In future research studies, FMNet’s integ-
ration into international frameworks for seismic monitoring may potentially become one
of the promising routes that could increase predictive power for proactive disaster mitig-
ation. However, in general, there’s potential for AI techniques toward better observation
and handling of seismic risks.

3 Methodology

This section describes the approach that is applied in the analysis of seismic data and
the development of predictive models using machine learning algorithms. The process is
divided into five basic steps: Collection of data, Data cleaning and preprocessing, Data
visualization and transformation, Modeling and testing, and Evaluation. The phases are
well designed and implemented in this study to ensure precise and actionable predictions.
The overall methodology is given in the below figure.

Figure 1: Overall Methodology

The datasets give below have been downloaded from Kaggle, based on these datasets
the entire task is done:
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• Earthquakes 2023 Global (Dataset1)

• Earthquake Dataset (Dataset2)

• Global Earthquake and Aftershock Data (January 2023) (Dataset3)

Above data sets were collaborated in forming a holistic and rugged pipeline of pro-
cessing. These datasets acquired from Kaggle that are put together in this analysis, as
a matter of generalization, provided reports about earthquake occurrence around the
world and including the location, time, depth along with magnitudes. Of course, the
earthquakes 2023 global one was such a source used to depict the patterns that occurred
behind the latest ones. This compilation of historical seismic event occurrence together
with their immediate aftershocks has improved the temporal dimension and provided even
more profound insight into trends of earthquake activity. The Global Earthquake and
Aftershock Data for January 2023 have concentrated on a realistic presentation of seismic
records for January 2023, detailing recent events in relation to sequence earthquakes and
aftershock sequences. Initially, they were in CSV file formats. Further on, they were
loaded to a dataframe with the help of using a pandas library within the python envir-
onment. The data provided wide and inclusive sets of features ranging from geospatial
coordinates, event time, and intensity of earthquakes. Exploratory Data Analysis was
done on the data so that there is uniformity in the integrity of data and presentation of
all parameters, magnitude and depth. This therefore developed an excellent methodology
in data acquisition that built a strong base for modelling and subsequent analysis.

3.1 Data Cleaning and Pre-Processing

The datasets were unrefined, hence full cleaning and preprocessing was needed to ensure
data quality and usability. Different methods were applied in imputation of missing val-
ues, particularly in critical attributes of magnitude and location. In numeric columns,
mean or median was used, and in categorical columns, imputation was done using mode.
There were duplicate records that may skew the result, so these were detected and re-
moved. The outliers were detected using any of the statistical methods , like interquartile
range or by visual observations from box plots for extreme values in either magnitude
or depth. Those were either excluded or limited their numbers to reduce the effect on
the models. Depending on the characteristic of categorical features, one-hot encoding
and label encoding transform were used to encode the features into the forms of num-
bers. Normalization and standardization were implemented to all features using Python
StandardScaler from the sklearn library developed by (Budiman and Ifriza; 2021) This
process normalized all the numerical values to a constant range. This is important be-
cause some of the machine learning algorithms like KNN and SVM are sensitive to feature
scaling. Further the processed data was split into training and testing subsets with an
80:20 ratio, hence providing a fair assessment framework. These data cleaning and pre-
processing activities ensured that the data were accurate, consistent, and ready for further
analysis.

3.2 Data Visualization and Transformation

The role of visualization is very important to understand the distribution, trend, and
relationship within the data. Different libraries were used including matplotlib, seaborn,
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and plotly with which a number of graphical representations were developed including
histograms, scatter plots, box plots, and heatmaps. The scatter plots allowed an invest-
igation of the kind of relationship that exists between depth and magnitude that was
helpful for discovering patterns for feature engineering. Heatmaps showed the correlation
of various features, in particular, intensity with the aftershock frequency (Jia et al.; 2019)
Time patterns were shown with line plots which revealed very useful information on the
frequency and intensity of earthquakes over different periods of time. Geospatial visu-
alization highlightes the geographical patterns and nature of data about earthquakes.
The folium and geopandas libraries were applied to create cartographic maps showing
the distribution of seismic activity across regions. These maps clearly highlighted the
areas of increased seismicity, including tectonic plate boundaries and fault lines. Fea-
ture transformation was another essential stage of this process. The developed attributes
were innovative, between successive seismic occurrences, with logarithmic modifications
for skewed features like depth. Dimensionality was also reduced through Principal Com-
ponent Analysis to eliminate superfluous features, thereby concentrating models around
relevant information. The intercombination of visualization and transformation greatly
improved the interpretability as well as the predictive capability of the dataset.

3.3 Modelling and Experimentation

A number of machine learning algorithms were used, and the best-performing method
for predicting earthquakes would be determined. The models which were used were Lin-
ear Regression, Random Forest, Decision Tree Regression, K-Nearest Neighbors, Support
Vector Machines, Gradient Boosting, Ada Boost, Lasso Regression, ElasticNet Regres-
sion, and Bayesian approaches, each of which was trained on the preprocessed data set and
then tested against the test subset. Linear Regression was used as a baseline for compar-
ison, while ensemble methods like Random Forest and Gradient Boosting provided the
predictions by combining multiple decision trees. Decision Tree Regression performed
very well in detecting non-linear relationships and thus was particularly suitable for this
particular dataset. Hyperparameter tuning was carried out using grid search and random
search techniques to enhance the performance of each model. For example, the accuracy
can be enhanced by the number of estimators and max depth of Random Forest, while
SVM’s kernel and regularisation parameters were fine-tuned (Rasel and Meesad; 2019).
Cross-validation was used such that the models were not overfitting to training data.
Because this is an iterative process of experimentation, it could establish which models
performed the best-the predominant models were Random Forest and Gradient Boosting
because they were efficient at processing complex data patterns.

3.4 Evaluation

A broad set of evaluation metrics was used to perform model performance checks in
order to measure both accuracy as well as reliability. Metrics including Mean Absolute
Error and Root Mean Squared for regression models were checked during evaluation. R-
squared values help measure how much of the variation in the dependent variable (y) can
be explained by the independent variables (X) in a model. Put simply, it shows how well
the model fits the data and how effectively it can predict future outcomes. It is calculated
using below equation:
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R2 = 1− SSE

SST
(1)

• SSE (Sum of Squared Errors): This represents the total of the squared differences
between the actual values of the dependent variable and the values predicted by
the regression model. It shows how much of the variation in the data the model
fails to explain.

• SST (Total Sum of Squares): This measures the overall variation in the dependent
variable by summing up the squared differences between each actual value and the
mean of the dependent variable. It represents the total variability in the data.

Mean Squared Error (MSE) measures the average of the squared differences between
actual values and the predictions made by a model. In machine learning, it’s a way
to quantify how far off the model’s predictions are, on average, from the true values.
Mathematically, it’s defined as:

MSE =
1

n

∑
(yi − ŷi)

2 (2)

Here’s what the terms in the MSE formula mean:

• n : The total number of data points.

• yi: The actual value for the i-th data point.

• ŷi: The predicted value for the i-th data point.

Feature importance analysis was also part of the assessment. The importance of fea-
tures was done by permutation and the importance score from Random Forest techniques
have shown the most important used features and have been the magnitude, depth, and
spatial coordinates, respectively. The results also confirm that models’ ability was val-
idated at the same time and it provided necessary information on main drivers of these
earth predictions. Cross-validation means using algorithms that would predict and model
seismic events over various sets. It used this general framework of assessment such that
the models were feasible and accurate for actual real-time application in earthquake fore-
casting.

4 Design Specification

The architecture of the system for earthquake prediction is multi-layered and modular to
enhance adaptability, scalability, and resilience. Data Aggregation at the starting point
aggregates datasets collected from Kaggle into one dataset. The Data Pre-Processing
phase includes filling in missing values, removing duplicates, normalizing data, and cre-
ating such features as time intervals between events. Exploratory data analysis also
includes spatial distribution and interrelation visualization. The Modeling Framework
employs multialgorithms: Linear Regression, Random Forest, Gradient Boosting, and
Support Vector Machines, with hyperparameter tuning towards best performance. The
Validation Layer includes cross-validation and importantly preventing overfitting. The
Evaluation Module performs multimetric analysis using RMSE, MAE, precision, recall,
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and F1-score. Finally, a Comparison Framework is used to assess the relative perform-
ances of models and even plot results. Python is used for coding purpose and uses various
libraries such as pandas, scikit-learn, seaborn, and matplotlib and effectively computed
on Jupyter Notebook.

5 Implementation

5.1 Data Preparation

In data preparation, this study incorporated three different datasets obtained from Kaggle:
”Earthquakes 2023 Global,” ”Earthquake Dataset,” and ”Global Earthquake and After-
shock Data (January 2023).” These datasets contained various attributes that would
describe earthquake events, such as magnitude, depth, geographical locations, and time-
related factors. All the datasets were imported into Python using the pandas library to
process and manipulate further. First, the data from the files were checked for consistency
and the features such as time, mag, depth, and place are prioritized when standardizing
columns across datasets. Standardization also resulted in uniformity of naming and data
types of the columns. For instance, type of earthquake (type) was made consistent across
the datasets such that labelling does not appear different. Extraction and standardiza-
tion of time data through the datetime column is done in relation to temporal analysis.
Duplicate rows are detected, and removed to eliminate the redundant entries that might
cause overlaps that in the datasets. This stage ensured the integrated database main-
tained separated records and thus enhanced both storage and processing performance
(Debnath et al.; 2021). At the same time, time intervals between consecutive earth-
quakes were included as features and magnitudes were classified into different classes-for
example, low, moderate, and high. The aim of such feature engineering was to extract
information regarding time dependence and intensity distributions of the seismic activ-
ities. With the merged and enriched dataset, the stage was now set for further cleaning
and analysis.

5.2 Data Cleaning and Processing

Data cleaning and processing ensured that the data sets were clean, consistent, and ready
for modeling. Missing values were also addressed, where missing values were very dom-
inant in features like continent and country. Entries with missing values in those fields
were imputed with the value ”Unknown” to preserve as much data as possible without
introducing bias. For the numeric columns like depth and magnitude missing values were
imputed using median and mean as respective imputation algorithms where applicable
and based on data distribution, ensuring the dataset does not introduce skewness during
filling (Han et al.; 2020). The columns that add no value to the modeling prediction
included identifiers, like alert and net, as well as metadata such as title are dropped. The
statistical approaches like IQR and graphical representation in the form of box plots were
used to acquire quantitative anomalies with high values or depths. These obtained anom-
alies were kept in acceptable ranges so that this does not influence the model traning. The
categorical variable type and magType was also converted to numerical representation
for compatibility purpose by using LabelEncoder. For example, two types of earthquakes,
namely ”earthquake” and ”explosion,” were assigned integers. The sanitized data set was
then split for independent variables (X), and the dependent variable, y, represented how
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strong the earthquake was (mag). After this, the split was done in the 80:20 ratio using
the train test split function in the sklearn library, the actual dataset is split into subsets
of training and testing. The scaling feature was performed to ensure that the numeric
features, such as depth and latitude, have the same scale (Aden Antoniów and Seydoux;
2022). The standardization was performed using the StandardScaler function. The fea-
tures are scaled to a mean of zero and a standard deviation of one. This is particularly
important for algorithms like SVM and KNN, which have very specific requirements in
terms of scaling. These steps in cleaning and processing made sure the dataset was clean
from errors, properly structured, ensuring easy roll-out of the machine learning models.

5.3 Data Visualization and Transformation

5.3.1 Dataset 1: Earthquakes 2023 Global

This histogram represents the frequency distribution related to earthquake magnitudes.
Most of the occurrences are between 3 and 5, meaning that low to moderate levels of
seismic activity are dominant. The overlaid line represents a normal distribution that is
skewed toward higher magnitudes.

Figure 2: Magnitude vs depth scatter plot

The scatter plot below plots the magnitude of the earthquake against depth and
categorizes by event type. Most earthquakes occur at shallower depths, with variability
in magnitude. This gives the appearance of the existence of clusters, indicating possibly
depth-dependent relationships for some classifications of events, such as ”earthquakes”
versus ”explosions.”
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Figure 3: Magnitude vs depth scatter plot

The heatmap shows correlations between features such as magnitude, depth, and
latitude. Strong correlations are represented by darker shades of blue or red. For instance,
the magnitude feature is positively correlated with depth and negatively correlated with
latitude, and is suggesting strong patterns for feature engineering.

Figure 4: Correlation plot for Earthquakes 2023 Global dataset
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5.3.2 Dataset 2: Earthquake Dataset

The following histogram illustrates the distribution of earthquake magnitudes. Majority
of the earthquakes are in the range of 6.5 and 7.5 magnitudes, while the frequency tapers
off with increasing magnitude. The curve demonstrates that most earthquakes were in
this moderate magnitude range rather than at very high magnitudes.

Figure 5: Histogram plot for magnitude

The graph shows an overall fluctuating trend in the number of earthquakes over the
years, with noticeable peaks in 2011 and 2013, where earthquake counts were highest.
After 2013, there is a gradual decline until 2018, followed by a recovery in earthquake
numbers in the years leading up to 2022. Throughout the period, lower-magnitude earth-
quakes consistently dominate, while high-magnitude earthquakes remain relatively rare.

Figure 6: Earthquake frequency and magnitude category

The heatmap is for features in terms of magnitude, depth, latitude, and many other
seismic attributes. Darker colors indicate high correlation values where variables like
magnitude and sig (significance) are positively correlated. It is used to identify key
features.
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Figure 7: Correlation plot for Earthquake dataset

5.3.3 Dataset 3: Global Earthquake and Aftershock Data (January 2023)

This histogram shows the frequency of earthquake magnitudes. Most events cluster
between 4.0 and 5.0. The frequency of higher magnitudes decreases because such sig-
nificant seismic events are rare; understanding this is crucial in developing a prediction
model based on magnitude-based distribution.

Figure 8: Histogram plot for magnitude
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This scatter plot represents earthquake magnitude versus distance to the closest seis-
mic station. A smaller distance to the stations has more significant magnitudes often
characterizing areas with stronger seismicity and thus with stronger monitoring.

Figure 9: Magnitude vs nearest station plot

6 Evaluation

This chapter is based on detailed research using three different data sets: ”Earthquakes
2023 Global,” ”Earthquake Dataset,” and ”Global Earthquake and Aftershock Data
(January 2023)” in order to predict the intensity of earthquakes. Findings regarding
the performance evaluation of the models and thorough inference based on other metrics
concerning general implication will be presented for each experiment performed. Sev-
eral algorithms are covered but not limited to the following: Linear Regression, Random
Forest, Gradient Boosting, and Support Vector Machines. The metrics that can be used
for performance are Mean Squared Error (MSE), R-squared (R²), and time computation.

6.1 Experiment 1 on Earthquakes 2023 Global

The first experiment used the ”Earthquakes 2023 Global” dataset. It had vast data
covering all seismic events that had occurred around the world in 2023. The crucial
parameters, including magnitude, depth, latitude, and longitude, have been used while
predicting the magnitudes of the earthquake. This experiment was aimed at checking
whether different types of machine learning models can identify linear as well as non-
linear relationships in data. The evaluation metrics indicate that the performance of the
models is different. Random Forest regressor is the best fit on this data set having a
minimum MSE of 0.055 with maximum R² of 0.92, thus it is good enough for modeling
complex relationships. The other is GradientBoostingRegressor that did fairly well at an
MSE of 0.066 and an R² score of 0.90.

Linear models, Linear Regression and ElasticNet Regression did all right with MSEs
of 0.156 and 0.173 and R² scores of 0.76 and 0.74 respectively. Those models can be used
for comparison purposes but fail miserably to describe non-linear relationships. SVR
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Table 1: Performance Metrics for Dataset 1 - ”Earthquakes 2023 Global
Model MSE R² Score Computational Time (s)
RandomForestRegressor 0.055 0.917 18.86
GradientBoostingRegressor 0.066 0.90 4.80
SVR 0.068 0.89 15.98
KNeighborsRegressor 0.084 0.87 0.23
DecisionTreeRegressor 0.107 0.839 0.206
AdaBoostRegressor 0.128 0.808 1.57
BayesianRidge 0.156 0.765 0.031
LinearRegression 0.156 0.765 0.067
ElasticNetModel 0.173 0.740 0.0165
LassoModel 0.191 0.713 0.001

obtained an MSE of 0.068 and R² score of 0.89 but cost around 15.98 seconds. This
trade-off between accuracy and speed makes SVM lesser ideal for large-scale, real-time
operations. Lasso Model naturally was the worst of the ones with an MSE value of 0.191
and an R² score value of 0.713. The simplistic assumptions taken by Lasso Model made
its model not efficient for dealing with the complexity data of earthquakes. To sum it all,
the Random Forest method is found to be the best ensemble predictor for the dataset
”Earthquakes 2023 Global”.

Figure 10: Performance of models on Dataset1

6.2 Experiment 2 on Earthquake Dataset

The ”Earthquake Dataset” was utilized for the second experiment. This dataset consists
of combined historical seismic events from all over the world, thereby widening the scope
of time. Aftershock sequences and timing of occurrence and location are some of the
attributes. This was to test the models for generalization over quite different earthquake
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scenarios. Gradient Boosting outperformed all other models with an MSE of 0.046 and
an R² score of 0.75. Random Forest also did well with an MSE of 0.048 and an R²
score of 0.73, further establishing the utility of ensemble methods in this space. Both
models showed their ability to learn temporal and spatial patterns in the data. The
computation times of Gradient Boosting and Random Forest were 0.34 seconds and 0.90
seconds respectively, indicating that the two algorithms suit larger datasets of similar
characteristics.

Table 2: Performance Metrics for Dataset 2 - ”Earthquake Dataset
Model MSE R² Score Computational Time (s)
GradientBoostingRegressor 0.046 0.751 0.244
RandomForestRegressor 0.0487 0.737 0.588
DecisionTreeRegressor 0.056 0.694 0.019
AdaBoostRegressor 0.077 0.585 0.141
SVR 0.092 0.501 0.050
LinearRegression 0.100 0.459 0.098
BayesianRidge 0.101 0.45 0.011
ElasticNetModel 0.124 0.327 0.003
LassoModel 0.138 0.254 0.015
KNeighborsRegressor 0.139 0.249 0.186

Linear Regression had an MSE of 0.1 and an R² score of 0.45, depicting that it is not a
good fit for this data as these relationships are not linear in nature. ElasticNet Regression
was also similar to the previous model with an MSE of 0.124 and an R² score of 0.32, which
are useful for deriving interpretable results but lesser in accuracy than ensemble methods.
SVM had an MSE of 0.092 and an R² score of 0.50, and thus was moderately accurate. In
KNN, it has gone terribly wrong from SVM: 0.139 in terms of MSE and scored 0.249 as
R² which is directly related to being sensitive to data distribution and scale. In general,
Experiment 2 demonstrated that ensemble methods generally dominate data analysis on
time-space mixtures by approaches such as Gradient Boosting and Random Forest.

Figure 11: Performance of models on Dataset2
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6.3 Experiment 3 on Global Earthquake and Aftershock Data
(January 2023)

The third experiment utilizes the ”Global Earthquake and Aftershock Data (January
2023)” dataset focused on recent seismicity and aftershock sequences, in order to be of
particular utility in determining how well-functioning the models are for pretty localized
and temporal data. It is the second experiment in succession where Random Forest
Regressor proved to be the champion at MSE 0.012 and an R² of 0.94 points, hence it is
again the best model for this dataset. The MSE was at 0.013, and the R² score was 0.93
with Gradient Boosting Regressor. The fitting of temporal dependencies and nonlinear
relationships found in sequences of aftershocks was quite impressive for both models.
Their computation times were at 0.7 seconds for Random Forest and 0.3 for Gradient
Boosting, which was acceptable enough to be applied in real-time applications.

Table 3: Performance Metrics for Dataset 3 - ”Global Earthquake and Aftershock Data
Model MSE R² Score Computational Time (s)
RandomForestRegressor 0.012 0.939 0.353
GradientBoostingRegressor 0.013 0.93 0.174
DecisionTreeRegressor 0.0179 0.91 0.00
AdaBoostRegressor 0.019 0.904 0.122
KNeighborsRegressor 0.037 0.812 0.025
SVR 0.054 0.726 0.016
LassoModel 0.069 0.655 0.002
ElasticNetModel 0.078 0.607 0.002
BayesianRidge 0.107 0.465 0.005
LinearRegression 0.107 0.464 0.020

Figure 12: Performance of models on Dataset3
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Linear Regression and Bayesian Ridge were poor models that had MSEs of 0.107,and
achieved R² scores of 0.46. Neither of the models were really good at fitting the underlying
non-linear relationships, but it was useful to see these results, which could help a lot in
understanding the overall structure of the data. KNN was fragile with an MSE of 0.037
and an R² score of 0.81, indicating vulnerability to noise carried by the local pattern in
the dataset.The experiment reiterated the strength of ensemble methods like Gradient
Boosting and Random Forest in the case of earthquake prediction. These models can
learn from nonlinear patterns and handle the dependencies in time for data based on
aftershock sequences.

6.4 Discussion

In all three experimental studies, Random Forest and Gradient Boosting were the win-
ners. These ensemble methods had higher precision as seen by the R² values that were
often greater than 0.90. Their ability to capture non-linear relationships and with shorter
computational times, make them the most reliable choices for earthquake prediction (Jia
et al.; 2019). Though linear models were not very precise, they were highly useful for
baseline comparison and interpretability. Their performance indicates that model com-
plexity needs to be balanced with accuracy, particularly when explainable results are
required. SVR had an average accuracy but was too computationally expensive and
could not scale up to larger datasets (Rasel and Meesad; 2019). KNN was very simple
to implement but failed to generalize well, especially if the patterns were very hetero-
geneous. Linear models like Linear Regression, ElasticNet Regression and Lasso Model
always underperformed in all experiments, which indicates the inability of the algorithm
to deal with complex, multi-dimensional data. It is unsuitable for earthquake prediction
tasks due to the reliance on strong assumptions about feature independence.

7 Conclusion and Future Work

7.1 Conclusion

This work discusses the application of machine learning techniques in seismic events fore-
casting, based on exploiting both spatial and temporal features. Such features appear
to greatly enhance performance as ensemble techniques, specifically Gradient Boosting
and Random Forest, were seen to surpass all models in the compared setup. Very high
accuracy metrics were achieved, characterized by R² values of above 0.90 with very low
MSE on all datasets. Their capability of capturing non-linear relationships and temporal
dependencies demonstrates their fair suitability for complex seismic data. The latitudes
and longitudes, along with the temporal attributes such as timestamps and intervals
between earthquakes, have been of prime importance for the enhanced performance of
the model. Techniques such as heatmaps and scatter plots have produced robust correla-
tions between these attributes and the magnitudes of earthquakes, hence giving evidence
of their utility as predictors. More direct models like Linear Regression and Lasso Model
provide useful baselines, although they are not more robust for accurate prediction. Al-
though SVR achieved performance at an intermediate scale, higher computational costs
are problems for applications that involve higher dimensions or near real-time applic-
ations. The machine learning models are applicable in disaster preparedness through
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improving resource allocation and early warning systems. This will allow the stakehold-
ers to strengthen their capability to predict and respond appropriately to the critical
earthquakes therefore reducing the effects on human lives and infrastructure through the
integration of these systems with real-time seismic monitoring.

7.2 Future Work

Even though this study has shown that geospatial and temporal characteristics are signi-
ficant in the context of earthquake prediction, there are various potential leads for further
exploration. It can be further enhanced with more data sources such as geological data,
environmental data, or tectonic plate movements. The causes and sequences of seismic
events will be better placed by the availability of these datasets. Further, more soph-
isticated feature engineering techniques include deep learning models such as CNNs and
RNNs, which can be used for the detection of complex spatial and time patterns in seismic
data. Although such models are computation-intensive, they have been quite useful for
some applications where high-dimensional data requirements were involved. This paper
has explored ensemble models whose performances would be further improved through
automation of hyperparameter optimization and Bayesian optimization or genetic al-
gorithms. More detailed understanding of the robustness and generalization abilities of
the model would emerge from considering larger and much more diverse data sets along
with extended periods of time and wider regions of interest. Ultimately, such prediction
models may help in their application for real-time operation integration in seismic mon-
itoring systems. The integration of predictive analytics into early warning systems would
offer proactive management of disasters so that lives are saved, and economic losses are
lessened. Future research work can, therefore, build on the findings of this study by
making strides in the boundaries of earthquake prediction and mitigation technologies.
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