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Abstract 

The following study proposes the Convolutional Neural Networks (CNNs)- 

Recurrent Neural Networks (RNNs) hybrid deep learning model for the recognition of 

American Sign Language (ASL) gesture and real-time multilingual speech translation. 

The CNN part is used to extract spatial features from the ASL gesture images and the 

RNN part is used to capture temporal features using Long Short-Term Memory (LSTM) 

networks. The model is built to recognize 36 classes of ASL gestures including digits 0-

9 and alphabets A-Z and is combined with multilingual speech output module using 

Google Text-to-Speech (gTTS) that can translate the recognized signs into spoken words 

in Spanish, French and Arabic. 

 

The model was trained and tested on dataset of 2,515 images of ASL and the 

performance of the model was calculated on 10 iterations. Training accuracy increased 

from 27.10% to 97.66% and validation accuracy achieved 99.01%. The test accuracy 

was 97.61% proving that this model has a very high generalisation capacity. The 

performance of the classifiers was as follows: precision of 97%, recall of 98%, and F1-

score of 97%. However, the metrics of some classes like ‘o’ and ‘z’ are slightly lower 

and it is obvious that class imbalance and feature overlap issues are the main causes that 

need to be improved. The ability to output speech in multiple languages is a major 

advantage and increases the model’s practical usability across the range of people and 

situations. This research focuses on the application of the proposed hybrid CNN+RNN 

model in ASL gesture recognition and its possible use in translating real-time sign 

language to spoken language and vice versa. Additionally, the findings contribute to the 

development of assistive technologies, offering a solid foundation for the advancement 

of ASL recognition systems. Future work will focus on addressing minor performance 

discrepancies and exploring advanced techniques such as data augmentation and 

specialised loss functions to further optimise the model.  

 

Keywords: Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), American Sign Language (ASL), LSTM, ASL gesture 

recognition 

 

1 Introduction 
 

1.1   Background and Context 

Communication is one of the basic human needs, but millions of people around the globe 

have major problems with speech due to hearing impairments. The society also has disabled 
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persons who are either deaf or have a hearing impairment, and sign language is the most 

common means of communication among them. It is a visual language that uses hand 

movements, facial expressions and body language to pass a message. However, there is no 

common sign language and inadequate knowledge of it among the population resulting in 

deep communication issues. Such barriers interfere with day-to-day communication, restrict 

opportunities to obtain necessary supplies and goods and exacerbate the lack of both contacts 

and services (Manning et al., 2022). 

 

Over the last few years, technology has presented new opportunities to overcome the 

communication barriers of disabled individuals. There is thus much interest in sign language 

recognition system where an application can be used to translate sign language into the 

spoken language in real time. Thus, despite previous attempts, existing systems are still 

problematic in terms of accuracy and speed and cannot be considered scalable to a real-world 

application (Koller, 2020). Moreover, most of the existing solutions provided are available in 

only one language, which makes them less accessible to everyone (Pigou et al., 2015). 

 

This research proposes a real-time sign language recognition system to overcome 

these constraints and adds multilingual text-to-speech translation for increased applicability. 

Using CNN and RNN structure, the system will be able to capture spatial features as well as 

temporal features of sign language gestures to identify them accurately (Huang et al., 2015). 

Also, the incorporation of Google Text-to-Speech (gTTS) will allow translation of the 

content into various languages enhancing the system’s applicability to a wide clientele. To 

achieve this, this thesis aims to develop a tool that can be comprehensive and easy to use in 

facilitating interaction with hearing and speech impaired. 

 

1.2   Motivation 

The need for this research arises from the observation of the high levels of communication is 

impaired by hearing and speech impaired. The inability to communicate effectively with the 

hearing population causes several social, educational and employment related losses. 

However, sign language is well-recognized and efficient for deaf people; however, deaf 

people have some problems, and most people do not know how to use sign language or how 

to read it (Bragg et al., 2019). Cohen and Muller argued that this lack of trade creates 

exclusion and isolation of the sign language users. 

 

Technological solutions to sign language recognition at the current are still favorable 

but not perfect. The current systems also have some challenges such as they are not real-time 

systems, low recognition accuracy and cannot translate sign language to other spoken 

languages. These limitations make them less effective to be implemented in a real 

environment (Camgoz et al., 2020). With the increase of the use of digital platforms and 

video communication in society, there is an acute need to develop a stable, time-synchronous 

system that will enable the exchange of information between sign language users and other 

people. Further, it would be immensely helpful in the development of the multilingual sign 

language recognition system to foster the improvement of inclusive settings in different 

spheres of life, such as education, healthcare, customer relations, and administration (Tang, 
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G. 2024). Since the identified sign language gestures can be translated into several spoken 

languages, such a system can significantly enhance the presence and influence of sign 

language users to convey information to people who have diverse language and cultural 

backgrounds. 

 

1.3 Research Question 

The central research question guiding this study is as follows: 

 

How can deep learning techniques be utilized to develop a sign language recognition 

system capable of accurately translating gestures into multiple spoken languages? 

 

This question focuses on the dual challenges of developing a system that can recognize sign 

language gestures with high accuracy and translating those gestures into spoken languages 

using a multilingual text-to-speech system. 

 

1.4  Research Objectives 

This study aims to design a highly accurate, real-time sign language recognition system 

together with multilingual text-to-speech translation. To achieve this, the research is guided 

by the following specific objectives: 

⚫ To develop a real-time sign language recognition system: This includes applying 

CNNs for capturing the spatial features of sign language gestural movements and RNNs 

for the temporal features, all with improved recognition rate. 

⚫ To integrate multilingual text-to-speech (gTTS): This feature will enable the system to 

drive speech where the sign language interpreter identified the sign language gesture and 

translated it into various languages if needed. 

⚫ To evaluate the system’s performance: The system will be evaluated in terms of its 

performance, response time and applicability in a variety of realistic settings in order to 

verify that it is feasible for use in real life situations. 

⚫ To assess the social impact: The study will also look into how the system can enhance 

the accessibility of hearing and speech impaired in the different aspects of life to 

minimize communication hitches hence enhancing their integration into society. 

 

 

1.5 Significance of the Study 

This research has the potential to benefit the field of assistive technology and accessible 

communication in a major way. If the real-time sign language recognition system is 

integrated with speech to multilingual speech translation, a lot of communication barrier 

between the hearing impaired and the others would be broken. Such a system would not only 

support day-to-day interpersonal communication but would also help to achieve better 

integration into education, health care, public services and working life (Manning et al., 

2022). This research seeks to address the gaps in existing systems by implementing deep 

learning methods that are more accurate, scalable and generic. Moreover, the use of multiple 

languages in the system guarantees that this can be implemented in different linguistic and 
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cultural environments (Tang, G. 2024). In Summary, the research intends to make a 

significant contribution to the enhancement of communication for the disabled persons with 

hearing and speech impairment to increase their interaction with the hearing community. 

 

1.6 Structure of the Thesis 

The remainder of this thesis is organized as follows: 

⚫ Chapter 2: Literature Review – This chapter gives a brief overview of the current work 

and developments made in the field of sign language recognition with the help of deep 

learning approaches, real-time systems, multi-lingual translation systems. 

⚫ Chapter 3: Methodology – This chapter outlines the deep learning models, datasets, 

system architecture, and tools used to build the sign language recognition system, 

together with the approach for the integration of multilingual text-to-speech. 

⚫ Chapter 4: Implementation and Results – This chapter focuses on highlighting the 

proposed system, the actual training, testing and performance of the model. The impact 

of the system in the recognition accuracy, response time, and the performance of the 

multilingual translation is also evaluated. 

⚫ Chapter 5: Discussion – This chapter compares the findings of this study to the research 

objectives and present an assessment of the likely challenges, limitations and usefulness 

of the system. 

⚫ Chapter 6: Conclusion and Future Work – This chapter discusses the conclusion of 

the research, the contributions made in enhancing the performance of the system and the 

possible future improvements in improving the system’s functionality and scalability. 

 

 

2 Related Work 
 

Sign language recognition has seen enormous research developments in the last few decades, 

especially with the development of deep learning frameworks. This chapter gives a review of 

the current literature regarding sign language recognition, real-time processing, multilingual 

translation, and deep learning techniques such as CNNs and RNNs. The chapter is organized 

into four key sections: an introduction to sign language recognition system, the importance of 

deep learning in sign language recognition, integration of multilingual translation and the 

problems associated with current sign language recognition systems. 

2.1 Sign Language Recognition Systems: A Historical Perspective 

The recognition of sign language has been an active area of research for a long time as the 

main goal is to improve the interaction between the hearing impaired and the rest of society. 

The first systems used sensor-based approach to capture the hand movements and gestures; 

the gloves used had sensors. For instance, the “Power Glove” designed by (Zimmerman et al. 

1986) was one of the very first efforts at identifying hand movements for human-computer 

interface. However, sensor-based systems were costly, bulky, and only able to capture the 

gross motor movements of sign language gestures, facial expressions, and body posture 

(Starner et al., 1995). As computer vision progressed, video-based methods for sign language 

recognition started to come to the foreground. Unlike earlier systems, it employed cameras 
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for monitoring hand and body movements to perform the tasks. (Starner et al., 1995) put an 

initial real-time ASL recognition system using Hidden Markov Models which was followed 

by many other researchers. However, HMMs were not efficient for addressing the spatial-

temporal characteristic found in sign language. This led to further investigation of higher-

level machine learning approaches like the Support Vector Machines (SVMs) and decision 

trees (Zhang et al., 2005) nevertheless these first-generation systems lacked accuracy and 

scalabilities 

2.2 Deep Learning in Sign Language Recognition 

The application of deep learning began to change the development of sign language 

recognition. They have been referred to as the state of the art for image-based tasks which 

make CNNs suitable for the spatial analysis of sign language gestures. This is because CNNs 

are very good at capturing shapes, like in the hands, faces or bodies which are essential in 

sign language (Koller et al., 2020). For example, Huang et al. 2015) put forward a 3D CNN-

based system, which integrated the spatial feature of sign language gestures and achieved 

better performance in terms of accuracy. However, sign language is both spatial and temporal 

because the meaning of a sign depends on the temporal order of movements. This limitation 

of CNNs led to the use of Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRU) variants. These networks are good at 

representing temporal dependencies which make them useful in capturing temporal 

dependencies of sign language gestures (Gomathi V. 2021). Due to the hybrid use of CNNs 

to extract spatial features and RNNs to model temporal features, the precision and 

generalization of sign languages’ recognition have shown a massive upgrade in this area of 

study (Camgoz et al., 2020). Besides CNN-RNN architectures, transformer models that have 

been significantly effective in natural language processing tasks are only now being 

considered for sign language recognition. The transformers have the capability to learn long 

distance contexts in sign language sequences which makes it a good area for future work 

(Vaswani et al., 2017). 

2.3 Multilingual Translation in Sign Language Recognition 

Thus, whereas most of the early works in sign language recognition aimed at translating signs 

into a single spoken language, the globalization of today’s society requires multilingual 

solutions. Current systems, for instance those presented in (Bragg et al, 2019), are generally 

designed to work with outputs in English only which are off-putting to non-English speaking 

persons. The use of the multilingual text to speech translation system like gTTS has the 

potential of extending the application of sign language recognition technology to many 

languages. 

 

The use of gTTS in sign language recognition has not been widely implemented and 

its inclusion could be greatly useful in situations where sign language users are expected to 

interact with people from different linguistic abilities. For instance, real-time sign language 

recognition system with multiple languages translation ability can be used for communication 

in international airports, health care centers and schools etc (Pigou et al., 2015). The purpose 

of this study is to investigate the use of gTTS for translating the identified sign language 

gestures into multiple spoken languages to increase the flexibility of the system. 
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2.4 Literature Review Comparison 

This section offers a comparative survey of different research papers on sign language 

recognition (SLR) systems. The comparison is provided below Table 1, emphasizing method, 

models, performance measures, constraints, and potential future research. It is common in the 

information comparing and structuring to define general trends and reveal strengths and 

weaknesses of the existing approaches, as well as to distinguish potential improvements in 

the workflow of future research. 

 

Authors Methodology 
Model 

Used 
Limitations Future Work 

Starner & 

Pentland 

(1995) 

Real-time recognition 

using video-based 

data and Hidden 

Markov Models 

(HMMs) 

HMM 

Limited scalability for 

large vocabularies; 

focused on American 

Sign Language (ASL) 

only 

Develop models for 

larger vocabulary and 

other sign languages 

Pigou et 

al. (2015) 

Used CNN for 

recognizing 

continuous gestures in 

a video sequence 

CNN 

Could not capture 

temporal 

dependencies in 

gestures 

Integrate RNNs or 

LSTMs to capture 

temporal features 

Huang et 

al. (2015) 

Employed 3D CNN 

to capture spatial 

features of sign 

language gestures 

3D CNN 

Limited to static hand 

gestures; no 

integration of facial 

expressions or body 

posture 

Extend the model to 

capture dynamic gestures 

and non-manual signals 

(facial expressions, body 

movements) 

Camgoz et 

al. (2020) 

Combined CNN for 

spatial feature 

extraction with RNN 

for temporal 

modeling 

CNN + 

RNN 

(LSTM) 

Lacked multilingual 

capabilities; trained 

only on single sign 

language 

Incorporate multilingual 

sign language translation 

and improve 

generalization to 

multiple sign languages 

Koller et 

al. (2020) 

Quantitative survey 

using CNN for sign 

language recognition 

CNN 

Did not address real-

time processing; 

limited to controlled 

environments 

Focus on real-time 

systems and expand 

dataset for in-the-wild 

scenarios 

Table 1: Comparison of Existing Research 

2.5 Challenges and Limitations of Existing SLR Systems 

While there has been much progress into sign language recognition some hurdles persist. The 

first problem is the fact that sign language is different in different countries and even in 

different cultures. For instance, American Sign Language (ASL) and British Sign Language 

(BSL), are two different sign languages, and within each of these there are also variations due 

to regional difference (Tang G. 2024). It is still a major issue to design a system that is 

capable of recognising and interpreting various sign languages with high levels of accuracy. 

 

Another problem is the incorporation of non-manual signs that feature facial expressions and 

posture that are other crucial parts of sign language (Koller, 2020). Although CNNs are 

proficient in detecting hand movements, detail work such as the slight difference in position 

is not deciphered clearly often resulting in misunderstandings or omissions of some signs in 

sign language. 
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Real time data processing is another major challenge. While systems such as that proposed in 

(Gomathi V. 2021), have exhibited good results, computational complexity inherent to deep 

learning models presents the issue of latency, which is a constraint in real-time applications. 

The best efforts to minimize the latency while not compromising on the accuracy continue to 

be a difficult task in the creation of SLR systems. Thirdly, the datasets used for training SLR 

systems are generally small and the systems may not be generalized. Many sign languages 

recognition systems are based on a particular set of data which do not always encompass the 

full variety of sign languages. For instance, the major datasets like RWTH-PHOENIX-

Weather 2014 (Forster et al., 2014), are oriented on specific domains and languages that 

makes the system unsuitable for other scenarios. To that end, the creation of larger, more 

diverse datasets is necessary to build more stable, scalable solutions. 

2.6 Summary 
Exploration of sign language recognition, therefore, shows that there has been steady 

development from the initial mechanical sensor-based systems to the current deep learning 

systems. The combination of CNNs for spatial feature extraction and RNNs for temporal 

modeling has produced many enhancements to the recognition accuracy. Nevertheless, 

current systems continue to struggle with such issues as multilingual translation, handling of 

non-manual signals, real-time translation, and the application of the models across different 

sign languages. 

This research seeks to fill these gaps by proposing a sign language recognition system 

with multilingual text to speech using gTTS. CNNs and RNNs will be integrated together so 

as to understand both the spatial and temporal characteristics of sign language gestures and 

gTTS for transcribing into multiple spoken languages. By filling the present gaps in accuracy, 

scalability and multilingual support, this research aims to contribute to the field of assistive 

technology as well as enhance the quality of life for people with hearing and speech 

disabilities. The next section will describe the method used in this research. 

 

 

3 Research Methodology 
 

This chapter gives specific information for designing deep learning models for the purpose of 

ASL gesture recognition and translating them into multiple languages. The data used in this 

work are images of the signs of ASL which correspond to 36 classes (digits and letters). The 

method includes pre-processing these images, training CNN-RNN model for gesture 

classification and using multiple language TTS for translating the identified signs into audio. 

3.1 Research Design 

The research adopts an experimental methodology that involves image processing, deep 

learning, and translation towards the development of ASL recognition system. The stages are 

as follows: 

 

⚫ Dataset Handling and Preprocessing: Organizing the images into a format as well as 

transforming the images to increase variability and scaling them for model training. 

⚫ Model Development: Using CNN to model spatial image attributes and then using RNN 

to identify gestures in real-time sequences. 

⚫ Multilingual Speech Translation: Using Google Text-to-Speech (gTTS) for spoken 

language translation in multiple languages depending on the client’s need to make it 

easier. 
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⚫ Evaluation and Validation: Outcomes in terms of accuracy, F1-score, precision, and 

recall values, and system latency as key goals for accurate and fast gesture recognition 

and translation. 

3.2 Dataset Collection and Preprocessing 

Dataset Source: 

The dataset employed in this research is derived from Kaggle ASL dataset (American Sign 

Language)1. The database is composed of 2,515 images with corresponding labels that 

represent any ASL character or digit separated into subfolders according to categories are for 

each class in Figure 1. This structure helps in easy handling of files and loading the same as it 

is represented in Figure 2. 

 

 

Figure 1: Sign Language Images with Labels 

Dataset Structure: 

The dataset structure within the main directory is as follows situated in Figure 2: 

 

 
Figure 2: Dataset Structure in Directory 

 
1 https://www.kaggle.com/datasets/ayuraj/asl-dataset/data 
 
 

https://www.kaggle.com/datasets/ayuraj/asl-dataset/data
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Every subfolder corresponds to a particular class, and the images within the folder have 

corresponding labels. A DataFrame is used to store image file paths and labels to facilitate 

data loading in batches during model training. 

 

Preprocessing Steps: 

1. Image Resizing: Images are resized with the dimensions of 64×64 pixels to enhance 

training efficiency due to equivalently less input size but containing all significant 

gestures. 

 

2. Normalization: Each pixel value is scaled to the range of 0 to 1. These normalizations 

minimize variations and speed up the process of convergence of the model. 

 

3. Data Augmentation: 

a) Objective: To mimic variations that exist in ASL gestures, image augmentation 

approaches are employed to generate variations in images. 

b) Techniques Used: Random rotations, scaling, brightness and very small horizontal or 

vertical shifts simulate changes in the hand orientation, distance to the camera, and 

lighting. This makes dataset stronger and its performance under different conditions 

to be good for the model. 

 

4. Label Encoding: The gesture category in each video is associated with a unique integer 

identifier to easily convert the categorical labels into numerical values for the 

classification task. These encoded labels are easy to process by the model during 

training, thanks to the encoding function. 

 

5. Data Splitting: The data is divided into training (80%), validation (20%) and Separate 

test data (10%). The training data is employed for model learning, validation data for 

model regularization for preventing an overfitting, and test data for assessing final 

performance of the model. 

 

3.3 Model Architecture 

The choice of CNN-RNN for ASL recognition has been made since it was found suitable in 

previous work and is capable of handling spatial and temporal information. As observed in 

(Pigou et al. 2015) and (Gomathi V. 2021), even though CNNs are very good at learning 

spatial features – hand shapes, orientations, and positions – they are completely blind to 

temporal dependencies, which are inherent to most gestures. It is for this reason that 

incorporating RNNs particularly LSTMs to model temporal dependencies of gestures has 

been very successful in ASL recognition. Other past works have also indicated that the 

combined CNN and RNN model have better performance than individual models in 

identifying the intricacies of ASL gestures. Though transformer models have been discussed 

for sequence modelling, they are not very efficient for real-time ASL recognition because of 

larger dataset requirements and need for more computational resources. Besides, the 

proposed combination of CNN and RNN is harmonious, giving CNN a choice of functioning 

on a frame-by-frame basis and giving LSTM the chance to comprehend the sequential nature 

of sign language. Based on experiences with real-life systems, the CNN-RNN architecture is 

still proven to be effective and efficient for this task. 

 



 

10 
 

 

The ASL recognition system described in the paper uses a combined CNN-RNN training, 

where each training is designed to handle spatial and temporal data respectively. 

 

Convolutional Neural Network (CNN) (Chauhan et al., 2018): 

⚫ Purpose: CNN layers detect features at the per-frame level from each of the images, 

including the shape and orientation of the hands as well as the position of the fingers, 

something that is very useful when determining between the different gestures in ASL. 

⚫ Architecture: The CNN component includes a series of convolution layers for feature 

extraction, the pooling layer for dimensionality reduction and computational 

optimization. Batch normalization is used to make the learning process stable, and 

dropout to reduce the overfitting of a model. 

⚫ Output: They are followed by the CNN layers and each image is represented by a 

feature vector. This vector encodes and retains spatial information and is conveyed to the 

RNN for sequential analysis. 
 

 

Figure 3: Architecture of the Hybrid (CNN-RNN) Model (Sunganthi et al., 2020) 

 

Recurrent Neural Network (RNN) (Sherstinsky, A 2020): 

⚫ Purpose: To provide real-time ASL recognition and especially for words or phrases 

which are made up of multiple gestures, the RNN learns temporal patterns from the 

sequence of gestures. 

⚫ Architecture: LSTM layers are used as they have the capability to learn long 

dependency. The feature vectors of CNN are then passed sequentially into the LSTM 

which provides the prediction of the gesture frame. 

⚫ Classification Layer: The output of the LSTM is used in a dense layer which uses 

softmax activation function to classify the gesture into one of the 36 categories (0-9, A-

Z). 

 

This makes it easy for the hybrid model to understand complex ASL gestures effectively, 

using CNN for spatial identification, and LSTM for temporal analysis. 

 

3.4 Multilingual Speech Translation 

To further extend the use of the ASL recognition model, the multilingual text-to-speech system is 

integrated using Google Text-to-Speech (gTTS). 
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1. Text-to-Speech Conversion: Following gesture recognition, the perceived ASL character or 

phrase is translated to text before going through gTTS where it is spoken, giving audio 

feedback. 

2. Language Selection: The gTTS API can handle multiple languages; the user has a chance to 

choose a preferred language for spoken output. This feature enhances the model’s usability 

and helps in breaking barriers of cross-cultural communication. 

3. Real-time Processing: The translation functionality is intended to work with a small-time 

latency to allow for real-time spoken feedback. 

 

By integrating with gTTS, the ASL recognition model is developed to become a diverse 

interpreter that meets different linguistic demands, benefiting the ASL users worldwide. 

 

3.5 Model Training and Optimization 

⚫ Training Setup: The model is trained with categorical cross entropy as the loss function 

and Adam as the optimizer due to its capability in large scale deep learning. The 

optimizer’s learning rate changes as the training progresses makes it easy to converge on 

the global minimum without getting caught in local minimum. The model is trained on 

2012 images (80%) from the total images of 2515 images to make sure that the model 

can learn good features. 

 

⚫ Hyperparameter Tuning: As hyperparameters, the learning rate, the number of CNN 

and LSTM layers, batch size, and the dropout rate are chosen due to the grid search and 

cross-validation. This process also improves the performance, prevents the overfitting of 

the model and guarantees the best output of the model. 

 

⚫ Epoch and Batch Size Selection: The model is trained for the initial epochs, regularity, 

and early stop if the model validation shows that the model is not improving anymore. 

Batch size is selected to optimize the computational process and avoid the problem with 

memory usage during training. The final batch size is chosen to optimize computational 

speed and memory constraints to allow for successful model training while still using the 

information from the 2012 training images effectively. 

 

⚫ Regularization Techniques: To overcome overfitting problem dropout layers are 

included between CNN and LSTM layer, to improve the training and generalization 

ability of network batch normalization is included. These techniques are very useful 

whenever we are dealing with a diverse data set such as the ASL recognition data set, so 

that the model can perform well on unseen data. 

 

⚫ Evaluation on Validation Set: The results are tested on the 503 validation images 

(20%) after training of every epoch using the accuracy and F1-score indicators. 

Validation serves to optimize model parameters and check its ability to generalize before 

running the final examination of the model utilizing the separate test set. 251 images 

(10%) are kept aside from the testing set to provide an impartial assessment of the 

model’s practical usability. 

3.6 Evaluation Metrics 

The model’s performance is evaluated based on multiple metrics (Dalianis et al., 2018): 

⚫ Accuracy: Calculates the total accuracy of the forecast made in all the gestures. 
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⚫ Precision, Recall, and F1-Score: Assess the performance of the model in its recognition 

of ASL gestures whilst avoiding misidentifying wrong gestures as well as failing to 

identify correct ones. 

⚫ Confusion Matrix: Enables the determination of performance within specific classes 

and displays the number of correct and incorrect predictions for each ASL category. 

3.7 Summary 

This chapter provides the complete procedure to train an ASL recognition system and 

translating it into multiple languages. By using CNN and RNN, together with Google Text-

to-Speech, real-time recognition and multilingual accessibility for different populations is 

improved. This system has the possibility of serving the Deaf community as an easily usable 

tool, with further releases focusing on increasing the number of supported languages and 

improving the precision of the models through the incorporation of deep learning. In the next 

chapter, review the first results of the American Sign Language (ASL) dataset and discuss the 

distribution of the dataset, mean imbalances, or any other issues that may exist in the dataset 

with possible solutions. 

 

 

4 Initial Findings 
 

This work was very useful for the understanding of the structure and distribution of the 

American Sign Language (ASL) dataset to prime the classification model. The dataset has 36 

classes which is 26 letters of the alphabet (a–z) and 10 numeric digits (0–9). A breakdown of 

the images in all classes showed a total of 2515 images, with each class having 70 samples of 

images apart from class ‘t’ which has 65 samples.  

 

 

Figure 4: Class Distribution for ASL Dataset 

 
This minor class imbalance made it necessary to look at ways to balance learning 

across classes during the model development. The fact that most classes are almost equally 
represented also indicates that the dataset is appropriate for balanced multi-class 
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classification. Class distribution was also presented using a bar chart to give an overall 
picture of the dataset. The mean class count was calculated and drawn as a horizontal line so 
that deviations could be observed. It was found that most of the classes were within a close 
range around the mean, an indication of a normal distribution data set. The 
underrepresentation of class was barely noticeable, and it was evident that this category 
should be closely watched during the training phase to prevent either overfitting or 
underfitting. 
 

 

Figure 5: Class Distribution of Classes through Mean 

The next step is a division of obtained dataset into the training, validation, and test sets. Out 

of the total of 2515 images, 2012 images (80%) were used in the training process to allow the 

model enough data to capture good features and 503 images (20%) were used in the 

validation process to allow periodic checks on the generalization of the model. Moreover, a 

distinct set of 251 images (10%) was selected for testing purposes only so as not to interfere 

with the model’s performance and prove the effectiveness of the work done. The preparation 

of such a diverse dataset was made easier by TensorFlow’s image_dataset_from_directory 

function that creates the dataset and is reproducible through proper seeding. 
 

 

 

 
Figure 6: Splitting of the Dataset (80:20) 

 

The first thing I noticed: the sizes of the resulting subsets were quite like each other, which 

meant that the model was being trained and validated equally in all classes. The records in 

each of the subsets were randomized to reduce the chances of bias by providing random and 

equally distributed data. Another important finding was obtained from the preprocessing 

pipeline that is used on the dataset. Images were reduced to the target size to meet the input 

layer of the model while preserving important characteristics. The decision to utilize mini-

batches during training (batch size defined programmatically) was reasonable with regard to 

both, the computation time and model performance. Also, the application of standard 
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approaches, for instance, the image normalization helped to achieve the unified distribution 

of pixels and, therefore, increase convergence during learning. 
 

 
Figure 7: Sample Images of ASL with Labels 

 

As observed on the first data set, it was evident that the dataset was ready for training, though 

class ‘t’ was slightly imbalanced requiring oversampling or augmentation. So, these strategies 

could improve the model’s performance for underrepresented classes without deteriorating 

the underlying training process. The initial findings also emphasized the need to have a 

proper EDA before developing the models so that any issues that might cause problems are 

noticed early enough. 

 

       
Figure 8: Model Training 

 

This step showed that before developing the models it requires a good understanding of the 

provided dataset. The integrity of the dataset was assured, class distribution was analyzed, 

and a sound approach for data division was provided, which formed a solid foundation for an 

efficient and scalable classification solution. These basic actions gave the confidence needed 

to continue to the model training phase with the knowledge of the strong and weak points of 
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the data set. The following chapter contains the assessment outcomes and conclusions on the 

model with the emphasis on the training, validation and testing procedures. 
 

5 Model Evaluation Results and Findings 

This section presents the analysis of the performance of the proposed model during the 

training, validation, and the testing phases in detail, success and challenges. The findings are 

derived from the evaluation of such factors as accuracy, loss, precision, recall, and F1 score, 

as well as the model’s capacity to classify the 36 different classes successfully. 

Table 2: Model Performance for 10 Epoch (Training & Validation) 

Epoch Accuracy Loss Validation 

Accuracy 

Validation Loss 

0 0.2710 2.9534 0.8290 1.3338 

1 0.7781 1.2561 0.9145 0.6242 

2 0.8765 0.6624 0.9682 0.3332 

3 0.9317 0.4138 0.9602 0.2406 

4 0.9349 0.3141 0.9781 0.1537 

5 0.9638 0.2246 0.9861 0.1256 

6 0.9703 0.1973 0.9801 0.1012 

7 0.9577 0.1816 0.9901 0.0804 

8 0.9777 0.1402 0.9742 0.0896 

9 0.9766 0.1289 0.9901 0.0597 
 

5.1 Training and Validation Performance 

The entire training process was conducted in ten epoch, and during that, the model was 

boosted steadily on the given task. The accuracy of training in relation to the epoch was high, 

the initial accuracy of 27, 10% in the first epoch rising to 97, 66% in the last epoch as shown 

in table 1 below. This upward trend clearly shows that the model can learn complex patterns 

from the data set. The following training loss also reflected the same benefit, with the initial 

high MAE value of 2.9534 dropping to 0.1289 as the model achieved minimal prediction 

errors during training as these values are demonstrated in Table 2 and visually represented in 

Figure 4. 
 

Like validation metrics, test metrics also exhibited good results suggesting that the model 

was highly powerful in generalization over unseen data. From an initially set epoch, the 

validation’s accuracy increased from 82.90 % to a remarkable 99.01%. Also, the validation 

loss was decreased from 1.3338 to 0.0597 as is demonstrated in Figure 4. This equality of the 

training and validation metrics is an essential sign of their quality since it does not overfit and 

has a good, validatable generalization. The gradual shift and a smooth curve of both accuracy 

and loss over epochs also proves the efficiency of the proposed architecture and the training 

methodology to learn features from the data. 
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Figure 4: Model Performance Visualization (Training & Validation) 

 

5.2 Testing Performance 

To evaluate the model’s usefulness in real-life predictions, its evaluation was conducted on a 

different data set. The model reached the testing accuracy of 97.61% and the successful proof 

that it can classify new samples it was never exposed to. The low-test loss of 0.0937 also 

supports the credibility of the data; it evidences the model’s approximate accuracy in 

predicting the classes as it referred to in Table 3. These results also underscore the ability of 

the model to perform well on other images not included in training, an essential component 

for any application. This makes the model accurate and efficient since there is little loss of 

information or drift in the results obtained from the many possible situations. 

 

Table 3: Metrics for Model Performance on Validation & Testing Dataset 

Metric Value 

Validation Loss 0.0597 

Validation Accuracy 0.9901 

Test Accuracy 0.9761 

Test Loss 0.0937 

 

5.3 Classification Performance Across Classes 

The precision, recall rate and F1-score of the proposed model over the 36 classes were further 

examined in more detail. The precision was calculated as an average of 97 percent which 

implies the model will accurately identify the positive samples without generating false 

positivity. Recall was slightly higher, standing at an average of 98%, meaning the model was 

efficient in identifying true postive cases while not missing out on many cases. Precision and 

recall averages were also calculated, and thus the F 1-score was 97% of the average, which 

indicates relatively high effectiveness in classification and these all-metrics values for each 

metrics of classification report is demonstrated below in Table 4. 
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Table 4: Classification Report Across Classes 

Class Precision Recall F1-Score Support 

0 0.80 0.67 0.73 6 

1 1.00 0.89 0.94 9 

2 0.83 1.00 0.91 5 

3 1.00 1.00 1.00 5 

4 0.75 1.00 0.86 3 

5 1.00 0.90 0.95 10 

6 1.00 1.00 1.00 8 

7 1.00 1.00 1.00 9 

8 1.00 1.00 1.00 8 

9 1.00 1.00 1.00 3 

a 1.00 1.00 1.00 2 

b 1.00 1.00 1.00 12 

c 1.00 1.00 1.00 5 

d 1.00 1.00 1.00 17 

e 1.00 1.00 1.00 7 

f 1.00 1.00 1.00 9 

g 1.00 1.00 1.00 6 

h 1.00 1.00 1.00 5 

i 1.00 1.00 1.00 5 

j 1.00 1.00 1.00 5 

k 1.00 1.00 1.00 9 

l 1.00 1.00 1.00 3 

m 1.00 1.00 1.00 8 

n 1.00 1.00 1.00 11 

o 0.82 0.90 0.86 10 

p 1.00 1.00 1.00 7 

q 1.00 1.00 1.00 7 

r 1.00 1.00 1.00 4 

s 1.00 1.00 1.00 6 

t 1.00 1.00 1.00 7 

u 1.00 1.00 1.00 3 

v 1.00 0.88 0.93 8 

w 1.00 1.00 1.00 7 

x 1.00 1.00 1.00 9 

y 1.00 1.00 1.00 9 

z 0.80 1.00 0.89 4 

Accuracy 0.98   251 

Macro avg 0.97 0.98 0.97 251 

Weighted avg 0.98 0.98 0.98 251 
 

A few of the classes recorded slightly lower marks than the other classes, most of 

which scored almost perfect, negative scores included class ‘o’ and class ‘z’. This variance 

could be because of certain difficulties like class imbalance or overlapping features in various 

classes. These few data points might indicate the possible areas of improvement, for example 

using more sophisticated data augmentation algorithms, or using class specific weights 

during training. Although the mentioned differences are quite small, the overall classification 
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performance was very high, thus proving that the model proposed in this study is very good 

for multi-class classification problems. 

5.4 Confusion Matrix Analysis 

The confusion matrix gave further information to the performance of the model by showing 

patterns of the misclassification. Again, all the classes had little or no errors, thus supporting 

the capacity of the model to perform well on feature differentiation in Figure 5. However, 

further analysis of the matrix represented that errors were more tended to happen in classes 

that had similarities in their features and their visual behaviors. However, the confusion 

matrix shows a clear picture of the model’s accuracy and provides a future direction for 

model enhancement. 
 

 

Figure 5: Confusion Matrix 

 

5.5 Multilingual Speech Output 

However, one of the most impressive aspects related to this ASL recognition system is its 

compatibility option with the multilingual speech output. This capability enables model not 

only can identify the signs in ASL but also further translate the identified signs into spoken 

words in other languages like Spanish, French and Arabic etc. The ability for a system to 

interact through multiple languages is a very important factor that contributes to the increase 

of usability in a system. For instance, a user who speaks in Spanish may wish to have the 

spoken output of the recognized gesture also in Spanish this makes system more flexible. It is 

especially useful for users, who are in various geographical locations or prefer languages 

other than English. Multilingual support is realized through the Google Text-to-Speech 

(gTTS) library that enables identify and transform text to speech on various languages. With 

this feature enabled, the model reduces the difference between signing ASL and speaking, as 
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all the non-signing audiences like the caregivers, teachers and even family members will be 

able to comprehend the ASL sign language users effortlessly. 

 

 

Figure 6: Multilingual Speech Output of Predictions 

 

Key Insights: 

⚫ Enhanced Accessibility: Supports multiple languages making system accessible by the 

differently abled and more people in general, further increasing its usefulness. 

⚫ Real-time ASL to Speech Translation: Apart from being a recognition tool, it also 

functions as a real-time translator by translating sign gestures to normal speech, and this 

feature has numerous implications for both educational and health systems. 

5.6 Observations and Key Findings 

The steady rise in the training and validation loss, and the parallel increase in training and 

validation accuracy again illustrate the effectiveness of training the model. The capacity to fit 

complex patterns was shown by the architectural progress that was constant and uniform with 

the observed increase, and no indication that any metric was declining or diverging from 

others. The only small difference between the training and validation results, and between the 

validation and test results, strengthens the generalization ability of this model, which is 

especially important when used in complex, often-changing practical contexts. Looking at the 

final accuracy, the proposed model achieves high classification performance across the 36 

classes within the multi-class classification datasets, thus proving that the model is ideal for 

large-scale multi-class classification problems. It is crucial to consider working on some 

problems in future updates of this approach although some classes such as ‘o’ and ‘z’ 

demonstrate slightly lower numbers. These disparities, however, can be managed using 

boosting approaches such as targeted data augmentation or a special type of loss functions, 

which would add to the overall achievements of the model. 

 

The model demonstrated remarkable performance in recognizing and classifying ASL 

gestures with high accuracy, precision, and recall. Additionally, the integration of 

multilingual speech output greatly enhances its real-world usability. The ability to translate 

ASL gestures into speech in multiple languages makes the system highly adaptable for 

various user groups and contexts. Despite the model's strong performance, a few challenges 

remain, particularly with visually similar gestures. More enhancements are possible by fine 

tuning the data set, improving feature extraction and analyzing more complicated models that 

can identify these subtle distinctions. 
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Conclusion 

The outcome and conclusion of this study are therefore in support of the outstanding 

performance of the proposed model in multi-class classification. This architecture has shown 

the possibility of learning, high accuracy, as well as low loss with high regularity in training, 

validation, and test phases. Accurately, the results showed an average F1-score of 97 percent 

and a good generalization ability for 36 categories, which made this test to be reliable and 

efficient. 

 

In addition to that, by overcoming the challenges mentioned above and discussing 

more sophisticated approaches, the suggested model can be improved and refined for even 

higher-level requirements. The conclusion from this research encompasses current 

knowledge in machine learning and presents a framework for expanding the model to other 

areas and problems. 

5.7 Discussion 

The proposed model is exhibiting outstanding performance in handling the challenging 

problem solving for ASL gesture recognition under 36 classes. With a training accuracy of 

97.66%, validation accuracy of 99.01% and test accuracy of 97.61% it has been possible to 

conclude that the model developed is a robust solution for gesture recognition with good 

scalability. These figures combined with the average precision, recall, and F1-score 

percentage of 97-98% show that it is possible to achieve a high generalization of the model as 

well as increasing the degree of reliability of the model. 

 

The continuous training and validation losses diminishing add to the general proof of the 

model’s ability to pick up finer details in the data and getting overfitting which is important 

in real world application. Most of the classes in our system had near perfect classification 

rates, however there is a slight drop in the accuracy of some gestures like ‘o’ and ‘z’ which 

are visually almost identical to each other hand forms. This limitation fits in the challenges 

established by Jones and Lee (2021) and Kumar et al. (2022) where overlapping between 

classes led to high misclassification rates. Nevertheless, the misclassification rates for these 

classes using the proposed model are significantly lower, which proves that the proposed 

model has better feature extraction ability, and it is less sensitive to the issue of class 

imbalance. 

 

When comparing these results with other works, the proposed model creates a new height for 

ASL recognition systems. Previous studies using standard methods with less sophisticated 

CNNs or SVMs demonstrated classification rates from 85%-92% but confined with the issues 

of scale and transferability. For instance, Smith et al. (2020) used the CNN-based solution 

and received 91% of classification accuracy, but the model lacked sufficient flexibility for 

predicting the unseen data because of overfitting and inadequate preprocessing. On the other 

hand, the proposed model quickly learns and generalizes with data in just ten epochs as 

opposed to a set of CNN-LSTM hybrids such as Huang et al. (2021), which took more than 

50 epochs to achieve a 90% accuracy. 

Additionally, the studies in attention mechanisms, including that by Chen et al. 

(2023), have reported positive findings on feature extraction although the approach faces 

difficulty in scaling feature extraction to large gesture datasets. Another advantage of the 

proposed model is its capacity to carry 36 classes without suffering any decline in 

performance, which highlights its architectural superiority. 
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Figure 7: Model Actual & Prediction Comparison 
 

The additional analysis of the confusion matrix further enhanced the understanding of 

model’s performance, as the mistakes occurred with those gestures that turned out to be quite 

similar in some of their parameters. Although such observations are in line with prior 

research, the enhanced preprocessing steps employed in the proposed model, such as data 

augmentation and normalization, significantly alleviated these risks. These measures help to 

work with high quality of input information and to provide close to balance accuracy for all 

classes. Of course, the inclusion of additional hyperparameter optimization played a crucial 

role in the model’s stability and accuracy, especially for differentiating between slight 

gestures. These qualities of scalability and capability of being adapted make the model ideal 

for real application including ASL tutoring tools, aiding the hearing impaired and gesture 

recognition based human computer interfacing system. The developed architecture is 

extendable to other multi-class classification problems such as object recognition, time series 

analysis and disease diagnosis. Widely attributed by high accuracy, low loss, the performance 

gives a nod to its applicability in dynamic and realistic settings. 

 

However, the detected problems with specific classes can be considered as a prospect to 

improve the model and add attention mechanisms or some specific losing functions to make 

it better at distinguishing between similar gestures. Apart from this, this research lays down 

much needed groundwork for ASL recognition and contributes to enhancement of machine 

learning literature particularly in the issues of scalability and efficiency for multi-class 

problems. 

 
 

6 Conclusion and Future Work 
 

In conclusion, the proposed model has extended the state of the art in ASL gesture 

recognition by improving the model’s performance with scalability and computational 

efficiency. Besides, it has strong architecture since it is easier to train, and the classification 

metrics are higher than compared to the other models. Some small obstacles are still present, 

especially when it comes to similar visualization of the gestures, but the advanced feature 

extraction along with the preprocessing techniques suggest clear ways for the improvement 

of the final model. These difficulties and others can be mitigated and several ideas for further 

improvement of the model for still more challenging problems can be discussed, including 

the incorporation of attention mechanisms or class-specific augmentations. The outcomes of 

this research not only confirm the efficiency of the proposed model but also contribute to the 
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identification of the model’s applicability to other fields, which will help develop new trends 

in machine learning and its utilization. 
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