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Enhanced Liver Tumor Detection Using Deep
Learning Techniques for Biomedical Image
Segmentation

Vigneswara Venkata Sai Nilesh Gurazada
x23235985

Abstract

Liver tumor segmentation is a fundamental step in medical imaging, and is of
paramount importance to liver cancer diagnosis and treatment planning. In this
study, we introduce LT-Net (Liver Tumor Network), a deep learning model that
is able to segment liver tumors from CT and MRI scans, entirely automatically.
In particular, LT-Net uses a novel architecture consisting of parallel convolutional
layers in the encoder, upsampling in the decoder, and ResNet50 as a backbone, to
improve tumor detection accuracy. A diverse dataset is used to train and evaluate
the model, achieving a Dice Coefficient of 0.9733, IoU Score of 0.9705 and Accuracy
of 0.9986. The model also shows a PSNR of 25.44, which demonstrates that it is
capable of preserving fine details while properly segmenting tumors. Evaluation
studies indicate that LT-Net is highly effective in identifying liver tumors and the
performance is superior to conventional approaches and has promising adaptations
for real-time use in clinic. To rectify these problems, future work will be to increase
the segmentation accuracy, employ multi-modal imaging, and optimize for real-time
application to assess generalizability across different patient cohorts. According to
the results of the LT-Net model, it can be inferred that it is highly effective for
improving the diagnostic accuracy and treatment speed of liver cancer to provide
timely decision-making references for clinicians.

1 Introduction

1.1 Background

One of the most rapidly growing diseases throughout the worldwide, liver tumor which
is in the top 10 of the leading causes of tumor or cancer related types of deaths (World
Health Organization (WHO); 2021). The (International Agency for Research on Cancer
(IARC)} 2020) reported that liver cancer is one of the major contributor to cancer cases,
with high fatality rates that largely result from late diagnosis and complexity of tumor
morphology. The precise identification and segmentation of tumors in medical imaging
modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI)
are critical to the effectiveness of treatment of liver cancer. Diagnosis and treatment plan-
ning, as well as post treatment evaluation, depend on accurate segmentation. Despite
the manual segmentation of liver tumors being a time consuming, labor intensive process
that often results in subjective variability amongst radiologists. It emphasizes the ur-
gent requirement for automated, reliable solutions to enhance liver tumor detection and



segmentation accuracy and efficiency. Medical image analysis, as a field, has benefited
greatly from artificial intelligence, due in part to the success of deep learning, a subset
of computer science. In particular, Convolutional Neural Networks (CNNs) have been
very successfully employed to solve biomedical image segmentation tasks, such as liver tu-
mor detection. Traditional CNN models achieve satisfactory tumor volume segmentation
performance but have some drawbacks that limit their applicability in clinical settings.
Another challenge lies in the fact that traditional CNNs cannot extract multi scale fea-
tures and is required for detecting tumors of different sizes and shapes (Siddique et al.;
2021)). In addition, standard segmentation models perform poorly on medical images with
noise, including imaging artifacts and intensity variations. Given these challenges, novel
approaches for the effective handling of complex liver tumor processes and the inherent
noise in medical imaging are needed.

1.2 Motivation

This research study is motivated by the high need to improve segmenting liver tumors,
as this information is required to provide timely and effective cancer treatment. One
reason is that liver cancer are often detected at advanced stages, in part because it is
difficult to accurately identify and segment tumors from the imaging data (World Health
Organization (WHO); |2021). Manual segmentation is error prone as well as inordinately
time consuming in the presence of complicated tumor structures. Existing deep learning
solutions have been promising but they cannot yet reach the level of accuracy and ro-
bustness that is necessary for their use in the clinic. Sensitivity to noise along with the
inability to perform multi-scale feature extraction requires the development of a more
sophisticated solution.

The goal of this research is to close the gap between the ability of existing models
and what is needed on the clinical application side. To overcome these limits, develop
an innovative architecture, Liver Tumor Network (LT-Net), that provides a tool that
drastically increases liver tumor segmentation accuracy and robustness, and consequently
improves clinical outcomes and advances the field of automated medical image analysis.

1.3 Research Questions

The research is guided by the following questions:

e How to improve the segmentation accuracy of liver tumors in medical images using
deep learning techniques?

e What methods can be employed to effectively handle the variability and noise
present in real-world medical imaging data?

e How can multi-scale feature extraction and dense hierarchical segmentation, con-
tribute to enhancing the robustness and accuracy of liver tumor segmentation?

These questions form the foundation for exploring novel approaches to tackle the limita-
tions of existing models and develop a more reliable solution for liver tumor segmentation.

1.4 Research Objectives

To address the challenges highlighted and answer the research questions, the specific
objectives of this study are:



e To implement a novel deep learning architecture, Liver-Tumor Network (LT-Net),
for liver tumor segmentation that incorporates multi-scale feature extraction, and
dense hierarchical segmentation.

e To implement multi-scale feature extraction and dense hierarchical segmentation
techniques to improve feature reuse and capture both small and large tumor regions
effectively.

e To incorporate ResNetb0 as a backbone to enhance selective feature capture and
suppress irrelevant information, thereby improving segmentation accuracy.

e To integrate noise-aware loss functions and filtering layers with noise adaptability
to handle noise interference in medical images, enhancing the model’s robustness.

e To evaluate the performance of the proposed LT-Net model against existing state-
of-the-art segmentation models using standard evaluation metrics, demonstrating
its effectiveness in improving segmentation accuracy and robustness.

1.5 Contribution and Scope of the Study

To overcome the challenges regarding liver tumor segmentation, this research develops
an innovative deep learning architecture, Liver-Tumor Network (LT-Net), as its primary
contribution. Then Model combines the parallel convolutional layers for multi-scale fea-
ture extraction, a dense segmentator for feature reuse for feature selection of interesting
tumor features. Moreover, the noise aware loss functions and the noise adaptable filter-
ing layers in combination provides the ability of our model to work with noisy data and
generalizes better to real world medical imaging scenarios. Using advanced data aug-
mentation and regularization techniques, LT-Net shows improved generalizability of the
learning task, and is a robust tool for liver tumor segmentation automation. The goal of
this study is to establish a new standard for the accuracy and robustness of automated
methods based on liver tumor segmentation, resulting in improved patient outcome and
help with medical image analysis.

1.6 Structure of the Research

The remainder of this research is organized as follows:

e Section 2: Literature Review discusses the existing approaches to liver tumor seg-
mentation, including traditional methods and recent advancements in deep learning,
highlighting their limitations and the need for novel solutions.

e Section 3: Methodology describes the proposed LT-Net architecture in detail, in-
cluding the network components, training procedures, and data preprocessing tech-
niques.

e Section 4: Model Evaluation and Results presents the datasets used, the experi-
mental results, and the evaluation metrics. The results of the proposed model are
compared against existing state-of-the-art methods.

e Section 5: Discussion provides an in-depth analysis of the experimental results,
discussing the strengths and limitations of LT-Net and potential improvements.



e Chapter 6: Conclusion and Future Work summarizes the contributions of the study,
discusses its impact on the field of liver tumor segmentation, and suggests directions
for future research.

2 Literature Review

2.1 Liver Cancer and Imaging Modalities

Liver cancer is one of the deadliest cancers in the world, being the sixth most commonly
diagnosed cancer and the third leading cause of cancer death (World Health Organiz-
ation (WHO); 2021)). Precise segmentation and early detection of liver tumours is of
prime importance for treatment planning and prognostication. The main techniques
for liver cancer diagnosis currently performed are imaging modalities such as computed
tomography (CT) and magnetic resonance imaging (MRI). These methods result in high
resolution images of the liver and enable visualization and characterization of tumor
masses (Park et al.f [2023)). Despite this, manual segmentation of liver tumors from CT
or MRI scans is laborious and time consuming with intra and inter operator variability
(Xu et al.; 2022). Such problems represent the need to develop automatic, precise and
efficient segmentation methods to assure good clinical decision making.

2.2 Traditional Approaches for Liver Tumor Segmentation

Traditional liver tumor segmentation methods can be broadly categorized into three types:
They make use of intensity based, model based and classical machine learning techniques.
Intensity based methods, namely thresholding and region growing, segment tumors by
pixel intensity. However, while these methods are simple, they are highly sensitive to noise
and intensity variations, which may result in over-segmentation or under-segmentation.
However, model based approaches including the active contour models and statistical
shape models use the knowledge of anatomical structures of the liver and tumor. These
methods allow for the shape consistency of the segmented objects to be maintained,
however, they are not sufficient compared with advanced liver cancers (Wang et al.; |2022))
where tumors demonstrate irregular or highly variable shapes. From a classical machine
learning point of view, approaches like support vector machines (SVM) and random
forests require handcrafted feature extraction. In these approaches, radiomic features
such as texture, intensity and shape are used to train classifiers. While some success has
been obtained, they cannot learn abstract high level features from the data, and that is
confining their applicability, as much heterogeneity among tumour appearances is present
(Lin et al.; [2021)). These traditional approaches are limited in capabilities and struggle to
learn complex representations. More sophisticated methodologies which are able to learn
complex representations directly from the data are therefore required.

2.3 Advances in Deep Learning for Liver Tumor Segmentation

Deep learning has emerged as an epochal breakthrough in medical image analysis, al-
lowing for automatic feature extraction through a wide range of imaging tasks. Among
the deep learning architectures, Convolutional Neural Networks (CNNs), especially the
U-Net architecture, have brought impressive segmentation results on liver tumor seg-
mentation (Ronneberger et al.; 2015 [Tang et al.f [2022). A fully convolutional network,



U-Net uses a symmetric encoder Decoder structure. In this scenario, features are extrac-
ted by sequential convolution and pooling operations by the encoder, and the decoder
then reconstructs the segmentation map using upsampling and concatenation. The model
is allowed to capture both low level (detailed) and high level (contextual) information
required for tumor segmentation (Fan et al.; 2023).

However, some of the shortcomings of U-Net have been addressed by researchers by
proposing various U-Net variants including attention U-Net and Residual U-Net, which
introduced attention modules and residual connections, respectively, for better perform-
ance. This focus of attention U-Net enables it to concentrate on additional regions and
differentiate between tumor regions and surrounding tissues (He et al.} 2023). However,
residual U-Net has solved the problem of vanishing gradients and improved model conver-
gence by using residual connections, thus better feature propagation (Zhang et al.; 2023).
However, despite these improvements, these models remain unable to handle tumors with
complex and variable boundaries and of varying sizes.

2.4 Multi-Scale Feature Extraction and Attention Mechanisms

Diversity in tumor size and shape is one of the key challenges for segmenting liver tumors.
To handle this, researchers have attempted to incorporate multi-scale feature extraction
to segmentation models. With this, the model could look at features at varying scales,
both little details and broader contextual information that is paramount for accurate
segmentation (Wang et al.; 2023)). However, several techniques are proposed to enhance
multi scale feature extraction, such as parallel convolutional layers with different kernel
sizes at multiple scales in the same model. This approach allows the model to better
segment tumors of different sizes and structures (Liu et al.; [2023)). However, attention
mechanisms have also been introduced to deep learning models for improved accuracy
in segmentation by enabling the network to focus on specific regions of the input image
(Sun et al.; [2023). It dynamically weights different feature maps based on attention,
and is able to focus attention towards regions of interest (like tumors), while ignoring
background areas of little importance. In particular, the selective focusing is well suited
for medical image segmentation where precise tumor boundary delineation is essential.
In many medical imaging tasks, such as liver tumor segmentation (Xu et al.f 2022), com-
bining multi-scale feature extraction with attention mechanisms has been demonstrated
to improve performance.

2.5 Handling Noise in Medical Image Segmentation

The images obtained in medical imaging are usually contaminated with noise often arising
from patient movement, equipment limitations, and environmental disturbance. It is
known that noise in medical images can severely affect segmentation accuracy and thus
induce false positives or false negatives in model prediction (Zhao et al.; 2023). Data
augmentation techniques including random rotation, flipping, and adding Gaussian noise
have been applied to simulate a broad range of real world imaging conditions (Park et al.;
2023)). Robustness of model benefits from this by allowing model to learn from multiple
scenarios. One way to mitigate the effect of noise is through regularization techniques
which penalize the model for overfitting to noisy data. Regularization methods such as
dropout and weight decay involve adding constraints over learning to improve generaliz-
ation (Tang et al.; 2022). Researchers have recently also investigated the development of



noise aware loss functions that take noise into account during the training of the model
(Chen et al.; 2022). The loss functions constructed are meant to minimize the influence
these noisy pixels have over optimizing the model so that the model can better concen-
trate on reliable information. In addition, preprocessing noisy images with filtering layers
that have noise adaptability has been shown to successfully filter noisy images and further
boost the segmentation accuracy (Chen et al.; 2022). These filtering layers adapt their
operations by filtering the input noise characteristics, so that useful signals are separated
from irrelevant noise.

2.6 Advanced Architectures for Liver Tumor Segmentation

In recent years, the capability of liver tumor segmentation models have been further en-
hanced by advances on deep learning architectures like DenseNets and ResNets. DenseNet
uses dense connectivity, i.e., each layer is connected to every other layer in a feed forward
manner, which facilitates feature reuse and gradient flow to boost the model performance
(Zhang et al.f 2023)). In this case, ResNet, which uses residual blocks, solves the vanish-
ing gradient problem by making training of very deep networks efficient and helps the
network learn complex patterns well (Zhang et al.; 2023)). Based on these advancements,
this research study is proposed for the Liver-Tumor Network (LT-Net), consisting of novel
components to further improve segmentation performance. To increase the model’s abil-
ity to capture tumors of different sizes and shapes, Where this study use the parallel
convolutional layers to extract features at multiple scales. Furthermore, dense hierarch-
ical segmentation is introduced to enhance feature reuse, allowing the use of relevant
information from a previous layer on a subsequent layer. Attention mechanisms are in-
corporated into the network to selectively attend to the tumor regions, while disregarding
the noise; hence, improving segmentation accuracy. Having addressed the challenge of
noise in medical images, L'T-Net incorporates noise aware loss functions, which mitigate
noise through the training process so the segmentation output is robust. Additionally,
the study also introduce filtering layers with the ability to adapt to noise so that the
input images are preprocessed, and noise is filtered out in advance of feature extraction.
Taken together, these innovations improve the accuracy and robustness of liver tumor
segmentation, and together these innovations contribute to the development of LT-Net
as a promising automated liver cancer diagnosis and treatment planning tool.



Table 1:

Comparative Overview of Recent Researches

Authors Datasets Methodology| Model Used | Metrics Limitations Future
Used Value Work
Chen et al. | 3D Liver CT | Adaptive CNN Dice Score: | Limited to | Extend to
2022 dataset noise-aware 0.86 CT scans only | MRI data and
training incorporate
multi-modal
imaging.
Fan et al. | Public liver | U-Net with | U-Net Dice Score: | Relatively Include larger
2023 tumor dataset | attention 0.89 small dataset | and more
size diverse data-
sets.
He et al. 2023 | Liver CT | Attention Attention U- | IoU: 0.83 Overfitting in | Explore reg-
scans mechanism in | Net small datasets | ularization
segmentation techniques
to mitigate
overfitting.
Lin et al. | 3D medical | Classical ma- | SVM Accuracy: Handcrafted Investigate
2021 image dataset | chine learning 0.75 features limit | deep learning
model adapt- | approaches
ability for automatic
feature ex-
traction.
Liu et al. | Liver MRI | Multi-scale CNN with | Dice  Score: | Complexity Simplify
2023 dataset convolutional multi-scale 0.87 of model | architec-
networks layers increases ture while
training time maintaining
performance.
Park et al. | Mixed mod- | Comprehensive| U-Net  vari- | Sensitivity: Lack of focus | Test novel
2023 ality imaging | overview and | ants 0.91 on specific | architec-
dataset evaluation model im- | tures against
provements baseline mod-
els.
Ronneberger ISLES Chal- | Fully con- | U-Net Dice  Score: | Not focused | Introduce
et al. 2015 lenge dataset volutional 0.80 on noise | noise-aware
network handling training.
Sun et al. | Public liver | Attention Attention U- | IoU: 0.85 Requires Evaluate
2023 tumor dataset | mechanisms Net large datasets | performance
for segmenta- for  effective | on smaller
tion training datasets.
Tang et al. | Clinical liver | Deep Various CNNs | Various Review lacks | Conduct
2022 scans learning- detailed com- | detailed ex-
based review parative res- | periments
ults comparing
models.
Wang et al. | Liver CT im- | Active con- | Active Con- | Dice  Score: | Sensitivity to | Develop
2022 ages tour models tour 0.76 initialization robust ini-
and paramet- | tialization
ers strategies.
Wang et al. | Synthetic Multi-scale CNN Accuracy: Synthetic Combine
2023 liver images analysis 0.88 data may | synthetic and
not represent | real data for
real-world training.
variability
Xu et al. 2022 | LITS dataset Deep learning | CNN, U-Net IoU: 0.82 Difficulty Focus on
segmentation handling very | improving
small tumors segmentation
of small le-
sions.
Zhang et | Public liver | Residual con- | ResNet Dice Score: | Potential Implement
al.2023 cancer data- | nections 0.84 overfitting on | dropout or
set training data other reg-
ularization
methods.
Zhao et | Noisy medical | Denoising Denoising PSNR: N/A Performance Apply to ac-
al.2023 image dataset | techniques CNN not evaluated | tual segment-

on segmenta-
tion tasks

ation tasks.




2.7 Summary

This section reviews the literature in terms of the evolution of liver tumor segmenta-
tion techniques from traditional techniques such as intensity based and model based to
more sophisticated deep learning architectures. CNN based models, notably its variants
of U-Net, have significantly improved the segmentation performance, but it faces diffi-
culties in handling the complex boundary of tumors, capturing the feature at multiple
scale, and handling noisy input data. To address these challenges, the proposed LT-Net
architecture incorporates multi-scale processing, as well as noise aware techniques, and
ResNet50 as a backbone that are expected to produce much higher segmentation accur-
acy and robustness. Using advanced methods, such as parallelized convolutional layers,
dense hierarchical segmentation, and adaptive noise filtering, while potentially improving
automated liver tumor detection, LT-Net has the potential to benefit clinical outcomes,
and therefore further the field of medical image analysis.

3 Methodology

The methodology for the proposed enhanced liver tumor detection system involves sev-
eral stages: This covers data preparation, model development, training and evaluation.
Specifically, these phases incorporate appropriate techniques in each of these phases to
achieve high quality segmentation performance for liver tumor detection in scanned CTs.
Liver tumor network (LT-Net), the core model, performs semantic segmentation on 3D
medical images (CT scans) using deep learning techniques such as the Unet architecture
with ResNetb0 backbone. The methodology used in this study is briefly described in the
following sections.
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3.1 Dataset Preparation and Loading of Dataset

The Preparing of dataset is the first step to building a liver tumor detection model. The
dataset used in this research study is from the Liver Tumor Segmentation Challenge
(LiTS) hosted on Kaggle providing 3D CT scan images and their corresponding tumor
segmentation masks. The CT scans are stored in NIfTI format (.nii), a widely used format
in medical imaging. But due to the large number of images and the corresponding masks,
these files need to be carefully organized.

Table 2: Liver Tumor 3D CT Scan Dataset Directory Structure

directory file_name
0 | dataset\segmentations segmentation-0.nii
1 | dataset\segmentations segmentation-1.nii
2 | dataset\segmentations segmentation-10.nii
3 | dataset\segmentations segmentation-100.nii
4 | dataset\segmentations segmentation-101.nii

First, both the CT scan images and their associated tumor segmentation masks are
organized so as to handle the data efficiently. The file paths for both the CT scan files
and their associated segmentation masks are collected using Python’s os module as the
dataset directory is traversed. It’s done with the os.walk() function that recursively
walks the directory structure. The paths are stored in a list which is then structured
to pandas.DataFrame, where each row pairs a CT scan file with its corresponding mask.
The naming convention followed by this organization dictates that scan and its mask both
have a common identifier that makes them easy to match. The data is then organized
and sorted by file names, for consistency and ease of accessibility. The structured file
management of this dataset allows the dataset to be easily accessed and used for model
training by linking CT scans to their masks.

3.2 Mapping CT Scans with Corresponding Labels (Masks)

Once the dataset is organized, the next step is to correctly map each CT scan to its
respective tumor segmentation mask. However, this step is essential for effective deep
learning model training as the model depends on the images alongside their precise ground
truth labels (the tumor masks). The CT scans are labeled with the areas in the tumor,
so the model can learn how to distinguish between liver tissue and tumor areas. The
dataset is iterated and the naming convention is used to guarantee that each CT scan is
paired with the corresponding mask. This task is simplified in the LiTS dataset, where
each mask file name corresponds to a CT scan file name. This naming convention is
leveraged to be sure that the segmentation masks perfectly align with the corresponding
CT scans. The model depends on this matching process; the model is trained on CT
images paired with their ground truth labels to learn features that distinguish tumor
regions from normal liver tissue. Accurate labeling is a critical element to building a
great segmentation model, and the accurate mapping of CT scans to masks is the key to
training the network.



3.3 Preprocessing of NIfT1 Files

The LiTS dataset stores its CT scan images in NIfTT format, which has to be preprocessed
before it can be used to train a deep learning model. Preprocessing steps contain multiple
stages which prepare raw pixel data to be in a form that helps in the model learning. The
first step is to read the NIfTT files using the nibabel library and extract the pixel data,
and then load it into memory for further manipulation. CT scans are one of the first
challenges in medical imaging because the scans can have any orientation or rotation,
depending on how the data was captured. For this reason, the CT scans are aligned to a
consistent orientation by adding an image rotation step to the pipeline. That step makes
sure that all images are aligned correctly, so that the model can learn spatial features
correctly.

Then the windowing technique is applied to the CT scans. In particular, windowing
is necessary to increase the visibility of particular areas of anatomy, including the liver
and tumors. Windowing allows for contrast and brightness to be adjusted in CT scans to
highlight areas like the liver and it’s lesions. The pixel values are normalized by a custom
windowing function to the predefined range specified by window settings. This approach
allows the model to further concentrate on the tumor region during segmentation, so that
better results are achieved. The model is then able to differentiate between the regions
of the liver, tumor, and background by adjusting the window, increasing the contrast
between the tumor and the background, and between the liver and the background.

Original CT Image

Windowed CT Image Mask Overlay CT Image with Mask Overlay

Figure 2: CT Scans for the original, windowed images, and their overlays masks for Liver
Tumor

3.4 Data Augmentation and Transformation

In order to make the model generalize well and avoid overfitting to training data, data
augmentation is performed to both CT scan and their associated tumor masks. In partic-
ular, it is important in medical imaging, where getting large datasets is not always easy.
Augmentation artificially expands the training dataset so more diverse training examples
are created, and the model is better able to learn robust features. Data augmentation
techniques used are rotation, flipping and scaling which mimic the positional and size
variation of the organs and tumors. In the transformations, it makes the model to be
able to learn to recognize tumors in different orientations and at different scales so that
they can detect tumors irrespective of original scan positioning. Resizing the images to
some fixed size (for example 128x128 pixels), and treating the images as such in place
for both input and output will help with both consistency in input size in the model and
efficiency of processing in deep learning networks.
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¢ Randomly Rotate:

Loy = rotate(Iyorm, ) (1)
This operation randomly rotates the image I,y by an angle 6.

e Randomly Scale:

Iscalo = Scale(lrota 5) (2)

This scales the rotated image I,; by a factor s.

e Adjust Contrast:

Teontrast = adjust_contrast(/gcale, ) -(3)
This modifies the contrast of the scaled image I .. by a factor a.

Additionally, pixel values of the images are normalized into the range [0, 1] using
histogram based normalization. This transformation is critical for model convergence
during training as it puts all the data on the same scale. The model is less sensitive
to lighting and scan conditions variations because all pixel values are normalized to a
standard range.

Histogram Before Normalization Histogram After Normalization
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Figure 3: Normalization Graph for Before & After

These transformations allow the dataset to become more diverse and the model’s gen-
eralization capability is also improved, which makes the model more robust to variations
that may appear in real world medical scans.
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3.5 Feature Extraction Processing & Model Data Initialization

The Feature Extraction Processing & Model Data Initialization phase is critical with
many steps to ensure the dataset is ready for the deep learning training. In the begin-
ning, the values are set for BATCH_SIZE = 16 and IMAGE_SIZE = 128 for controlling
the batch size and image dimensions respectively. To allow the model to recognize regions
on CT scans, I defined the class_codes array to map segmentation labels (background,
liver, tumor). Then create functions, e.g., get_image_filename and get_mask_filename, to
efficiently retrieve the image and its corresponding tumor mask by file paths. The image
and mask data are transformed to a deep learning suitable format, using data transform-
ation such as IntToFloatTensor() and Normalize(). After that the API from the fastai
library named as DataBlock is used to organize our dataset, applying transformations,
resizing images to 128x128 and splitting the dataset into the training and validation sets
with a RandomSplitter. This also makes sure that each image is paired with the right
mask. After creating the dataset, a sample image and mask are visualized to verify the
data, then the unique pixel values in the mask are analyzed to ensure that the class labels
are correct. Then, some data loaders are generated from the DataBlock to load and batch
the data in the model training. The entire process makes sure that the data has been
prepared, transformed and is ready to train the LT-Net model.

Figure 4: Visualize a sample batch of Images & Masks to check Data loading and Trans-
formations

3.6 Model Architecture: LT-Net (Liver Tumor Network)

The LT-Net (Liver Tumor Network) architecture, which combines the strong U-Net archi-
tecture with a ResNet50 backbone, is the heart of the liver tumor detection system. The
encoder decoder structure of U-Net has been widely recognized for its ability to capture

12



local and global features of an image, making it an excellent choice for medical image
segmentation. By combining a ResNet50 backbone with U-Net, it takes the advant-
age of this to extract deeper and more complex features, which is useful for challenging
segmentation tasks, such as liver tumor segmentation.

Input: 3D image Output: 3D probability
maps for each class

o
| summation (skip connection) | I'

[I e [I = Concat
Conv + Relu
e il
analysis path = synthesis path I Up-conv
(encoder) (decoder)

Figure 5: LT-Net Model Architecture (Unet + ResNet50 encoder) [Fan et al.| (2023))

The encoder in the LT-Net architecture is the ResNet50 model. It is a deep residual
network — ResNet50 — and uses residual connections to overcome the vanishing gradient
problem. Such residual connections allow the network to be deeper and more powerful,
extracting better features. The input CT scan is fed through the encoder to extract
hierarchical features, refining on fine grained details, and more abstract representations
of the liver and tumor regions.
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Figure 6: ResNet50 Model Architecture |Zhang et al.| (2023))

These extracted features are used by the decoder to progressively reconstruct the
segmentation mask. Then, the skip connections to transfer feature maps from the encoder
to the decoder are used in the U-Net architecture. These connections are important, as
they keep the model from losing spatial detail, which is important for proper segmentation
of such complex structures as tumors. The tumor and liver regions are progressively
reconstructed pixel by pixel, segmenting the tumor and liver regions, and the decoder
progressively refines the segmentation map. Finally, the final layer is the output layer that
outputs a pixel-wise segmentation map on which each pixel is labeled with either liver,
tumor or background. This encoder decoder structure with skip connections guarantee
that the model not only captures global features, but also keeps the fine details to perform
precise tumor segmentation.
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3.7 Model Training

A key part of the training process of LT-Net is several crucial aspects that make learning
efficient and performance peak. Batch size is set to 16, requirement to have the efficient
computation and memory usage. Training with a too big batch size may use up too
much memory or training may take too long with a small batch size. Using this chosen
batch size optimizes training and allows the training process to converge faster without
overburdening the system.

The Cross Entropy Loss function is used for loss computation since it is a good fit
for multi class segmentation tasks. This loss function, this is the error between what the
model have predicted pixel wise, and the actual labels which are the tumor masks, and
it penalizes the model for some those incorrect predictions. Proceed to minimize the loss
function using the Adam optimizer. Adam have benefit this because it adjusts learning
rate with the model’s performance so it is effective for deep learning problems. There are
several metrics track through the training process to assess the model’s performance; such
as foreground accuracy, Dice coefficient, IoU (Intersection over Union), and PSNR (Peak
Signal to Noise Ratio). These metrics offer an overview of the model’s ability to segment.
For example, dice coefficient is used to quantify the overlap between the predicted and
true tumor regions whereas IoU quantifies the intersection between predicted and true
tumor regions, thus indicating the model performance in distinguishing between liver
tissue and tumor regions. The model is trained for 10 epochs with weight decay (0.1)
to avoid overfitting. During this phase the defined function use SaveModelCallback to
save the best performing model, making sure that the model with the highest validation
performance is saved to be used later for testing and evaluation.

3.8 Model Evaluation

After the process of training, the LT-Net model is get assessed on a separate validation
set to evaluate its segmentation performance. The model evaluation employes the several
metrics to offers a detailed analysis of how well the LT-Net model can detect the liver
tumors regions:

Dice coefficient is used to quantify the overlap between the predicted and true tumor
regions. A higher Dice coefficient indicates better performance (Chauhan and Joshi;
2021)).

2 % |Mtrue N Mpred’ _(4)
’Mtrue’ + |Mpred‘

Dice Loss =1 —

IoU calculates the ratio of intersection to union between the predicted and true masks.
A higher IoU value signifies better segmentation performance (Chauhan and Joshi; |[2021)).

Area of Intersection
I =
oU Area of Union (5)

PSNR evaluates the quality of the segmentation in terms of signal-to-noise ratio,
providing insight into the overall quality of the predicted segmentation map (Chauhan
and Joshi; 2021)).
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2
PSNR = 10 - log, (M]’;E) (6)

These evaluation metrics provides the comprehensive understanding for the perform-
ance of models which are accuracy, precision, and generalization ability. Through these
metrics of evaluations, the model’s strengths and weaknesses can be identified, enabling
it for further optimization and refinement.

3.9 Visualization and Result Analysis

Assessing the model’s performance having the critical roles with the visualization plots.
The predicted tumor segmentation mask can be overlaid over the original CT scan so
that the effectiveness of the model in detecting the tumor can be quickly assessed. This
provides the insight which of the model parameters are highly correlated with the ground
reality and which of them need a relook. In addition, a comparison of the CT scan
image and Segmentation mask provides a clear understanding of how well the model is
able to differentiate liver tissue from tumor regions. These visualizations are critical for
assessment of the performance of the model and are a crucial part of the analysis, allowing
researchers and clinicians to make better informed decisions about the effectiveness and

precision of the tumor detection system.

Figure 7: Actual & Predicted Liver Tumor Segmentations

3.10 Conclusion

Liver tumor segmentation tasks are enhanced when using the LT-Net model as a result of
the deep learning topology and the application of sophisticated preprocessing methods.
The integration of ResNet50 for feature extraction and U-Net for accurate segmentation
results in high accuracy and reliable performance of LT-Net in identifying liver tumors in
3D CT scans. The evaluation of the proposed model is done using various factors such as
the foreground accuracy, Dice coefficient, IoU, and PSNR, which offers a clear picture of
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the efficiency of the model in segmenting liver tumor. The fine-tuning of the model and
experimenting with more datasets will improve the current model and perhaps expand
its applicability to other medical image analysis.

4 Model Evaluation and Results

The training outcomes results of the LT-Net (Liver Tumor Network) for liver tumor seg-
mentation in CT/MRI images show the reduction in the loss functions and enhanced per-
formance in the epochs. Metrics such as train_loss, valid_loss, compute_foreground_accuracy,
and custom_foreground_accuracy were used and in addition to the traditional segmenta-
tion metrics such as Dice Coefficient, IoU, Accuracy, and PSNR. The evaluation of this
model was mainly focused on the assessment of its effectiveness to classify the liver tumors
and its performance on unseen samples of data.

4.1 Training of LT-Net Model and Loss Function Analysis

The train_loss and the valid_loss are decreasing epoch by epoch, which suggests that the
learning process is going smoothly. Firstly, the initial state of the model at epoch 0 has
a valid_loss of 0.0542 and then reducing to 0.00379 at epoch 8. The train_loss is also
decreasing over the epochs, from 0.2171 at epoch 0 to 0.0027 at epoch 9, which confirms
that the model is effectively reducing the divergence between its predictions and the
actual values. The decline in loss indicates that the model is gradually capturing the fine
details required for proper distinction between different types of liver tumors.

Table 3: Performance of LT-Net Model while Training

Epoch | Train Loss | Valid Loss | Foreground Accuracy (Train) | Foreground Accuracy (Valid)
0 0.017466 0.012723 0.871375 0.995736
1 0.011359 0.009035 0.927754 0.996830
2 0.011427 0.007700 0.904527 0.997149
3 0.006926 0.005919 0.945737 0.997774
4 0.006051 0.006394 0.951457 0.997656
5 0.004645 0.004532 0.951800 0.998292
6 0.004072 0.004313 0.960855 0.998414
7 0.003320 0.003862 0.967538 0.998560
8 0.002959 0.003791 0.964670 0.998599
9 0.002695 0.003843 0.966276 0.998605

The validation loss, specifically, serves as an indicator of how well the model general-
izes to new, unseen data. The better models were found during the early epochs—particularly
at epochs 0, 1, 2, 3, 5, and 6—where the validation loss reaches its lowest values, suggest-
ing that these epochs may represent points at which the model is performing optimally in
terms of generalization. The observed fluctuations in the later epochs, particularly from
epochs 8 to 9, indicate that while the model is still learning, the improvements in loss
are less dramatic, implying that it may be approaching a point of diminishing returns.

4.2 Accuracy and Foreground Metrics

The foreground accuracy both compute_foreground_accuracy and custom_foreground_accuracy
reflects the model’s ability to accurately identify tumor regions. At epoch 0, the model
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achieved a compute_foreground_accuracy of 0.9201 and a custom_foreground_accuracy of
0.9850. These values improve significantly over the next few epochs, reaching a peak
in custom foreground accuracy by epoch 9 with a value of 0.9986, which indicates that
the model is nearly perfect in detecting the foreground (tumor regions) with high preci-
sion and recall. The steady increase in foreground accuracy throughout training demon-
strates that the LT-Net model is effectively learning to distinguish between tumor and
non-tumor regions, even in the presence of noise and other challenges typical in medical
imaging tasks. The improvement in accuracy aligns with the reduction in both train and
validation loss, reinforcing that the model is improving in terms of both segmentation
performance and robustness.

4.3 Evaluation Metrics

When evaluated on key segmentation metrics, the model demonstrates impressive per-
formance:

Table 4: Performance Results of LT-Net Model

Metrics Values
Dice Coeflicient 0.9733
IoU Score 0.9705
Accuracy 0.9986
PSNR 25.4429

The Dice Coefficient of 0.9733 indicates that the model has a high overlap between the
predicted and true tumor masks, which is a crucial metric for evaluating the quality of
segmentation. A Dice score above 0.9 is generally considered excellent for medical image
segmentation tasks, suggesting that LT-Net is very effective in accurately identifying
tumor boundaries.

Dice Coefficient over Batches loU Score over Batches

0.985 | —# Dice Coefficient 0.985 1 —m— loU Score
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Figure 8: Dice Coefficients & IoU Scores over Batches

The IoU Score of 0.9705 also supports the effectiveness of the model as it calculates the
intersection of the predicted and true tumor area over the union of these two sets, which
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also confirms the segmentation of the model. The closer the score is to 1.0 the better the
segmentation, with 0.9705 being quite good. The value of 0.9986 is another sign of how
the model is able to identify each pixel as either tumor or non-tumor which is especially
important in medical imaging where misclassification could be highly damaging. Also,
the PSNR of 25.4429 is not as high as it could be, but it suggests that the segmentation
results are good enough to have a reasonable signal to noise ratio to ensure that tumor
boundaries are preserved with minimal artifacts.

5 Discussion

The use of the proposed LT-Net model in liver tumor segmentation has shown significant
enhancements in terms of accuracy and the associated robustness as compared with the
methods described in the literature. The proposed LT-Net model has a performance
improvement in the segmentation aspect, with a Dice coefficient of 0.9733, IoU of 0.9705,
and an accuracy of 0.9986. These results are higher than in several recent studies where
researchers have used other deep learning approaches to similar tasks in medical imaging.

CT Scan Image

(o

Predicted Mask CT Scan Image Predicted Mask

[

Predicted Mask Predicted Mask

Figure 9: Samples of Predicted Segmentation of Liver Tumor on Sample CT Scans

When compared to the study by (Fan et al.; |2023) who used a U-Net architecture
with attention mechanism, LT-Net performs better with the model achieving a Dice score
of 0.89. The strength of the proposed LT-Net is its application of the ResNet50 back-
bone that improves feature extraction and enables better segmentation of liver tumors.
Furthermore, the model proposed by Fan et al. was trained with a set of smaller samples
which may have restrained its capability of generalization. Unlike the other models,
LT-Net uses various data augmentation and preprocessing methods hence the capabil-
ity of generalization despite the small dataset used. In the same way, (He et al.; 2023))
applied an Attention U-Net for liver tumor segmentation while getting an IoU of 0.83.
Although their attention mechanism helps to focus the model on the relevant regions, LT-
Net provides better results because of the combination of the encoder-decoder structure
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similar to U-Net and deep feature extraction capabilities of ResNet50. By means of this
architecture, LT-Net is able to better differentiate between tumor and non-tumor regions,
thereby improving segmentation performance. Multi-scale convolutional networks were
employed in the study by (Liu et al.; [2023)), receiving a Dice score of 0.87. Their method
uses multi-scale feature extraction and is advantageous in that manner but also brings
the higher complexity at the cost of possible longer training times. In contrast, LT-Net
has a moderate model complexity but achieves a satisfactory performance. As a result,
LT-Net obtains significantly improved segmentation accuracy with the help of ResNet50
while avoiding the enhancement of model complexity and the extension of training time.
This makes it an efficient solution for liver tumor segmentation especially when used on
3D CT scan data set. In the study by (Zhang et al.; 2023)), the authors used a residual
network to perform liver tumor segmentation and got a Dice coefficient of 0.84. Although
they also make residual connections like LT-Net’s architecture, it has better segmentation
performance probably because of the integration of U-Net with ResNet50 that provides
better tumor boundary detection. Further, LT-Net also uses dropout for regularization,
which serves to reduce the overfitting problem better than in (Zhang et al.; |2023) model.

The LT-Net model also shows good learning capability as can be seen by the decreasing
train and validation loss through the number of epochs. The training losses, which start
at 0.2171 at epoch 0 and end at 0.0027 by epoch 9, show that the model is learning
successfully and reducing the difference between the predicted and true tumor regions.
This reduction in loss indicates that LT-Net is effective in distinguishing liver tumors
and is well suited to generalization as observed in the oscillation of the validation loss.
These variations, especially in the last epochs, indicate that the model is already beyond
the point of improvement, thereby supporting the idea that the model has reached its
best level as far as generalization is concerned. As for the foreground accuracy, the
compute_foreground_accuracy and the custom_foreground_accuracy both demonstrate a
gradual rising tendency in the course of the learning process, and reach the result of
0.9986 by the ninth epoch. This shows that the proposed LT-Net model is very efficient
in the accurate localization and delineation of tumor regions regardless of the problem
such as noise in the medical images. The high foreground accuracy and the decrease
in both train and validation losses provide the evidence of the model’s enhancement of
both segmentation and generalization capabilities for different types of liver tumor data.
Another remarkable outcome is the PSNR of 25.44 that testifies that the tumor edges are
preserved without artifacts. Although this PSNR value could be further increased, the
value provided here is reasonable for practical medical imaging applications because the
quality of the segmentation masks is still very high and reliable. The satisfactory results
of the corresponding segmentation indexes, including the Dice coefficient, the ToU, the
accuracy, and the PSNR, demonstrate the efficiency of the proposed model in liver tumor
detection and its applicability in clinical practice.

In conclusion, the proposed LT-Net architecture achieves large improvements over
prior art liver tumor segmentation models while maintaining high accuracy, robust feature
learning, and generalization. The proposed architecture based on U-Net with ResNet50
can be considered as a starting point for further research on liver tumor detection and
has great potential for further development for practical use. More than that, there is
the potential to continue enhancing the complexity of the network while developing new
datasets for evaluating the performance of LT-Net, which has become a new state of
the art in liver tumor segmentation and can be considered a ready solution for clinical
decision support systems in medical imaging.
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6 Conclusion and Future Work

6.1 Conclusion

The research discussed and compared LT-Net (Liver Tumor Network), a deep learning-
based model for the automatic segmentation of liver tumor in medical images with a
focus on CT and MRI. The main goal was to create a model that would help distinguish
and classify liver tumors, which is critical for the initial diagnosis of liver pathologies,
including hepatocellular carcinoma.

The results showed that LT-Net is efficient, making high improvements in the training
and validation loss, as well as high performance on the various metrics. This model ob-
tained a Dice Coefficient of 0.9733, IoU of 0.9705, Accuracy of 0.9986 and PSNR of 25.44,
which indicates that the proposed model was successful in segmenting the liver tumor
from the background. These outcomes demonstrate that proposed LT-Net approach is
capable to segment liver tumors in medical imaging datasets in a reliable and efficient
manner which can be useful for clinicians in the diagnostic process. The architecture of
the model that is based on parallel convolutional layers in the encoder, upsampling in
the decoder, and ResNet50 as a backbone has been shown to be a reliable approach for
addressing the difficulties of the liver tumor segmentation. The LT-Net model has shown
a possibility of being trained quickly and with a lower computational requirement, and
therefore, it is a good candidate for real-time clinical applications where the identification
of tumors has to be fast and accurate.

6.2 Future Work

While LT-Net demonstrated exceptional performance in liver tumor segmentation, there
are several avenues for further enhancement and refinement. The following future work
directions are proposed:

e Improvement in PSNR and Segmentation Precision: Although LT-Net
achieved a reasonable PSNR of 25.44, there is room for improvement in reducing
noise and preserving fine details in the segmented regions. Future work can explore
the integration of advanced post-processing techniques, such as conditional random
fields (CRFs) or edge-preserving filters, to enhance the accuracy of tumor boundary
delineation and improve image quality.

e Incorporation of Multi-modal Imaging: The current implementation of LT-
Net focuses on CT and MRI images, but extending the model to work with multi-
modal imaging data (e.g., PET-CT or ultrasound images) could provide richer
information for tumor detection. Multi-modal datasets often contain complement-
ary information that can improve tumor localization and segmentation accuracy,
which would be beneficial for clinical applications where a combination of imaging
modalities is used for diagnosis.

e Clinical Validation and Integration: While the results are promising, clinical
validation using a larger and more diverse set of patient data is necessary to ensure
the model’s generalizability and clinical applicability. Additionally, integrating LT-
Net into clinical workflows, such as automatic tumor detection and decision support
systems, could help clinicians in making timely and accurate treatment decisions.
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The model could be further refined by collaborating with medical professionals
to adapt the segmentation results to practical needs, such as surgical planning or
treatment monitoring.

In summary, LT-Net represents a promising step toward automated liver tumor seg-
mentation with potential clinical applications in diagnosis and treatment planning. With
further refinements and broader testing in real-world medical environments, LT-Net could
play a significant role in improving the speed, accuracy, and efficiency of liver cancer de-
tection and management.

References

Chauhan, R. and Joshi, R. C. (2021). Comparative evaluation of image segmentation
techniques with application to mri segmentation, Proceedings of International Confer-
ence on Machine Intelligence and Data Science Applications: MIDAS 2020, Springer
Singapore, pp. 521-537.

Chen, Y., Wang, X., Li, J. and Zhao, H. (2022). Adaptive noise-aware deep learning for
medical image segmentation, IEEE Transactions on Medical Imaging 41(4): 1020-1032.

Fan, Y., Zhou, W., Yang, Y. and Liu, C. (2023). A survey on recent advances in deep
learning-based liver tumor segmentation, Medical Image Analysis 87: 102786.

He, Y., Huang, S. and Cheng, C. (2023). Attention-based deep learning for liver tumor
segmentation in ct images, Journal of Biomedical Informatics 132: 104170.

International Agency for Research on Cancer (IARC) (2020). Global cancer observatory:
Cancer today.
URL: https://qgco.iarc.fr/today

Lin, Y., Zhang, J. and Zhao, H. (2021). Machine learning approaches for liver tumor
segmentation: A review, Computerized Medical Imaging and Graphics 88: 101825.

Liu, H., Zheng, X. and Chen, Y. (2023). Multi-scale convolutional neural networks for
medical image segmentation, Artificial Intelligence in Medicine 130: 101943.

Park, J., Lee, D. and Kim, H. (2023). Comprehensive overview of liver cancer detection
and segmentation in medical imaging, Fzpert Review of Anticancer Therapy 23(3): 245
263.

Ronneberger, O., Fischer, P. and Becker, A. (2015). U-net: Convolutional networks
for biomedical image segmentation, Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2015, Springer, pp. 234-241.

Siddique, N., Paheding, S., Elkin, C. P. and Devabhaktuni, V. (2021). U-net and its
variants for medical image segmentation: A review of theory and applications, IEFFE
Access 9: 82031-82057.

Sun, X., Wang, Y. and Liu, M. (2023). Recent advances in attention mechanisms for
medical image segmentation, Artificial Intelligence in Medicine 134: 102168.

21



Tang, Y., Zhang, Y. and Li, J. (2022). A review of deep learning in liver tumor seg-
mentation: State of the art and future directions, Computerized Medical Imaging and
Graphics 103: 101854.

Wang, L., Zhang, X. and Li, H. (2022). Active contour models for liver tumor segment-
ation: A review, Medical Image Analysis 75: 102251.

Wang, Y., Liu, M. and Zhou, Y. (2023). Enhancing medical image segmentation with
multi-scale convolutional neural networks, Journal of Healthcare Engineering 2023: 1—
15.

World Health Organization (WHO) (2021). Liver cancer.
URL: https://www.who.int /news-room/fact-sheets/detail /cancer

Xu, C., Zhang, Y. and Zhang, Z. (2022). Automatic liver tumor segmentation in ct
images: A survey, Medical Image Analysis 70: 101906.

Zhang, L., Wang, Y. and Liu, H. (2023). Residual networks in medical image segmenta-
tion: A review, Artificial Intelligence in Medicine 128: 102083.

Zhao, Q., Zhou, W. and Liu, C. (2023). Overcoming noise in medical imaging: Advances
in denoising techniques, Journal of Biomedical Informatics 132: 104165.

22



	Introduction
	Background
	Motivation
	Research Questions
	Research Objectives
	Contribution and Scope of the Study
	Structure of the Research

	Literature Review
	Liver Cancer and Imaging Modalities
	Traditional Approaches for Liver Tumor Segmentation
	Advances in Deep Learning for Liver Tumor Segmentation
	Multi-Scale Feature Extraction and Attention Mechanisms
	Handling Noise in Medical Image Segmentation
	Advanced Architectures for Liver Tumor Segmentation
	Summary

	Methodology
	Dataset Preparation and Loading of Dataset
	Mapping CT Scans with Corresponding Labels (Masks)
	Preprocessing of NIfTI Files
	Data Augmentation and Transformation
	Feature Extraction Processing & Model Data Initialization
	Model Architecture: LT-Net (Liver Tumor Network)
	Model Training
	Model Evaluation
	Visualization and Result Analysis
	Conclusion

	Model Evaluation and Results
	Training of LT-Net Model and Loss Function Analysis
	Accuracy and Foreground Metrics
	Evaluation Metrics

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work


