~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Harsh Gupta
Student ID: x23173815

School of Computing
National College of Ireland

Supervisor: Prof. Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Harsh Gupta
Student ID: x23173815
Programme: MSc in Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Prof. Jorge Basilio
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 1237
Page Count: [13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Harsh Gupta

Date: 25th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Harsh Gupta
x23173815

1 Introduction

The purpose of this document is to take you through each steps required to run the
project in the system. The document provides all the information from setting up the
hardware and software for the research. The document also provides guidance on the
research process, including all the steps like data preparation, pre-processing, building of
model and evaluate its performance in a detailed manner.

2 Hardware and Software Requirements

2.1 Hardware Configuration

The work in this research is done on a personal laptop. Below, the system configurations
are shown in Figure [I]. The system uses AMD Ryzen 7 5800H processor with Radeon
Graphics, running at 3.20 GHz. The RAM installed in the system is 16GB RAM and it
is a 64-bit Operating System. The Graphic Card used is - NVIDIA GeForce RTX 3060
Laptop GPU.

System > About

HARSH

R this PC
ASUS TUF Gaming A15 FA506QM_FA566QM ename this

@ Device specifications Copy ~

Device name HARSH

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz
Installed RAM 16.0 GB (15.4 GB usable)

Device ID 4BCOCASF-C4EC-4A69-B778-97FC14863D09

Product ID 00327-35928-45680-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection ~ Advanced system settings

== Windows specifications Copy ~

Edition Windows 11 Home Single Language

Version 23H2

Installed on 03/01/2024

OS build 22631.4460

Experience Windows Feature Experience Pack 1000.22700.1047.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: System Configuration

2.2 Software Configuration

This section of the document provides the software requirements setup that are necessary
for the implementation of the research. The following software’s must be installed as
shown in Table [Ij on the system to ensure smooth implementation:

S. No. Software Requirements

1 Anaconda Navigator

2 Python 3.11.5

3 Jupyter Notebook

4 Google Colaboratory (if cloud-based processing is required)

5 Microsoft Office Suite: Microsoft Word, Microsoft Excel, Microsoft
PowerPoint

6 Web Browser: Google Chrome or Microsoft Edge

Table 1: Software Requirements

3 Development Tools for Image Creation

This section outline the tools required and used for creation of images and diagrams
during this research. The following tools are utilized:

e Miro: https://miro.com/

e App.eraser: https://app.eraser.io/workspace/KOtyVB4EZaN8vbsHdbLE7origin=
share

4 Downloading the Jupyter Notebook

4.1 Step 1

The first step involves the process of downloading Anaconda Navigator from the given
link:

e https://www.anaconda.com/products/navigator

Alternatively, users can utilize Google Colaboratory, which can be accessed via the
following link:

e https://colab.google/

4.2 Step 2

Now using the search window, ’Click on START’, search for ’Anaconda Navigator’
and then click on the icon and ’Run the Application’. Once you click on the ’Application’,
the screen will have a display which is shown below in the Figure [2]

https://miro.com/
https://app.eraser.io/workspace/K0tyVB4EZaN8vbsHdbLE?origin=share
https://app.eraser.io/workspace/K0tyVB4EZaN8vbsHdbLE?origin=share
https://www.anaconda.com/products/navigator
https://colab.google/

O Anaconda Navigator - a8 x

) ANACONDA NAVIGATOR 0 vrirenc m—
A ome [Atsppiiations <) on [owetoon <) chomnets ¢
@ cnvronments ° =
. (>

DataSpell

28 Communiy

= watsons

Data 1BM watsonx

ORACLE

Cloud Infrastructure

Oracle Data Science Service

Figure 2: Anaconda Navigator Window

4.3 Step 3

After this, just look for “Jupyter Notebook” and ”Download” it on your local machine.
Now, after the installation is complete, we can use the search bar or command prompt
to open the Jupyter Notebook. The Figure |3| below, shows the creation of python envir-
onment in the Anaconda Navigator in which Jupyter Notebook will run.

O Anaconda Navigator — =) X
) ANACONDA NAVIGATOR 0 v o comet
A rome) Insealled ~| | chamnets Update index. (search Pacage:)
@ crionments I base (root) o Name v T Description Version [~
_anaconda_depends () Simplifies package management and deployment of anaconda A 202
8 Learning
abseil-cpp O Abseil common A 2
absl-py. o
sbotc \g botocore and aiohttp 2
aioFile 10
aiohtty A
% aicitertool: cessing module
<
siosignal () iosignal: a st of registered asynchronous callbacks 120
siosalite O Asyncio bridge to the standard salite3 module. 0180
alabaster) Lightwseight, configurable sphinx theme. A o7
e
d
rd
Jou . & Mo) High ity laver For multiple asvnchronous ever A 3s. d
vy & 9 = 5 & @

Figure 3: Left Tab Environment

Once you click on the environment option, you will see a ’Create Option’. After
you click on the Create Option which is at the very bottom of the screen you will see
a pop-up window on the screen. You will have to select the environment name and the
python version which is shown in Figure [] below.

Create new environmenkt

Name: | Harsh |
Location: ClUsers|hg0 1] anaconda?| enus | Harsh
Packages: Python | 3.11.10 v|
or | v

Cancel Creake

Figure 4: Creating a New Python Environment

5 Dealing with Zip file and loading it in Jupyter
Notebook

The file will be downloaded in a zip format (i.e. .zip). You will have to extract the zip
file and upload it to the Jupyter Notebook for the further implementation of research

work seen in Figure [f

Figure 5: Extracting zip folder

6 Methodology and Implementation

6.1 Dataset Collection and Preparation

e Step 1: The dataset was collected from one of the famous public dataset repository
named Kaggle, as shown below in Figure [0

4

Brazilian E-Commerce Public Dataset by Olist - 3334 New Notebook @

Data Card Code (542) Discussion (58) Suggestions (0)

Data Explorer
olist_customers_dataset.csv (9.03 MB) & 11 Version 2 (126.19 MB)

@D olist_customers_dataset.csv
Detail Compact Column 5 of 5 columns v @ olist_geolocation_dataset.csv

@D olist_order_items_dataset.csv
e @ olist_order_payments_dataset
About this file v
@D olist_order_reviews_dataset.c:
Customers Dataset @D olist_orders_dataset.csv
@ olist_products_dataset.csv
This dataset has information about the customer and its location. Use it to identify unique customers in the orders dataset and to @D olist_sellers_dataset.csv
find the orders delivery location. @D product_category_name_trans

At our system each order is assigned to a unique customer_id. This means that the same customer will get different ids for
different orders. The purpose of having a customer_unique_id on the dataset is to allow you to identify customers that made s
. " . B ummar
repurchases at the store. Otherwise you would find that each order had a different customer associated with. v
» O 9files
Please refer to the data schema:
» [52 columns

Figure 6: Collection of Data

Step 2: When the dataset has been downloaded by clicking on ‘Download’ button,
it will be in the zip format around ’45mb’. When the file is extracted, you will see
9 datasets which are:

— olist_customers_dataset

— olist_geolocation_dataset

— olist_order_items_dataset

— olist_order_payments_dataset

— olist_order_reviews_dataset

— olist_orders_dataset

— olist_products_dataset

— olist_sellers_dataset

— product_category_name_translation
Step 3: The next step involves loading these datasets in your local directory or

elsewhere you can also use the main zip folder as show in Figure [5| previously and
get all the datasets from there and load them.

Step 4: Now in case, if you have extracted the entire zip file you can upload
everything to Jupyter Notebook. This process is shown in Figure [7]

O Name - Last Modified File Size
O-n |x23173315,9redicting sales of the E-commerce industry with Brazilian dataset using Deep learning algorithms.ipynb 6 minutes ago 39 MB
O H olist_customers_dataset.csv 4days ago 8.6MB
0 IR olist_database_merge.png 4 days ago 785.7 KB
O H olist_geolocation_dataset.csv 4 days ago 58.4 MB
O H olist_order_items_dataset.csv 4 days ago 147 MB
O H olist_order_payments_dataset.csv 4 days ago 5.5MB
O H olist_order_reviews_dataset.csv 4 days ago 13.8 MB
O H olist_orders_dataset.csv 4 days ago 16.8 MB
O H olist_products_dataset.csv 4 days ago 23MB
O H olist_sellers_dataset.csv 4 days ago 170.6 KB
O H product_category_name_translation.csv 4 days ago 26 KB

Figure 7: Uploading to Jupyter Notebook

6.2 Downloading and Importing Libraries Required

e Step 1: The necessity of installing all the libraries required is a very essential
step for ensuring the smooth implementation of the research work. The libraries
are required for various tasks like manipulation of data, visualization, building of
model and so on. Below, is the list of all the libraries and the version requirements
as per our need in Table

Library Name | Installation Command

pandas lpip install pandas==2.2.3
numpy Ipip install numpy==1.24.3
matplotlib 'pip install matplotlib==3.7.2
seaborn Ipip install seaborn==0.12.2
plotly lpip install plotly==5.24.1
scikit-learn 'pip install scikit-learn==1.5.1
tensorflow 'pip install tensorflow==2.18.0

Table 2: Library Installation Commands

e Step 2: Once, all the libraries are installed you can check the version of all libraries
using Python commands shown in Figure [

import pandas as pd

print("Pandas version:", pd. wversion_)

import numpy as np

print("NumPy version:", np.__version__)

import matplotlib

print("Matplotlib version:", matplotlib. wversion_)

import seaborn as sns
print("Seaborn version:", sns. wversion_)

import plotly

print("Plotly version:", plotly._ version__)

import sklearn

print("Scikit-learn version:", sklearn._ version_)

import tensorflow as tf

print("TensorFlow version:", tf. version_)

Pandas version: 2.2.3

NumPy wversion: 1.24.3
Matplotlib version: 3.7.2
Seaborn version: ©.12.2
Plotly wersion: 5.24.1
Scikit-learn version: 1.5.1
TensorFlow version: 2.18.8

Figure 8: Checking the version details of libraries

e Step 3: Once everything is ready and installed, now all the libraries can be impor-
ted using the commands shown in the Figure [9]

Loading library

import pandas as pd

import numpy as np

import random

import matplotlib.pyplot as plt

import seaborn as sns

import plotly.express as px

import plotly.graph_objects as go

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train_test split
import tensorflow as tf

from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make pipeline

from sklearn.linear_model import LassoCV

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Input, LSTM, GRU, Dropout, Dense

from sklearn.metrics import mean_absclute error, mean_squared_error, r2_score

Figure 9: Importing all the libraries

6.3 Accessing the Datasets in Local Machine

The dataset can be accessed using a particular python command. The Figure [10| depicts
the way of accessing all the 9 datasets in the local machine.

Importing all the datasets

#Reading files into DataFrames

df items = pd.read csv("olist order_items dataset.csv")

df reviews = pd.read csv("olist order reviews dataset.csv")
df orders = pd.read csv("olist orders dataset.csv")

df products = pd.read csv("olist products_dataset.csv")

df geolocation = pd.read csv{"olist geolocation_dataset.csv")
df sellers = pd.read csv("olist sellers dataset.csv")

df payments = pd.read csv("olist order payments dataset.csv")
df customers = pd.read csv("olist customers dataset.csv")

df category = pd.read csv("product category name translation.csv")

Figure 10: Accessing the datasets

6.4 Merging the Datasets

e Step 1: The ‘Data Schema’ image shown in the code is added manually. The
image was first saved in the local directory named as olist_database merge.png,
shown in Figure [7] previously. The cell has to be made Markdown Cell and then
need to use this command for the image -

! [image .png] (olist_database_merge.png)

e Step 2: All the datasets has to be merged into single dataset which is required
for research using the following python commands using “inner join’ as shown in

Figure [T1]

Merging the dataset

ing the dataframes required for our ana

is for connecting order with items, payments, reviews, products, customers, and sellers.
df = df_orders.merge(df_items, on='order id’ ="inner")
df = df.merge(df_payments, on="order_id', how='inner’, validate='m:m")
df = df.merge(df_reviews, on='order_id", how='inner')

df = df.merge(df_products, on="product_id", how='inner')

df = df.merge(df|_customers, on='"customer_id', how="inner")

df = df.merge(df_sellers, on='seller_id', how='inner")

Figure 11: Command for Merging the Datasets

6.5 Checking Missing Values and Handling Them

e Step 1: The missing values were checked for the merged dataset using ’sum’
function. The Figure [12] shows all the missing values.

Checking for Missing Values
df.isna().sum()

order_id @
customer_id @
order_status @
order_purchase_timestamp @
order_approved_at 15
order_delivered_carrier_date 1235
order_delivered_customer_date 2471
order_estimated_delivery_date @
order_item_id @
product_id @
seller_id @
shipping_limit_date @
price °
freight_value @
payment_sequential @
payment_type °
payment_installments @
payment_value @
review_id @
revien score o
revien coment_title 103837
revien_coment_mess sge 67650
review_creation_date °
review_answer_timestamp @
product_category_name 1695
product_name_lenght 1695
product_description_lenght 1695
product_photos_gty 1695
product_weight_g 20
product_length_cm 20
product_height_cm 20
product_width_cm 20
customer_unique_id °
customer_zip_code_prefix °
customer_city @
customer_scate °
seller_zip_code_prefix @
seller_city @
seller_state @
dtype: intes4

Figure 12: Checking missing values

e Step 2: The missing values were found and handled using various methods like

— Forward fill

Backward fill

— Filling values with specific text

Using the median method

— Other context-specific techniques

The python commands used can be seen in Figure |13]

Handling the missing values by not dropping but filling them

#Handle missing date columns

df["order_approved_at'] = df['order_approved_at'].ffill()
df["order_delivered carrier date'] = df['order_delivered_carrier_date’].bfill()
df[*order_delivered_customer_date'] = df[‘order_delivered_customer_date'].bfill()

#Fill review comments with 'No comment'
df['review_comment_title'] = df['review_comment_title'].fillna('Ne comment')
df[*review_comment message'] = df['review_comment message'].fillna('No comment')

#Fill product category and product detail columns

df[*product_category_name'] = df[‘product_category_name'].fillna('Unknown')

df[*product_name_lenght'] = df['product_name_lenght'].fillna(df['product _name_lenght®].median(})
df[*product_description_lenght'] = df['product_description_lenght'].fillna(df[product description_lenght'].median())
df[*product_photos_qty'] = df[*product_photos_qgty'].fillna(df[product_photos_qty'].median())

#Fill product dimensions with median values
df[*product_weight_g'] = df[‘product_weight_g'].fillna(df[‘product weight_g'].median())

df[[*product_length_cm', 'product_height cm', ‘product width cm']] = df[['product_length_cm', 'product height_cm', 'product width_cm']].fillna(df[['produ

3

6.6

Figure 13: Handling missing values

Feature Engineering and Data Normalization

Step 1: Feature Engineering was carried out and all the new features where ex-
of the

tracted that are required for the research work. The Figure [14] shows some
examples of features extracte for the research work below.

Extracting New Features

1

df['purchase_day'] = df['order_ purchase timestamp'].dt.day
df['purchase week'] = df['order_ purchase timestamp'].dt.isocalendar().week
df['purchase_month'] = df['order_ purchase timestamp'].dt.month

df['purchase_gquarter'] = df['order_purchase timestamp'].dt.gquarter

df['purchase_year'] = df['order_purchase_timestamp'].dt.year

df['purchase_day of week'] = df['order_purchase timestamp'].dt.dayofweek

df['purchase is weekend'] = df['purchase day of week'].isin([5, 6]).astype(int)

Figure 14: Examples of some new features

Step 2: After this, all the features were encoded using 'Label Encoder’.
selection of Top 15 relevant features is done using ’Lasso Regression’ by cr
a pipeline as shown in Figure

eating

Feature Importance using Lasso Regression

X = df.drop(columns=[
‘price’,
‘order_id", ‘customer_id', ‘product_id', 'seller_id’,
"customer_unique_id', 'order_purchase_timestamp', 'order_approved_at’,
‘shipping_limit_date’, ‘'review_id', 'review_comment_title’,
‘review_comment_message', 'review_creation_date’,
"review_answer_timestamp’, 'order_delivered_carrier_date’,
‘order_delivered_customer_date', 'order_estimated_delivery_date’,
‘order_month', ‘order_year', 'order_item_id’

]
y = df['price’]

#Splitting into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

lasso = make_pipeline(StandardScaler(), LassoCV(cv=5, random_state=42))
lasso.fit(X_train, y_train)

lasso_importance = pd.DataFrame({

"feature’: X.columns,

"importance’: np.abs(lasso.named_steps['lassocv'].coef_)
1).sort_values(by="importance', ascending=False)

#Plotting all the important features

plt.figure(figsize=(12, 8))

plt.barh{lasso_importance['feature'], lasso_importance| ' importance’])
plt.title(Lasso Regression Feature Importance')

plt.xlabel(Importance')

plt.ylabel(Feature')

plt.show()

Figure 15: Feature Importance using Lasso Regression

e Step 3: This step involves in selection of Top 15 relevant features and combining
them into a single dataframe. After selection of relevant features, the data was
then Normalized using ’StandardScaler’ technique. Later, this data is split into
training and testing datasets which indicates the dropping of the target variable as
shown in Figure [16]

Selecting the top 15 relevant features

Set random seed for reproducibility

def set_random_seed(seed=42)
os.environ|'PYTHONHASHSEED'] = str(seed)
random. seed(seed)
np.random. seed(seed)
tf.randon. set_seed(seed)

set_random_seed()

top_15_features = [
*payment_value®, 'customer_type', 'freight_value', *payment_type®,
"payment_installments ', 'product_description_lenght',"payment_sequential’,
"product_weight _g', 'review_score', 'delivery_status', 'product_length_cn',
*product_photos_qty", 'purchase_year',’customer_state’,
*customer_zip_code_prefix’,

1

print(top_15_features)

['payment_value', ‘customer_type', 'freight_value', 'payment_type', ‘payment_installments’, product_description_lenght', 'payment_sequential’, 'product
_weight_g', 'review_score’, ‘delivery_status’, 'product_length_cm', ‘product_photos_qty', 'purchase_year', ‘customer_state', 'customer_zip_code_prefix']

Selecting top features and normalizing the data

#Selection of top 15 features
X_selected = df[top_15_features]
y = df["price’]

#Normalizing the data
scaler = StandardScaler()
X_selected scaled = scaler.fit_transform(X_selected)

#Splitting the data
X_train, X_test, y_train, y_test = train_test_split(X_selected_scaled, y, test_size=0.2, random_state=42)

Figure 16: Selection of top features and normalizing the data

10

6.7 Model Building and Training

e Step 1: This research focuses on running and building the models dynamically
for avoiding the duplication of code again and again. Figure shows the py-
thon command for creation of a 'pre-defined function’ to run all the three models
dynamically.

First we define a function to train and evaluate all the models dynamically

#Defining the function for dynamic model training

def train_and_evaluate_model with_graph(model, X_train, y_train, X_test, y test):
#Compiling the model
model.compile(optimizer="adam’, loss='mse', metrics=['mae’])

#Training the model
history = model.fit(X_train, y_train, validation_split=8.2, epochs=38, batch_size=32, verbose=1)

#Evaluation of model on Test data

y_pred = model.predict(X_test).flatten()

mae = mean_absolute_error(y_test, y_pred)

mse = mean_squared_error(y_test, y pred)

rmse = np.sgrt(mse)

r2 = r2_score(y_test, y_pred)

mape = np.mean{np.abs{(y_test - y _pred) / y_test)) * 100

#Returning metrics as a dictionary
return {"MAE': mae, 'MSE': mse, "RMSE’: rmse, 'R2': r2, 'MAPE’: mape}, history

Figure 17: Creating a function for building the models dynamically

e Step 2: The research work has taken three models into consideration. The advance
deep learning models implemented are - LSTM (Long Short-Term Memory) model,
GRU (Gated Recurrent Unit) model (Shiri et al.f 2023)) and a third model as a
Hybrid model that is the combination of (LSTM + GRU) together. Figures [1§]
19, and shows all the python commands used for training and building model
respectively below.

Training the LSTM MODEL

#le print the shape of X_train before reshaping
print(f"Shape of X_train before reshaping: (X_train.shape]")

#Reshaping the data if needed to add the timesteps dimension for LSTM
if len(X_train.shape) == 2:
X_train = X_train.reshape((X_train.shape[@], 1, X _train.shape[1])) # Add timesteps dimension
X_test = X_test.reshape((X_test.shape[@], 1, X test.shape[1]))

#le print the shape of X_train after reshaping
print(f"Shape of X_train after reshaping: {X_train.shape}")

#¥aking the Dictionary to store metrics for all models
model_metrics_with_history = {)

#We define the LSTM model
1stm_model = Sequential([
Input(shape=(X_train.shape[1], X_train.shape[2])), #(timesteps, features)
LSTM(64, activation='relu’, return_sequences=True),
Dropout(@.3),
LSTM(32, activation='relu’),
Dropout(8.3),
Dense(16, activation='relu'),
Dropout(8.3),
Dense(1) #Output Layer for regression

n

#Training and Evaluation of the mode
model_metrics_with_history['LSTM'], lstm_history = train_and_evaluate_model with_graph(lstm_model, X_train, y_train, X _test, y_test)

print(* ")
print(“LSTM Model Results:”, model_metrics_with_history["LSTM"])

Figure 18: Training the LSTM model

11

Training the GRU MODEL

#Defining the GRU model
o kel = SemprEmEl]]
Input(shape=(X_train.shape[1], X_train.shape[2])),
GRU(64, activation='relu', return sequences=True),
Dropout(@.3),
GRU(32, activation='relu'),
Dropout(@.3),
Dense(16, activation='relu'),
Dropout(@.3),
Dense(1)
)
T @ Evelleien of il
model metrics with history['GRU’], gru history = train and evaluate model with graph(gru model, X train, y train, X test, y test)

print(" ")
print("GRU Model Results:", model_metrics_with_history['GRU'])

Figure 19: Training the GRU model

Training the Hybrid MODEL (LSTM + GRU)

#Defining the Hybrid Model (LSTM + GRU)

hybrid model = Sequential(
Input(shape=(X_train.shape[1], X_train.shape[2])),
LSTM(64, activation='relu’, return_sequences=True),
Dropout(.3),
GRU(32, activation='relu'),
Dropout(®.3),
Dense(16, activation='relu'),
Dropout(0.3),
Dense(1)

1)

#Training and Evaluation of model

model_metrics_with_history['Hybrid'], hybrid_history = train_and_evaluate_model_with_graph(hybrid_model, X_train, y_train, X_test, y_test)

print(" ")

print("Hybrid Model Results:", model metrics_with_history['Hybrid'])

Figure 20: Training the Hybrid model (LSTM + GRU)

7 Model Evaluation

All the three models were evaluated.

The models were evaluated based on MAE (Mean

Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error),

R? (Coefficient of Determination)

Chicco et al.; [2021)), and MAPE (Mean Absolute

Percentage Error) Botchkarev| (2018

. In addition, the comparison plots of all values of

evaluation metrics on all the three models were shown by different graphs. Figures
and [22| depicts, all the Python commands required for doing the evaluation of all models.

Comparison of all metrics

Display Metrics as Heatmap

if not metrics_df.empty:
plt.figure(figsize=(10, 4))
sns.heatmap(metrics_df, annot=True, fmt="

plt.xlabel("Metrics™)
plt.ylabel("Models")
plt.tight_layout()
plt.show()

else:

metrics df = pd.DataFrame(model metrics with_history).T
print(“Final Metrics DataFrame:\n", metrics_df)

*.4g", cmap="coolwarm”, linewidths=8.5, linecolor="black"”, cbar=False)
plt.title("Comparison of Metrics Across Models™)

print("Error: Metrics DataFrame is empty. Ensure models are trained correctly.”)

Figure 21: Comparison of all metrics

12

Training and Validation plot for all the three models

def plot combined_training validation_graph(histories, model names):
plt.figure(figsize=(12, 8))

Plot each model's training and validation MAE

for history, model_name in zip(histories, model_names):
plt.plot(history.history['mae’], label=f'{model_name} Training MAE")
plt.plot(history.history['val_mae'], label=f'{model_name} Validation MAE', linestyle='--')

plt.title(Training and Validation MAE for All Models')
plt.xlabel(Epoch’)

plt.ylabel('Mean Absolute Error (MAE)')

plt.legend()

plt.grid(axis="y"', linestyle='--', alpha=0.7)
plt.tight_layout()

plt.shou()

Combine the histories and model names
histories = [1lstm_history, gru_histery, hybrid_history]
model_names = ['LSTM', 'GRU®, ‘"Hybrid®

Plot the combined graph
plot_combined_training validation_graph(histories, model_names)

Figure 22: Training and Validation for all the three models

References

Botchkarev, A. (2018). Performance metrics (error measures) in machine learning
regression, forecasting and prognostics: Properties and typology, arXiv preprint
arXiv:1809.03006 .

Chicco, D., Warrens, M. J. and Jurman, G. (2021). The coefficient of determination
r-squared is more informative than smape, mae, mape, mse and rmse in regression
analysis evaluation, Peerj computer science 7: e623.

Shiri, F. M., Perumal, T., Mustapha, N. and Mohamed, R. (2023). A comprehensive
overview and comparative analysis on deep learning models: Cnn, rnn, Istm, gru,

arXiw preprint arXiw:2305.17473 .

13

	Introduction
	Hardware and Software Requirements
	Hardware Configuration
	Software Configuration

	Development Tools for Image Creation
	Downloading the Jupyter Notebook
	Step 1
	Step 2
	Step 3

	Dealing with Zip file and loading it in Jupyter Notebook
	Methodology and Implementation
	Dataset Collection and Preparation
	Downloading and Importing Libraries Required
	Accessing the Datasets in Local Machine
	Merging the Datasets
	Checking Missing Values and Handling Them
	Feature Engineering and Data Normalization
	Model Building and Training

	Model Evaluation

