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1 Hardware and Software Requirements

1.1 Hardware Requirements

In this project, the following hardware was used:

• System: MacBook Pro M2 for preliminary preprocessing and development

• GPU Environment: Kaggle’s NVIDIA Tesla P100 GPU for model training and eval-
uation, ensuring efficient computation for resource-intensive transformer models.

• RAM: 16 GB, this will help in preprocessing and manipulating the data efficiently.

• Storage: 50 GB storage capacity for PubMed dataset, pre-trained weights, and
output models.

Figure 1: Hardware used
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1.2 Software Requirements

The following software tools and libraries were used in this project.

• Operating System: Development is on macOS while the model is trained on a
Linux-based GPU environment with Kaggle.

• Programming Language: Python 3.8 for all coding problems.

• Development Environment:

– Jupyter Notebook for local development/debugging.

– Kaggle Notebook for GPU-based training and execution.

• Python Libraries:

– Hugging Face Transformers: For building and training BERT, RoBERTa, Dis-
tilBERT and XLNet.

– PyTorch: The main deep learning framework used.

– Pandas and NumPy: For manipulating and preprocessing datasets.

– Scikit-Learn: For testing on performance metrics such as accuracy and F1-
score.

– Matplotlib and Seaborn: For creating plots.

– NLTK: For text preprocessing (e.g., tokenization, stopword removal).

Figure 2: Code Environment

2 Dataset Description

In this use case, we will use the PubMed Multi-Label Text Classification Dataset, Con-
tains titles and abstracts of scientific articles from PubMed. The dataset consists of
Medical Subject Headings (MeSH), hierarchical labels that are organized in a tree-like
structure to represent the traditional medical concepts that can be tagged to each of given
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paper. multi-label classification is a common challenge in healthcare text and can lead
to errors in different stages of the processing pipeline. analysis and can be helpful in as-
sessing how transformer models perform complex tasks https://www.kaggle.com/code/
mohamedaref000/pubmedt5/input?select=PubMed+Multi+Label+Text+Classification+

Dataset.csv

2.1 Key Features

• Titles and Abstracts: Each of them includes a title and an abstract intro devoting
details about the research work.

• MeSH Labels: Hierarchy of medical knowledge is covered under multi-label an-
notations data. For example:

– Root Label: Ear

– Subcategory: Ear Diseases

– Further Subcategory: Hearing Disorders

2.2 Challenges

• Multi-Label Structure: The classification task is further complicated by the fact
that articles can have multiple labels.

• Label Sparsity: Some labels occur infrequently, requiring careful preprocessing
to reduce dimensionality while preserving information.

3 Data pre-processing

To prepare the PubMed dataset for model training, several preprocessing steps were per-
formed to address missing values, label sparsity, and data inconsistencies. The following
points outline the preprocessing pipeline:

3.1 Handle Missing Values

• Missing entries in the Title and abstractText columns were filled with empty
strings to ensure data integrity.

• Records with missing MeSH Major labels were removed since they are critical for
the classification task.

Figure 3: Handling Missing Values
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3.2 Use MultiLabelBinarizer to Convert Labels into Binary Format

• The multi-label annotations were converted into a binary format using MultiLabelBinarizer.

• This transformation allowed the model to treat each label as a separate binary
classification problem.

Figure 4: Converting Labels into Binary Format

3.3 Text Cleaning Function

A custom text cleaning function was applied to remove noise from the text:

• Converted text to lowercase.

• Removed punctuation and special characters.

• Removed stopwords using NLTK.

Figure 5: Text Cleaning Function

3.4 Combine Title and abstractText for Model Input

• The Title and abstractText columns were concatenated to create a single input
field for the models.

• This step provided richer context for classification.

3.5 Split the Data

• The dataset was split into training and testing sets using an 80:20 ratio to evaluate
model performance effectively.
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Figure 6: Combining Title and abstractText for Model Input

Figure 7: spliting the Data

3.6 Save Processed Data for Model Training

• To break the cyclic nature of the data and reduce the training time, the raw pro-
cessed data was saved locally.

4 Evaluation

This project evaluation involved three steps: defining the models and tokenizers to be
used; training each model (and, in some cases, their corresponding tokenizer); and visu-
alizing the results in order to compare performance across each metric.

This section introduces the transformer models used in this study by describing their
definitions, training processes as well as visualizations of their performances.

4.1 Defining Models and Tokenizers

The transformer models that were evaluated in this work are BERT, RoBERTa, Distil-
BERT, XLNet. Along with each model was its respective tokenizer, which tokenized the
text input in a suitable manner for that specific architecture. We used the Hugging Face
Transformers library to load the models and the tokenizers.

Tokenization Process:

• BERT and RoBERTa: Using the WordPiece algorithm for text, splitting into
common subword units for more generalization and word context.

• DistilBERT: Used a light version of BERT’s tokenizer for efficiency and speed.

• XLNet: SentencePiece tokenization employed, a vocabulary-dependent method
allowing for more inclusive input tokenization.
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Figure 8: Save Processed Data for Model Training

Figure 9: Defining Models and Tokenizers

4.2 Train Each Model and Collect Results

All models were fine-tuned on PubMed dataset with same training set up for fair com-
parison. The parameters used during the training process were as follows:

• Optimizer: AdamW with a learning rate of 2× 10−5.

• Batch Size: 16.

• Epochs: 3.

• Loss Function: Binary cross-entropy for multi-label classification tasks.

Training Loop: Both models were trained and tested on the same splits of training
and testing data. Both performance metrics (accuracy, F1-score) and epoch-wise training
time were recorded to evaluate the efficiency and efficacy of the model.

4.3 Visualization

Various figures were generated to visualize these results and compare the performance of
the models based on different metrics.
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Figure 10: Train Each Model and Collect Results

Figure 11: Result-1

4.3.1 Model Performance Metrics (Figure 13)

For each model, a line chart was drawn, plotting the accuracy, F1-score and loss of the
model over the training epochs. This visualisation reflects the consistency and learning
patterns seen throughout fine-tuning.

4.3.2 Model Comparison Radar Chart (Figure 14)

A radar chart was drawn in order to obtain a multi-dimensional comparison of the models.
The metrics shown were accuracy, F1-score, loss and training time, indicating the trade-
offs between model’s performance and the computational costs.

4.3.3 Comparison Visualization(Figure 15)

To visualize training times for each model, we made use of a bar chart. The chart
highlights the computational efficiency of each model and how performance metrics trade-
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Figure 12: Result-2

off with training time.
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Figure 13: Model Performance Metrics

Figure 14: radar Chart
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Figure 15: Comparison Visualization
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