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Comparative Study of Transformer Models
for Text Classification in Healthcare

Parth N. Gosavi
X23223235

Abstract

The huge quantity of textual data grows exponentially, posing significant issues
in the field of research in healthcare, due to a large amount of storage and high
processing cost. It offers powerful solutions for classifying and organizing the text
data through text classification, an important step in text mining. The problem
is becoming more and more common in health care and text-based data such as
medical findings and scientific literature abstracts and thus demand for better ap-
proaches to text classification is a challenge in the field of healthcare. ALthough
many existing techniques are based on classical ML, models and rule-based methods,
they usually suffer from scalability issues due to sparsity of data and complexity of
medical language.

On the other hand transformer-based models such as BERT (Bidirectional En-
coder Representations from Transformers), RoBERTa (Robustly Optimized BERT
Pretraining Approach), DistilBERT (Distilled Bidirectional Encoder Represent-
ations from Transformers) and XLNet (eXtreme Language Net) have proven to
sweep these matters away. But large-scale applications to healthcare are still fa-
cing significant hurdles, primarily due to the heavy demand for compute and mixed
performance generalization on domain-specific datasets.

This project discusses transformer based models for a large scale multi-label
text classification on a biomedical dataset (PubMed). Because binary labeled doc-
uments according to such hierarchical taxonomy inherently benefit from hierarch-
ical relations of both the MeSH (Medical Subject Headings) ontology collection
and avoiding the label sparsity and complicated linguistic structures arising from
the correspondence to medical documents. We conduct a thorough performance
analysis of our models comparing accuracy, Fl-scores and training time. These
findings highlight the trade-offs between computation cost and performance, and
offer practical guidance as to the usefulness of these models for health care applica-
tions. As such, the work serves to further other natural language processing work in
the healthcare space and has actionable implications for decision support systems,
patient data analysis and healthcare informatics.

This increased the overall F1 score for BERT (0.8403), which is more accurate
but took longer to train than the other models used. RoBERTa was the balance
of precision with computational efficiency. DistilBERT won out in the end as the
fastest model, but at the expense of performance (accuracy). Ability to model
long-text dependencies, but more expensive computationally.
keywords: Transformer models, BERT, RoBERTa, DistilBERT, XLNet, Clinic-
alBERT, BioBERT, SciBERT, natural language processing (NLP), text classifica-
tion, named entity recognition (NER), document summarization, electronic health



records (EHRs), Medical Subject Headings (MeSH), multi-label classification, hier-
archical labels, computational complexity, long sequence processing, domain-specific
adaptation, tradeoffs, evaluation metrics, accuracy, precision, recall, F1-score, AUROC,
interpretability, medical knowledge graphs (KGs).

1 Introduction

This is an enormous challenge for healthcare, as the unstructured data produced each day
must be processed and analyzed. Patient feedback, clinical records, and research papers
are information dense, but their unstructured nature means that much of this informa-
tion is not available for decision making. Recent statistics show that 80% of healthcare
data is unstructured leading to inefficiencies and missed opportunities to improve patient
care [Moor et al.| (2023). This realization struck me personally when I saw how most
decisions in healthcare are made based on fragmented and disorganized information. The
above realization inspired me to investigate how advanced technologies, especially in nat-
ural language processing, could fill this gap. NLP offers unparalleled potential for text
data processing and structuring, with transformer models such as BERT, RoBERTa,
DistilBERT, and XLNet revolutionizing this field. With the ability to model complex
characteristics of language, these models can help solve technical problems such as multi-
label classification but can also provide meaningful impact in practice in the healthcare
domain constraints. Leveraging the PubMed dataset this project is my attempt to bridge
technology with healthcare to yield actionable insights for better patient outcomes.

Extracting valuable insights from text is one of the most significant challenges among
all of them as unstructured data generated inside the healthcare systems is a burden
for them today. A wealth of meaningful information is buried in clinical notes, research
abstracts, and patient records, and organizing and structuring it could enable better
decisions and outcomes Moor et al.| (2023). Given that my project examines the interface
of health and technology, it is such a model for how the advanced transformer models,
including BERT, RoBERTa, DistilBERT and XLNet, which are able to transform the text
classification landscape in healthcare as we know it. Drawing on the PubMed dataset
for research, the following paper aims to uncover the potential of these models to only
technically solve the multi-label classification problem, but also to actually have practical
implications in healthcare.

1.1 Research Objectives

e Evaluate existing state-of-the-art transformer models like BERT (Devlin et al.;
2019a), RoBERTa (Liu et al.; |2019a)), DistilBERT (Sanh et al.; 2020), and XLNet
(Yang et al.; [2019)).

e We will determine their performance on a text-heavy dataset, specifically classified
Medical Subject Headings (MeSH) labels based on PubMed Lee et al.| (2020)), which
is a main benchmark for healthcare NLP studies.

e First, metrics to analyze model performance: accuracy, F1-score, and compu-
tational efficiency (Yacouby and Axman; [2020) supply, which provides insights
into their relative applicability.



e Investigate the architecture, training paradigms, and multi-label classification prop-
erties of the selected Transformer models to determine their strengths and weak-
nesses, as well as their performance within healthcare domains.

e The Transformer models, though a breakthrough in the natural language processing
domain, are gaining applicability in health informatics as well, and review the
potential of these models in streamlining clinical workflows, e.g., decision support
systems and patient feedback interpretation (Huang et al.j 2019a; Park and Lee;
2023).

e Add to the growing body of NLP-specific research for healthcare, showcasing how
AT is impacting medical research and practice (Moor et al.; 2023; |[Nerella et al.;
2024])

1.2 Research Questions

The guiding question of this study is as follows:

how do transformer models differ for multi-label healthcare text classific-
ation when compared to other models, including their advantages and disad-
vantages?

In light of this overall question, the research will address the following sub-questions;

1. BERT, RoBERTa, DistilBERT, and XLNet perform how well on healthcare-specific
text classification tasks?

2. How well do these models on a text-rich dataset like PubMed in terms of accuracy,
F'1 score and training efficiency?

3. What is the computational trade-off between or performance improvements from
using compressible models such as DistilBERT vs more valuable models like XLNet.

4. What can be learnt from the outcomes of this study for better implementing NLP
models in healthcare use cases? For instance clinical decision support systems,
patient data analysis, etc.

The research does not only test the ability of transformer models in healthcare, but
it also sets the basis for their real-world applications by answering these questions.

1.3 Research Organization

In order to present the research in a structured manner, this report is divided into the
following sections:

e Introduction: In this section, the background, motivation, and scope of the study
has been described. This background demonstrates the challenges of healthcare
text classification and aligns with the research aims and questions.

e Background and Related Work: This section reviews literature existing in
reference to transformer models, their usage in healthcare, and existing challenges.
It recognizes research gaps and provides background for this study within the wider
context of Natural Language Processing (NLP) in healthcare.
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e Methodology: The selected dataset, preprocessing steps, and model implementa-
tion strategies are described here. This subsection describes the evaluation metrics
used to compare the models performance.

e Design Specification: This section details the technologies, tools, and system
architecture used to train and test the models. This also includes the reasoning
behind the chosen technologies that reflects their alignment with the research aim.

e Implementation: The Implementation section will go through the text mining
till the training of the models and also how the models are saved.

e Results and Evaluation: The performance metrics obtained from the transformer
models are discussed in this section and we compare their strengths and weaknesses
under multi-label classification tasks.

e Discussion and Conclusion: In this section we analyze the results, discuss their
implications on healthcare applications and propose future lines of research. It ends
with a discussion of the contributions of the study.

This type of organization allows for logical flow of information in the report and is
designed to allow each section of the report to build on information provided in earlier
sections so that a reader can gain a complete understanding of the study.

2 Background and Related Work

2.1 Introduction to Transformer Models

This is why transformer models revolutionized natural language processing (NLP), by
providing a mechanism that allowed for capturing high-dimensional semantic relation-
ships in a more effective way. The transformer architecture as depicted in Figure [T}
introduced in (Vaswani et al.f | 2017) “Attention Is All You Need” , employs self-attention
mechanisms to enable processing of sequences without recurrence, leading to parallel
computation and the modeling of long-range dependencies. This development paved the
way for even more complex iterations, such as BERT (Devlin et al.; 2018), RoBERTa (Liu
et al.; [2019a)), DistilBERT (Sanh et al.; 2019), and XLNet (Yang et al.j |2019). These
methods have excelled over conventional NLP techniques in tasks such as text classi-
fication, named entity recognition, and document summarization. Yet deploying such
models in healthcare presents significant difficulties, owing to the high dimensionality,
domain-specific language, and imbalanced nature of clinical datasets.

2.2  Application of Transformers in Healthcare

In the healthcare setting, text data of various sources like electronic health records
(EHRs), clinical notes and medical literature are increasingly available, but difficult to
utilize. Because EHRs may also contain lengthy text strings, structured and unstructured
data, and medical jargon, these strings require precise handling to preserve important in-
formation. For example, (Huang et al.; 2019b]) demonstrated the application of BERT in
predicting hospital readmission, verifying the model’s ability to learn valuable features
from EHRs. However, they found that the model had difficulty with truncation when
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processing long clinical notes. For instance, (Zhao, Singh, Xu et al.f 2020b|) showed that
even sequential models that excel at processing longer sequences than BERT, such as
XLNet, struggle to capture the full context available in multi-page EHRs.

2.3 Limitations of Transformer Models

It is also one of the greatest restrictions of transformer models in health. Though effect-
ive, BERT is computationally heavy in terms of training and inference which limits the
potential of low-resources settings (Devlin et al.; 2018). This problem is especially severe
in healthcare, where deploying models in real time clinical workflows requires solutions
to be lightweight but accurate. DistilBERT tackles this by using knowledge distillation
(Sanh et al.; 2019) to make a smaller and cheaper version of BERT. It has been demon-



strated that DistilBERT covers task complexity (Yang et al.; 2019) yet excels in easier
tasks, losing its steam on intricate detailed medical infrastructures.

2.4 Performance and Challenges in Healthcare Applications of
RoBERTa

RoBERTa, while providing a powerful optimization of BERT, is still a heavy compute.
(Liu et al.; 2019al) dropped the next-sentence prediction task and trained longer on more
data — which improved performance on standard NLP benchmarks (e.g. GLUE, SQuAD,
etc.). When applying general-purpose language models in the healthcare domain, (Peng
et al.; 2019) showed that RoBERTa achieves a higher recall and precision than BERT on
medical document classification tasks. However, RoOBERTa involves many folds greater
training periods and higher levels of resources thus becoming less viable in practical terms
especially to smaller healthcare systems with less infrastructure.

2.5 Evaluation Metrics and Standardization

Another major limitation is in the absence of consistent evaluation metrics across stud-
ies. Although most studies in NLP adopt typical classification metrics such as accuracy,
precision and recall, distinct health-care characteristics, such as the potential for skewed
datasets and the high need in most situations to reduce false negatives, means that we
often require additional metrics such as AUROC, specificity and sensitivity. Alsentzer
et al| (2019) also have explored the performance of Clinical BERT at task of discharge
summary classification but failed to report the finding in terms of complete metrics like
F1-score or MCC, which are essential for predicting accuracy in drastically imbalance data
set. Likewise, Lee et al.|(2020) gabbed about BioBERT’s performance in biomedical text
mining but failed to mention interpretability metrics, which are crucial for real-world
applications in healthcare.

2.6 Lightweight and Optimized Transformer Models

The model XLNet is also a state of the art model and was able to do some unique
gap closing between auto-regressive and autoencoding, which puts it in a great place for
healthcare NLP problems |Zhao, Singh, Xu et al.| (2020b) has demonstrated XLNet out-
performs BERT in extracting structured data from biomedical literature (the long clinical
note use case is valid) Yet, in spite of the improvement in prediction performance, its
increased computational cost is still a key hurdle to wider use of XLNet, rendering it more
unsuitable for smaller data sets or time-critical tasks Dai et al.| (2021)). Moreover, the
permutation-based pre-training for XLNet makes it harder to interpret and less explain-
able [Si, Zhao, Chen et al. (2019a), which is an important property of clinical decision
support system.

2.7 Comparative Analysis of Transformer Models in Healthcare

However, there have not been any holistic comparative studies to date alongside health-
care respective transformer models in the literature to allow for the models to be assessed
in a healthcare trial-like setting.. For example, the first to release a domain-specific vari-
ant for biomedical texts, SciBERT from Beltagy et al.| (2019), was fine-tuned in scientific



texts, but was not compared against general-purpose models such as RoOBERTa or XLNet
for healthcare applications. In a similar context, Sun, Li and Wang (2021)) examined the
performance of RoBERTa and DistilBERT on document classification tasks; however,
the trade-off between their computational efficiency and accuracy remains unexplored,
creating knowledge gaps about their applicability in resource-constrained settings.

2.8 Interpretability and Trust in Transformer Models

Another important gap is the lack of insights on interpretability metrics. Transformers
offer insights via attention weights, but such explanations are not easily interpretable
themselves, and are inadequate for impactful tasks such as disease prediction and risk
assessment (Si, Zhao, Chen et al.; 2019b). As pointed out in [Zhao, Singh, Xu et al.
(2020a)), if interpretable results are not provided, clinicians will be less willing to trust
model predictions, especially in tasks where the cost of mistakes is high.

2.9 Domain-Specific Transformer Models

Lastly, any research on domain-specific pretraining is largely constrained to comparisons
with general-purpose models. The applications of Clinical BERT and BioBERT demon-
strate gains in named entity recognition and summarization tasks (Alsentzer et al.| (2019);
Lee et al. (2020))), but those models regularly require relatively frequent task-specific
fine-tuning. However, the lack of studies evaluating either lightweight pre-trained mod-
els such as DistilBERT or computational heavy hitter language models such as XLNet,
have limited our understanding of the best performing models which can be feasible for
deployment in health care settings.

2.10 Medical Knowledge Graph (KG)

Medical Knowledge Graph (KG) a graph based representation — includes and intercon-
nects entities such as diseases, symptoms, treatments, drugs, genes and medical proced-
ures in a graph like structure. So here we have a node representing each entity and edges
model the relation between these entities that can help create complex interconnections
within the healthcare scope.

In summary, while transformer models are promising for general NLP tasks, their
utility in healthcare is still limited, especially in relation to computing requirements,
evaluation, interpretability and domain-specific processing. In conclusion, future work
needs to address the gaps highlighted above by performing systematic evaluations of
transformers on a variety of tasks across the healthcare domain using evaluation frame-
works which encapsulate a wider view of tasks relevant to the domain and algorithms
which aim for making the most efficient interpretable methods for the healthcare domain.

3 Methodology

A detailed methodology of the study including data collection, pre-processing, a roadmap
is followed for the implementation of the model and evaluation is presented in this section.
The chosen methods are expected to meet the high level requirement: analyzing per-
formance of transformer and pre-trained transformer models, such as BERT, RoBERTa,



Table 1: List of Earlier Reported Methods with Research Gaps

Feng (2019)

nition Dataset

Researcher Dataset Used Accuracy Research Gap

Huang et al|| Clinical Notes Dataset | 85.0% Handling with large clinical

(2019al) notes suffers from trunca-
tion issue.

Zhao, Singh, Xul | Biomedical Literature | 88.0% Multi-page EHRs made it

et al. (2020Db) Dataset hard to capture the full con-
text

Peng et al|| Medical = Document | 89.5% This needs longer training

(2019) Classification Dataset time and more computation
resources.

Alsentzer et _all| Discharge Summary | 84.3% Lack of comprehensive eval-

(2019) Dataset uation metrics (Fl-score,
MCC), not appropriate for
heavily imbalanced datasets

Lee et al. (2020) | Biomedical Text Min- | 85.5% No interpretability metrics

ing Dataset for real-world healthcare

applications

Dai et al.| (2021) | MIMIC-III Dataset 87.5% Computationally expensive,
not well-suited for smaller
datasets or for applications
that require them to run
quickly

Beltagy et al|| Scientific Text Data- | 87.0% Limited comparison with

(2019) set general-purpose models for
healthcare applications.

Sun, Wang and | Document Classifica- | 86.5% Trade-offs between compu-

Zhang) (2021)) tion Dataset tational efficiency and ac-
curacy remain unexplored.

Zhao, Chen and | Disease Risk Assess- | 88.2% Lack of interpretable results

Liu/ (2020)) ment Dataset for clinical tasks with high
cost of mistakes.

Si, Zhang and/ | Named Entity Recog- | 85.8% Requires  frequent  fine-

tuning for  task-specific
performance gains.

DistilBERT and XLNet in text classification for the healthcare field using a rich text

dataset.




3.1 Requirements and Contextual Analysis

Initial Dataset Fvaluation: Initially the dataset was a structured healthcare data with
columns as Name, Age, Gender, Blood Group, Medical Condition and many more patient
details. Although this dataset offered structured insights, it did not possess the linguistic
complexity necessary to utilize the full potential of transformer models. In initial trials,
the performance was pathetic, given the lack of rich textual data.

Dataset Selection: To address this limitation, the study changed to the PubMed
Multi-Label Text Classification Dataset. Kaggle MeSH Major Density Dataset - Dataset
of scientific abstracts annotated with MeSH Major labels. In addition, these labels span
hierarchy of medical concepts which makes it a great candidate to evaluate the multi-label
classification capability of the transformer models.

3.2 Details of PubMed Dataset

A Medical Knowledge Graph (KG) is a structured representation of medical knowledge
that organizes and connects entities such as diseases, symptoms, treatments, medications,
genes, and medical procedures into a graph-like structure. Each entity is a node, and
the relationships between these entities are edges, providing a way to model complex
interconnections in the healthcare domain.

We selected the PUBMED Multi-Label Text Classification Dataset because of the
complexity and the fact that this dataset was created for transformer based models.
We downloaded the KG datasets from Kaggle which have the scientific abstract text
against the vector with hierarchical Medical Subject Headings (MeSH) labels. This along
with classic annotations facilitates multi-label classification, making the dataset especially
relevant for healthcare use-cases which often involve multi-label classification.

https://www.kaggle.com/code/mohamedaref000/pubmedt5/input?select=PubMed+
Multi+Label+Text+Classification+Dataset.csv

3.2.1 Challenges and Opportunities

The PubMed dataset has unique features and challenges that are valuable for text clas-
sification research in healthcare:

e Multi-Label Structure: Thus, associate labels is not the only medical concept
found within Abstract, there will many cross and overlapping medical concepts.
This is quite similar to the current structure of existing multi-label systems based
on transformer models.

e Hierarchical Labeling: The labels used are the MeSH labels, which are hier-
archical in nature and enable generalization and specialization. There can also be
hierarchical relations among the tags, which means that a tag can contain another
tag (e.g. for Far Diseases the subtag may be Hearing Disorders). This hierarch-
ization maintains dependence between connected concepts, and therefore enhances
interpretability.

e Rich Textual Content: I trained it by inputting the abstracts, which are quite
dense and descriptive text. Thus, this dataset is a nice object to benchmark trans-
formers contextual understanding.


https://www.kaggle.com/code/mohamedaref000/pubmedt5/input?select=PubMed+Multi+Label+Text+Classification+Dataset.csv
https://www.kaggle.com/code/mohamedaref000/pubmedt5/input?select=PubMed+Multi+Label+Text+Classification+Dataset.csv

3.3 Motivation for Dataset Selection

These medical text facets further reflected that the underlying healthcare database was
not the best as there was low text density in the healthcare database and hence, peak
performance with transformer models could not be achieved and eventually moved to the
PubMed dataset. These limitations are mitigated with the PubMed dataset by:

1. Textual Complexity: We are not dealing with structured tabular data like the
PubMed dataset, though in the initial question and link of data is a greater know-
ledge that transformer models could take advantage of through the contextualized
learning.

2. Support for Multi-Label Classification: since medics are assigning a patient
with multiple health issues at the same time, the multilabel nature of the data set is
made to reflect the issues which are presented in medical records as far as multilabel
classification is concerned.

3. Hierarchical Structure: Since MeSH terms are hierarchical, they are more nom-
inal and provide the pathway to a term which can help increase the specificity of
model predictions.

4. Showcases Performance Improvements: The preliminary tests performed on
the PubMed dataset showed a significant enhancement in precision and F1 score
compared to the early generated structured datasets. These improvements suggest
that the dataset is suitable for healthcare text classification tasks.

Table 2: Description of columns in the PubMed Multi-Label Text Classification Dataset.

Column Name Description

Title The title of the PubMed article.

Abstract Text The abstract of the article, containing a summary of the
research or study conducted.

MeSH Major The Medical Subject Headings (MeSH) Major labels as-
sociated with the article. These labels represent medical
concepts and are hierarchically structured to reduce la-
bel sparsity.

3.3.1 Data Preprocessing
PubMed data was heavily preprocessed to be made fit for training AI models. First, you
do the following.

Tokenization: Image Tokenization is: the process of breaking down your text to smal-
ler parts often known as tokens for analyzing. You used tokenizers specific to the trans-
former:

e BERT/RoBERTa: The wordpiece tokenization process segments the words into
subword units, e.g the word classification would be tokenized to class + ification.
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e XLNet: This is a process of word segmentation for text that does not have any
given segmentations, like how SentencePiece tokenization works.

o DistilBERT: Utilizes BERT WordPiece tokenizer with cross-domain optimizations

Padding and truncation allows you to standardise the sequence lengths, which makes
all input batches identical.

Addressing Label Sparsity: Auto-boosting sparse MeSH labels:

e The labels are mapped into their first-level categories (e.g., Far Diseases would
map into Far), which collapses the unique labels into 16 categories.

e This allowed us to reduce the complexity of the classification problem as the hier-
archical mapping preserved the relationships among the correlated labels.

Text Cleaning: To remove inconsistencies, textual cleaning was performed on the data:

e The first part lower cases the variable text.

e Normalizing whitespaces and domain-dependent stopwords by special attention.

3.4 Model Implementation

Implementation and fine-tuning of pre-trained transformer models were done using the
Hugging Face Transformers library We chose these models due to their capability of
managing multi-class, hierarchical, and multilabel problems in NLP which is a typical
characteristic for PubMed Multi-Label Text Classification Dataset. Their unique cap-
abilities were evaluated in their ability to classify Medical Subject Headings (MeSH)
categories. Below explains how each model was used in this study:

e BERT : It uses a bidirectional transformer encoder that reads inputs surrounding
both sides of the text. In this approach, BERT was fine-tuned on PubMed to pre-
dict the multi-label MeSH categories. For example, its masked language modeling
(MLM) objective, which involves predicting masked tokens in a sentence, allowed
BERT to capture the complexities between medical concepts. The last output from
the encoder is passed through a dense classification layer to predict the set of MeSH
categories. The bidirectional nature of BERT enabled it to gain a superior under-
standing of text and achieve strong performances on natural language tasks, even
like frontiers like healthcare, along with deeper domain equalization model Devlin
et al.| (2019b)).

e RoBERTa : 1t is a refinement of BERT, which only investigates on masked language
modeling and not next-sentence prediction. To exploit this feature, RoBERTa was
fine-tuned on PubMed for the current study because it was previously pretrained on
relatively larger sets of data. Its capacity for generalization and performance with
subtle variations of words and context made it beneficial to tackle the intricacies
of medical abstracts. These modifications are found in the RoBERTa architecture,
including dynamic masking and a higher number of training steps, which allowed

11
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Figure 2: Workflow of the proposed method.

a noteworthy improvement on multi-label classification tasks. In Liu et al. (2019b))
the authors proposed to attach a classification head with the RoBERTa model that
is predictive towards the hierarchical MeSH labels with high accuracy.

DistilBERT: Tt is a distilled version of BERT that maintains 97% of BERT’s per-
formance with 40% less parameters. This model was designed to optimize MeSH
classification, being fine-tuned on the PubMed dataset, to achieve high computa-
tional efficiency on large corpus while retaining high accuracy. Because DistilBERT
is a result of knowledge distilling something from a general (or other) BERT model
[CN-5], it could potentially be used to deploy a BERT speech model on resource-
limited hardware. DistilBERT, for this research showed comparable results and
utilized multi-label predictions with low-cost computation Hinton et al.| (2015).

XLNet: In contrast, XLNet devises a permutation-based training method to model
bidirectional contexts without using the masking of tokens. XLNet differ from
BERT in that it generate all permutations of input sequence, meaning that it re-
tains dependencies across the full sequence. In this study, we employed XLNet pre-
trained on general language text and fine-tuned it using a generalized autoregressive
pretraining framework to classify MeSH categories. This framework leverages the
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strengths of both autoregressive and autoencoding models, offering an improved
capability for understanding the complex dependencies of medical text over and
above XLNet. The model was extended with a classification head that returned
multi-label predictions, albeit at the cost of increasing the computational demand
of the model, which required extensive hyperparameter optimization (Ahmed and
Madasamy; [2021]).

3.4.1 Training Configuration and Procedure

A standardized configuration was used for every model to ensure fair results and repro-
ducibility. Here are the configurations:

e Optimizer: The AdamW optimizer with a learning rate of (2 x107°) was chosen
for its stability and efficiency in fine-tuning large models.

e Batch Size: Tuning Algorithm was performed at a batch size of 16, achieving a
good balance between GPU memory consumption and computational overhead.

e [Epochs: Trained three epochs to learn enough, and not over-fitting.

e Hardware: The experiments took place on NVIDIA GPUs in the Kaggle environ-
ment to enable parallel processing capable of computing the transformer models.

Training pipelines have Structured Pipeline for adaptation of pre-trained models into
multi-label classification tasks. Specifically:

e Initialization: Models were initialized from pre-trained weights from Hugging Face,
which were then fine-tuned on the PubMed dataset. The output multi-label was
used to append a classification head.

e Forward Pass: Tokenized inputs obtained from the previous step were fed into the
transformer layers to extract contextual embeddings which were then passed to the
classification head to obtain the predictions.

e Loss Calculation: Binary cross-entropy loss for every batch when dealing with a
multi-label task.

e Backward Pass: The gradients were computed, and the weights were updated using
the Adam optimizer.

o Validation: Model performance metrics like accuracy or Fl-score were logged each
epoch for model performance improvements and overfitting/underfitting behavior
observations.

3.5 Evaluation Metrics

To assess model performance, the following metrics were employed (Liu et al.; 2021)):
o Accuracy: Measures the proportion of correct predictions.

Number of Correct Predictions

Accuracy =
Y Total Number of Predictions

13



e ['1-Score: Balances precision and recall, critical for multi-label classification.

Precision x Recall

F1-S =2 X
core Precision + Recall

e Training Time: Evaluates computational efficiency, crucial for real-world applica-
tions.

Training Time = Z T;

=1

3.6 Challenges

There are two most important challenges. These are:
e XLNet’s computational demands required a judicious choice of batch size.
e Addressing label sparsity and ensuring convergence across all models.

Methods, models, and dataset selection have been made based on the suitability of
computational efficiency and classification accuracy for text classification in healthcare.
The text-rich dataset and hierarchical label structure were critical in achieving meaningful
insights.

4 Design Specification

We present the design specification used for this research to describe the technologies, and
systems used to deploy and evaluate transformer models for healthcare text classification.
The software, tools, and hardware selected would ensure that computationally heavy deep
learning tasks could be successfully executed while maintaining an efficient workflow.

4.1 Technologies and Tools Used

To validate the research against the principles of robustness and reproducibility, cutting-
edge technologies were leveraged across the full project:

e Programming Language: The implementation was done usig python, the language
that is known for its large libraries and frameworks for ML and NLP.

e Development Environment: The experiments were performed on Kaggle Notebook
and Jupyter Notebook. The algorithm was implemented in Kaggle’s cloud-based
environment that offered GPUs and pre-loaded machine learning tools that ensured
computational ease of execution.

e Deep Learning Frameworks:

— The central library used for implementing and fine-tuning pre-trained trans-
former models, including BERT, RoBERTa, DistilBERT and XLNet, was the
Hugging face transformers It can be used with easy-to-use APIs for state-of-
the-art models.

— The same PyTorch was used as the deep learning framework for modeling and
inference due to its flexibility and dynamic computational graphs capabilities.
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e Data Processing: The dataset was preprocessed and tokenized using:

— Pandas is used to manipulate and clean data.

— NLTK for text cleaning, stopword removal, and other language processing
tasks.

— Tokenizers specific to models (such as WordPiece for BERT /RoBERTa or Sen-
tencePiece for XLNet) to ready text for transformer models.

e Evaluation Tools: Libraries like Scikit-Learn were used for performance metrics
calculation, like accuracy, F1-score, and confusion matrices.

4.2 Hardware Specifications

The hardware chosen for training and evaluation was adequate to meet the computational
requirements of the transformer models:

e MacBook Pro MZ2: Utilized initially phase working on the preprocessing phase and
light model testing. Data Prep tasks were efficient due to the high-speed processing
with the M2 processor.

e Kaggle’s NVIDIA GPUs: are used for computationally intense tasks: model train-
ing and inference. These GPUs dramatically speeded up the training and facilitated
compact fine-tunning of the large-sized transformer models on the PubMed dataset.

4.3 Workflow and System Design

The workflow was systematically designed to combine preprocessing, model training, and
evaluation into a streamlined pipeline:

1. Preprocessing: Initial tests were performed locally, cleaning the text, tokenize the
data, etc on the MacBook M2 to prepare the dataset for model training. Later we
tokenized the data and used it on kaggle’s environment for computation during the
training stage.

2. Model Training: All model fine-tuning was done on Kaggle’s GPU-provided note-
books. In order to fairly compare all models, batch sizes of 16, and three training
epochs were used for all models.

3. Deployment: We used Python scripts/libraries and performed everything in con-
junction with Kaggle Notebooks which implemented the complete training, fine-
tuning, and evaluation pipeline. The modular system architecture makes it adapt-
able and reusable for other healthcare-related NLP problems in the future.

4.4 Justification of Technologies

The combination of Python, Hugging Face, PyTorch, and Kaggle was selected for the
following reasons:

e Fase of Integration: Using Hugging Face and PyTorch, it’s not hard at all to
implement transformer models, and fine-tuning pre-trained architectures becomes
much less complicated.
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e Scalability: 1t scales with the size of your data (we used Kaggle’s TPUs for our code
because we wanted to be able to work with large datasets similar to PubMed).

e Reproducibility: The system design and tools established will allow other researchers
to replicate or reapply this research methodology for similar healthcare NLP tasks.

5 Implementation

In this part, we describe the specific methodology of the research, including text mining
steps (i.e. stop word removal and tokenization) and details of how transformer models
were applied for feature extraction and classification purposes. The last part of our
implementation is about saving the trained models for reproducibility and reusability in
later stages.

5.1 Text Mining

Years of experience in text mining resulted in an adequate management of the PubMed
dataset and transformer-based classification tasks. To improve concentration on rep-
resentative information and reduce the use of other residuals, words were not removed.
Common stop words like and, the and is were removed using pre-defined lists. Certainly,
we did focus quite a bit on domain-specific language in the healthcare field itself and
wanted to be sure we weren’t missing any key language in the important medical lan-
guage, because you can imagine that these words are used relatively often and could take
on critical contextual meaning.

This was tokenized via transformers specific tokenizers. Both was adapted into the
architecture that the trained model uses:

e BERT and RoBERTa: The WordPiece tokenization was applied, which allows to
break words into smaller components (subwords) for better handling the Out-of-
Vocabulary words. Classification, for example, can branch into class and identific-
ation.

e XLNet: to use SentencePiece tokenization for generating subword units dynamic-
ally, etc., so, it does not need to be fixed by a pre-defined vocabulary. Which gives
a way for better generalized for the diversities in text.

e DistilBERT: Retained the same tokenization that BERT used, which is fast and
contextually relevant.

In order to tailor sequences to input requirements of the model, tokenized sequences
padding to a fixed length, and truncation if necessary, were performed. Padding was used
to make every sequence in a batch the same length for having fast in-memory training.

5.2 Model Application

Transformer models were used to extract features and perform multi-label classification.
After tokenization, phrases were passed through the various transformer model layers to
produce contextual embeddings. These encapsulated semantic relationships and contex-
tual subtleties present in the text, which are vital for true classification in such intricate
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domains like healthcare. When you run a transformer, the attention mechanisms inside
are able to lock onto the parts of the text that mean most while down-weighting less
significant information in the text.

Each of these models added something different to the mix for classification:

e BERT: Trained with strong bidirectional context comprehension that could com-
prehend the connection between words within their complete context.

e RoBERTa: Base It is based on BERT’s architecture, and improves its performance
with better pretraining strategies and by removing the next-sentence prediction
task.

e DistilBERT: Presented a small and much more efficient alternative that achieved a
lot of BERT’s performance but required less resources, making it perfect for some
use cases with relatively limited computational power.

e XL Net:There is a resource-light computationally lightweight alternative that greatly
retains almost all of the performance for BERT, with much lighter resource require-
ments, ideal for resource-sensitive situations.

Each model was fitted at the end with a dense classification layer that could give
probabilities for each of the 16 MeSH Major categories. Binary cross-entropy loss was
adopted as the loss function for optimization during training in favor of multi-label clas-
sification. This is a loss function that takes an average measure of the error between
predicted probabilities and the actual labels of samples, which models adjust weights for
in an effort to realize better performance.

5.3 Saving the Models

Finally, I saved the trained models to use it later on for inference or fine tuning. The
fine-tuned models and the tokenizer all are saved with the Hugging Face Transformers
library.

We used the save_pretrained() method to export the trained weights and model
configurations. This creates a nested directory for each model with the classification layer,
transformer weights, and tokenizer configuration files. For instance, the BERT model
is downloaded along with its vocabulary file (e.g., vocab. txt), tokenizer parameters
(tokenizer. json), and model weights (pytorch model.bin).

They were saved together with the tokenizer files to ensure consistency during training
and inference. This is to ensure that the (multiple) tokenization process and in similar
parameterization during training have a corresponding method to apply when putting
the models into production.

from pretrained() was used to make the saved model easier to reload. This enables
the model to be loaded directly from the directory where it is saved and plugged into
inference pipelines or further training tasks. The models that were saved were uploaded
to the cloud for access and data security.

This was done to provide a seamless and reproducible process for text mining, model
application, and systematic saving of models in the leveraging of transformer models in
healthcare text classification.
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6 Results and Evaluation

The results and discussion section details the performance of the transformer mod-
els—BERT, RoBERTa, DistilBERT, and XLNet—on the PubMed Multi-Label Text Clas-
sification Dataset. These models were compared according to their accuracy, Fl-score,
loss, and training time across three epochs. The current section highlights the relative
strengths and weaknesses of each model with regard to healthcare text classification.

6.1 Performance of BERT

BERT performed consistently through the training process, for its training loss decreased
from 0.3577 in the first epoch to 0.2897 in the third epoch. In the end, it came up with an
accuracy value of 86.79%, reflecting its strong capability of understanding complex text
and classifying such text. It also gives an Fl-score of 0.8386, showing the good balance
of precision and recall. Although BERT showed efficiency, it was not the fastest among
the compared models, with a training time of about 170 seconds per epoch.

Training BERT..

/opt/conda/lib/python3.10/site-packages/transformers/optimization.py:591:
FutureWarning: This implementation of AdamW is deprecated and will be removed in
a future version. Use the PyTorch implementation torch.optim.AdamW instead, or
set "no_deprecation_warning=True” to disable this warning

warnings.warn(

Epoch 1 | Loss: 0.3577 | Accuracy: 0.8633 | F1: 0.8242 | Time: 170.64s
Epoch 2 | Loss: 0.2997 | Accuracy: 0.8666 | F1: 0.8340 | Time: 171.04s
Epoch 3 | Loss: 0.2897 | Accuracy: 0.8679 | F1: 0.8386 | Time: 170.78s

Figure 3: Bert Model result

6.1.1 Strengths and Limitations

Strengths: Strong bidirectional contextual understanding, enabling it to capture intric-
ate relationships within the input text and effective for multi-label classification tasks
requiring dependency modeling between categories.

Limatations: Relatively higher computational demands compared to lightweight mod-
els like DistilBERT and marginally outperformed in efficiency by DistilBERT and in
contextual optimization by RoBERTa.

6.2 Performance of RoBERTa

RoBERTa had a very good performance, where in the third epoch, it attained an accuracy
of 86.83% and an Fl-score of 0.8403. Its training loss decreased consistently from 0.3429
to 0.2884, hence closely following the performance of BERT. Each epoch took roughly
173 seconds, a bit longer than BERT, since RoBERTa has an optimized architecture
compared to BERT, plus pretraining strategies.
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Training RoBERTa..

/opt/conda/1ib/python3.10/site-packages/transformers/optimization.py:591:
FutureWarning: This implementation of AdamW is deprecated and will be removed in
a future version. Use the PyTorch implementation torch.optim.AdamW instead, or
set "no_deprecation_warning=True  to disable this warning

warnings.warn(

Epoch 1 | Loss: 0.3429 | Accuracy: 0.8656 | F1: 0.8313 | Time: 172.83s
Epoch 2 | Loss: 0.2953 | Accuracy: 0.8663 | F1: 0.8363 | Time: 172.80s
Epoch 3 | Loss: 0.2884 | Accuracy: 0.8683 | F1: 0.8403 | Time: 173.04s

Figure 4: Roberta Model result

6.2.1 Strengths and Limitations

Strengths: Better pre-training strategies that allows for better understanding of context
and classification tasks and performs remarkably well with nuanced relationships within
datasets thus making it robust for healthcare text classification.

Limatations: Training time is a little longer than BERT. More resource intensive than
DistilBERT, making it difficult for real-time or big data applications.

6.3 Performance of DistilBERT

Of these, DistilBERT was the most computationally efficient model requiring only 87
second per epoch but obtaining the highest accuracy of 87.13% and F1l-score of 0.8422.
Indeed, its training loss decreased steadily from 0.3556 to 0.2868 over three epochs. So,
this simplified model was able to be competitive, even with less complexity.

Epoch 1 | Loss: 0.3556 | Accuracy: 0.8651 | F1: 0.8338 | Time: 87.14s
Epoch 2 | Loss: 0.2968 | Accuracy: 0.8678 | F1: 0.8369 | Time: 87.16s
Epoch 3 | Loss: 0.2868 | Accuracy: 0.8713 | F1: 0.8422 | Time: 87.27s

Figure 5: Distilbert Model result

6.3.1 Strengths and Limitations

Strengths: Lightweight architecture ideal for resource-constrained environments. Re-
markable trade-off between computational efficiency and performance. Retained most of
BERT’s capabilities while being significantly faster to train.

Limitations: Slightly limited in handling extremely complex contextual dependencies
compared to models like XLNet and RoBERTa.

6.4 XLNet

XLNet performed well, yielding an accuracy of 87.06% and an Fl-score of 0.8420. Its
training loss decreased linearly from 0.3286 in the first epoch to 0.2864 in the third epoch.
However, XLNet took the longest to train, taking approximately 221 seconds per epoch,
which is indicative of its computational complexity.
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Training XLNet..

/opt/conda/lib/python3.10/site-packages/transformers/optimization.py:591:
FutureWarning: This implementation of AdamW is deprecated and will be removed in
a future version. Use the PyTorch implementation torch.optim.AdamW instead, or
set "no_deprecation_warning=True  to disable this warning

warnings.warn(

Epoch 1 | Loss: 0.3286 | Accuracy: 0.8651 | F1: 0.8353 | Time: 220.92s
Epoch 2 | Loss: 0.2952 | Accuracy: 0.8681 | F1: 0.8368 | Time: 220.96s
Epoch 3 | Loss: 0.2864 | Accuracy: 0.8706 | F1: 0.8420 | Time: 221.30s

Figure 6: XInet Model result

6.4.1 Strengths and Limitations

Strengths:

Implement a training approach based on permuting sentences such that captures
contextual dependencies effectively.

Great accuracy and Fl-score scores, very near DistilBERT.

Limitations:

6.5

Most computationally expensive, longest training time of any of the models.

Not ideal for resource-limited contexts or scenarios with a time constraint

Overall Evaluation

Best Accuracy: DistilBERT achieved the highest accuracy at 87.13%.

Best F1-Score: DistilBERT obtained the best Fl-score of 0.8422; closely followed
by XLNet (0.8420) and RoBERTa (0.8403).

Most Computationally Efficient: DistilBERT demonstrated the shortest training
time, making it the most efficient model.

Most Contextually Robust: XLNet excelled in capturing complex relationships, al-
beit at a higher computational cost.

Realization clearly states that the best performer in the test is the DistilBERT, which
delivers well in return for the computation required, thus potentially viable on limited
resources. RoOBERTa and XLNet are good alternatives if the application is relatively not
critical for contextual understanding.

6.6

Discussion

The results of this study present the relative performance of BERT, RoBERTa, Distil-
BERT, and XLNet for a healthcare multi-label text classification task. Each model has
presented various strengths and weaknesses, and there is an inherent trade-off in the
process of finding an effective balance between efficiency and performance. This section
analyzes the results by discussing implications for healthcare applications and the broader
implication of transformer models in Natural Language Processing.
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Table 3: Summary of performance from different models.

Model Final Accuracy (%) | Final F1-Score ngl]gglfcg I(I;e
BERT 86.79 0.8386 170.78
RoBERTa 86.83 0.8403 173.04
DistilBERT 87.13 0.8422 87.27
XLNet 87.06 0.8420 221.30

6.6.1 Comparative Analysis of Model Performance

In fact, the findings indicate that all four transformer-based models were able to cope
with the complexity of the PubMed dataset, achieving accuracy and F1-scores exceeding
86% at the last epochs. Among these:

e This reached a peak performance when DistilIBERT was used (accuracy of 87.13%,
F1-score of 0.8422) While it also achieved peak performance, it had the added bene-
fit of dramatically decreased train times per epoch, only requiring 87 seconds/epoch
to execute, making DistilBERT ideal in production scenarios or situations where
compute resources are limited.

e RoBERTa fl-scores at 0.8403, evidencing extraordinary domain contextual know-
ledge, and such refined resolution for the delineation of health texts. Despite being
the heaviest in terms of training time when compared to BERT and DistilBERT,
the improved pretraining strategies of RoBERTa paid off handsomely across all
metrics.

e BERT with accuracy of 86.79% and a decent Fl-score of 0.8386 with the base
model. But that, the huge plus which still remains true is the learning of context
bidirectional. This notwithstanding, its successors could outpace it a notch in
efficiency and performance.

e Costly, yet XLNet was almost as accurate as DistilBERT (87.06% accuracy and
0.8420 F1-score). The latter trained on permutated inputs that were able to capture
complex dependencies. Training one epoch takes 221 seconds, which means it would
be resource heavy for certain applications.

6.6.2 Performance Visualization and Analysis

The visualizations comprehensively compare the performance of the transformer models
— BERT, RoBERTa, DistilBERT, and XLNet — across miscalibrated scores providing
the insights related to strengths and weaknesses. Figure 7: The line chart "Model Per-
formance Metrics” shows the overall, as well as per epoch, high consistent accuracy and
f1 scores for all models, with minor deviations in loss values, where XLNet has higher
computational expenses per field accordingly reflected in the training time. Model Com-
parison Radar Chart (Figure 8) is a radar chart that shows a multi-dimensional compar-
ison between models like accuracy, F1-score, loss, and training time. This differentiates
XLNet, which makes a trade-off with higher computational requirements and far super-
ior F'1 score, this essentially differentiates DistilBERT which is computationally far more
efficient with marginal performance metrics to the previous-mentioned models. Figure 9
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: Separate visualizations of metrics in bar charts — accuracy, loss, F1-score and training
time. In comparison to other models, XLNet can be ranked with respect to accuracy and
F1-score however, the training time is way too long. Conversely, DistilBERT is a middle
ground with respect to accuracy and computational efficiency, which helps to make it
suitable for resource-constrained environments. These visualizations overall also elucid-
ate the performance versus efficiency trade-off present across transformer architectures
for healthcare text classification.

Model Performance Metrics
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6.6.3 Insight on Results

This study provides valuable insights into the effectiveness of transformer models for
the multi-label text classification task in the health-care field by means of the public
PubMed dataset. The following paragraphs describe the results, their implications and
their consistency with existing literature.

1. Model Performance Across Metrics

All transformer models (BERT, RoBERTa, DistilBERT, and XLNet) performed
very well with Fl-scores above 0.83 and accuracy rates greater than 86% according
to the study. But there also were some significant differences in their strengths and
weaknesses:

e DistilBERT: The fastest and computationally efficient model with the best
Fl-score (0.8422) and accuracy (87.13%) and the shortest training time (87
seconds per epoch). This demonstrate that it is applicable for real-world ap-
plications with limited computational power.

e XLNet: Proved to perform well with an Fl-score of 0.8420, on par with
DistilBERT, but at a much larger computational cost (closest to 221 seconds
per epoch). The permutation-based training technique utilized by XLNet,
allowed it to effectively capture complex contextual dependencies, making it a
valuable model for tasks needing profound contextual understanding.

e RoBERTa: It was able to attain a balance of contextual understanding and
performance, with Fl-score of 0.8403 and accuracy of 86.83%. Its superior
pretraining methods made it perform well on nuanced text classification tasks.
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e BERT": Despite being basic, resulted in Fl-score of 0.8386 and accuracy
86.79%. Although still outclassed by its descendants, its bidirectional archi-
tecture gave it strong contextual awareness.

2. Trade-offs Between Efficiency and Performance

The results demonstrate a trade-off between computational efficiency and contex-
tual modeling ability:

e DistilBERT: A distilled version of BERT that reached almost the same level
of performance while being smaller (36% less parameters) and faster to train,
which made the model very good to use for deployable environments with
limited computational resources.

e XLNet: Provided marginally better context awareness while leading to sig-
nificant computational burden making them impractical for real-world applic-
ations where speed or system resources were limited.

¢ RoBERTa and BERT: Middle-ground models, RoOBERTa being more effi-
cient for nuanced text classification since its pretraining techniques are inat-
tentive and more refined.

3. Implications for Real-World Applications

These results have a number of ramifications for health care applications:

¢ Real-time Systems: The efficiency of DistilBERT provides an opportunity
for the model to succeed in clinical decision support systems, in which rapid
predictions are critical.

e Contemporary Research: They also tend to outperform BERT on Sentence
Similarity or Classification, such as when the task involves clustering similar
patients or comparing patients to standard measures.

e General-purpose Use: For general healthcare NLP tasks, BERT continues
to be a sound choice, achieving a nice compromise between performance and
resource usage.

4. Comparison with Existing Research

The results are consistent with previous studies highlighting the transformer models
as state of the art for text classification in the healthcare domain. For example:

e The superior recall and precision of RoOBERTa seen in this study is in line with
Peng et al| (2019)’s results that show RoBERTa is optimized for fine-grained
text classification tasks.

e This aligns with the general efficiency of DistilBERT as concluded by Sanh
et al.| (2020) and is indicative of DistilBERT’s low resource nature.

This study builds upon earlier work by filling a gap with a holistic comparison with
four transformer models, providing pragmatic insights into their trade-offs towards
healthcare.

5. Limitations in Results

Although the findings are encouraging, some limitations were acknowledged:

24



e Dataset-Specific Bias: The tree-structured hierarchical nature and large
textual contents of the PubMed dataset may have introduced bias for tree-
structured models like XLNet and RoBERTa which cannot be generalized to
other datasets

e Computational Considerations: The comparatively larger training time
for XLNet has implications on its scalability in large scale healthcare.

6. Future Directions

Based the observations above, future research may consider:

e Increased applications of domain-specific pretraining approaches, such as BioBERT
or Clinical BERT tailored for healthcare datasets.

e Who probably evaluating on this stuff, diversity electronic health records
(EHRs) and patient-generated text improving generalizability.

e Exploring hybrids that inherit computational efficiency from DistilBERT and
contextual robustness from XLNet.

6.6.4 Broader Implications for NLP

This pick up of the discussion continues the research of transformer-based models for
professional applications across different domains. These results also highlight the ad-
aptability of these high performing models to hierarchical and multi-label classification,
even in a very niche domain, such as health care. They also highlight the necessity for
specific applications to select model(s) according to accuracy, computational efficiency,
and resource availability.

6.6.5 Limitations and Future Directions

Thus, while making their study novel by making discovery for transformers on healthcare
text classification, it had certain limitations:

o Computational Constraints: XLNet provides an implementation that takes a sur-
prisingly long time and requires a lot of resources, and therefore it is necessary to
develop more efficient computationally intensive models.

e Dataset-Specific Fvaluation: The results reported will be specific to the PubMed
dataset, and more general and in-depth understanding of the models capabilities can
be gained by performing further evaluations on other healthcare-related datasets.

Future research directions:

e Incorporation of domain specific pretraining (i.e. BioBERT or ClinicalBERT) to
further improve model performance.

e Evaluation of real world healthcare transformer applications, such as clinical note
summarization or electronic health record (EHR) analysis.

e Integration of lightweight architectures (such as DistilBERT) with more complex
models (such as XLNet) to enhance performance further.
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7 Conclusion and Future Work

So, what transformation to expect from transformer models like BERT, RoBERTa, Dis-
tilBERT and XLNet on healthcare text classification, this study has demonstrated. This
paper referenced real life health care applications, used the PubMed Multi-Label Text
(Classification Dataset to evaluate their performance, and analyzed the strengths and
weaknesses of these models. DistilBERT was efficient and XLNet and RoBERTa were
preferred when the number of contextual dependencies were complex but on multi-label
classification layered models performed decently. Given that BERT is a foundational
model, it actually represents a middle-ground model when it comes to performance and
efficiency.

This study serves as a demonstration that transformer models not only improve per-
formance across multiple classification of medical literature, summarization of clinical
notes, and real-time patient query analyses. Yet these trade offs of computational effi-
ciency for contextual fidelity do underscore the importance of deliberate model selection
for any given application. So for example, the DistilBERT variants perform well in
resource-constrained environments; on the other hand, XLNet could be far more effective
in applications where a better contextual understanding is required.

What does somewhat temper these encouraging findings is a number of study lim-
itations. This is very limited study on one representative dataset in absence of any
foundational study to appropriately generalize any variation (known in real examples)
across healthcare. The more recent use of the pre-trained transformer model without
pre-training on domain-considerations of the domain of domain-tuned variants, such as
BioBERT and Clinical BERT, does not lead to optimization of the terminologies utilized
in this area. A major limitation was the absence of comparisons with other models outside
the realm of transformers that could lend insight into other model-specific advantages of
the transformer architecture.

These predicates are some potential pathways for future research to broaden the ana-
lysis to include aim more categorical information, practically prepending clinical notes
or patient-generated text that would crib the generalizability of the models. Domain-
specific pretraining, e.g., weight-initialization on BioBERT or Clinical BERT, would cer-
tainly yield better performance for such models on healthcare specific linguistic tasks.
Similarly you should perform an ensemble algorithms investigation that is combining the
advantages of this set of various transformer algorithms toward the generation of an ag-
gregate algorithm that is useful by the majority of the objectives that require efficiency
but a strong expertise behind it.

Future works can also explore interpretability and explainability which are really im-
portant features for deploying Al models in healthcare. The techniques described, such as
attention heatmaps or layer-wise relevance propagation, might explain how models make
decisions, and as such improve trust and acceptance among health professionals. The
ability of transformer models to integrate into real-world health care workflows, whether
through clinical decision support systems or automated patient record management, will
provide a pragmatic avenue through which to validate the impact of transformer models
on improvement in health care delivery.

In summary, this review has been able to deliver a picture of how transformer models
can change the game for health care text classification as well as suggest directions for
future work in both research and real-world settings. The future of AI in health care
will be increasingly more rewarding when addressing its current shortcomings through
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identified limitations that need to be mitigated in the patient care quality and medical
practice.
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