

Configuration Manual

MSc Research Project

Data Analytics

Tamil Selvan Giri Moorthy

Student ID: x23189975

School of Computing

National College of Ireland

Supervisor: Mr. Bharat Agarwal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 Tamil Selvan Giri Moorthy

Student ID:

X23189975

Programme:

MSc Data Analytics

Year:

 2024

Module:

 MSc Research Project

Lecturer:

 Mr. Bharat Agarwal

Submission Due Date:

 12 December 2024

Project Title:

 Enhancing SMS Spam Detection Using Deep learning

Word Count: 1377

 Page Count: 11

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work is illegal

(plagiarism) and may result in disciplinary action.

Signature:

 Tamil Selvan Giri Moorthy

Date:

 12 December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) ☑

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).
☑

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

☑

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Tamil Selvan Giri Moorthy

X23189975

1 Introduction

This configuration manual will give the information what are the settings and necessary

steps that we are followed for this project. The SMS spam Detection project involves

building a machine learning, deep learning specially using BERT to classify SMS

messages as either ham (non-spam) or spam. The process includes preprocessing text

data, training a BERT model, fine tuning it for the classification task, evaluating its

performance on test data. The configuration manual guides you through the setup and

execution of the project, from data preprocessing to model training, evaluation, and

deployment.

2 Environmental Setup

We used Jupter notebook and google colab to run our project. Google colab provides access

to GPU and TPU to run a powerful deep learning models like BERT. So, for machine

learning and deep learning models we used Jupter notebook and Google colab for BERT

model.

2.1 Hardware Requirements

Since Google colab pro runs on cloud-based infrastructure, no specific hardware setup is

required from our local machine. But for optimal performance we need to ensure the

following.

• Google Account: A Google account is required to access Colab

• Internet Connection: A stable and fast internet connection is required to handle large

datasets for our ham and spam dataset and compute intensive operations like training

deep learning models like BERT

• Google Colab Pro Subscription: Access to Colab pro is recommended for higher

memory and longer runtimes, which are essential for large scale model training and

experimentation.

For Jupter notebook we used,

• Operating System: Windows 11

• Processor: Multi-core processor with Intel i5 or higher and AMD equivalent.

• Ram: Minimum of 16GB

2

2.2 Software Requirements

• Python: Python 3.7 or later (typically pre-installed in colab)

• Transformers: A library from hugging face for loading pre- trained BERT models

and fine-tuning them

• Keras: For building and training neural network models (can be used alongside

Tensorflow)

• Scikit-learn: For data processing, model evaluation and utilities like train-test

splitting.

• NumPy: For numerical operations and handling arrays.

• Pandas: For data manipulation and handling tabular data such as your interaction

matrix and the spam dataset.

• Matplotlib / Seaborn: For visualizing results, metrics and training curves.

• Google Drive: Since we are using Google Colab, we need to mount our google drive

to access datasets like the spam dataset and save model outputs.

Figure 1: Libraries which are used in BERT

This research was implemented using python which is a popular programming language for

machine learning models, along with Jupter Notebook as the development environment. We

need to check that python 3.12 is installed and properly set up. If it’s not installed, you can

download it directly from the official website and follow the installation guide. To use

Jupyter Notebook install Anaconda Navigator from its official website. Once installed, open

Anaconda Navigator, find Jupter Notebook in the application list, and install it. After

installation, launch Jupyter Notebook, which will open in your default web browser. From

there, you can access and run the research code files. The necessary libraries for both stages

of the research are included in the setup.

Figure 2: Libraries which are used in deep learning

3

Figure 3: libraries which are used in machine learning

3 Tools and Required Setup

3.1 Accessing Google Colab Pro and Jupter Notebook:

Sign in to Google account. Go to Google Colab, we have Google Colab Pro subscription, we

can access the enhanced GPU/TPU features. Start a new Colab notebook by clicking on

“New Notebook” from the Colab dashboard. In Jupter notebook we can directly do your code

in your local system by creating a new file.

3.2 Accessing Datasets from Google Drive:

To run the code with our datasets in Google Colab, we need to access the datasets stored on

Google Drive. We can mount Google Drive in Colab as follows:

This about prompt will authenticate your google account. Once authentication is verified you

can able to access the datasets stored in your google drive

Ham and Spam Dataset:

https://drive.google.com/file/d/1Si98Lgd2QnfHYqM-

lv6e3O5aBFnxLA4D/view?usp=sharing

3.3 Running the Code:

Once the dataset and libraries are loaded in both the platforms, we run the code in both colab

and jupter notebook. We need to check the code is following the structure required for your

research.

https://drive.google.com/file/d/1Si98Lgd2QnfHYqM-lv6e3O5aBFnxLA4D/view?usp=sharing
https://drive.google.com/file/d/1Si98Lgd2QnfHYqM-lv6e3O5aBFnxLA4D/view?usp=sharing

4

• Import necessary libraries for all 3 learning models.

• Then load dataset into pandas dataframes.

• Then understand the shape and structure of the dataset.

• Preprocess the data.

• Train models and evaluated results.

4 Configuration and set up for model Training:

4.1 Mounting Google Drive and Loading Data:

This code will load the datasets from Google Drive and print the first few rows to verify the

data.

4.2 Loading Data in Jupter Notebook:

 In Jupter notebook, we directly uploaded the file and printed the first few rows of the dataset.

4.3 Preprocessing steps:

First, we identify the shape of the dataset to understand the how many data are present in the

dataset.

5

Figure 4: preprocessing steps

Figure 5: preprocessing steps

The above figure 4 and 5 shows the code what are the preprocessing steps that we conducted

for project. By doing that we removed the unnecessary columns and irrelevant words from

the dataset.

6

4.4 Implementing Machine learning model:

 Once we pre-processed the data, we encode labels, applies TF-IDF vectorization with 50

features on spam data and splits the dataset into training 20% and test 80% sets using a

random seed for reproducibility.

Then we applied random forest classifier and make predications on the test set, and evaluates

performance using accuracy, confusion matrix, and precision.

4.5 Implementing Deep learning model:

 Mapping ham and spam

For deep learning model. This code maps ham to 0 and spam to 1, then splits dataset into

training 80% and testing 20% sets for message and the corresponding labels using a fixed

random seed.

7

Sequence and Padding:

The below code converts text messages into sequence, then applies padding and truncation to

ensure consistent input length for training and testing data.

Checking the shape before and after padding:

This code prints the shapes of padded training and testing tensors, then compares the

sequence lengths before and after padding.

Applied the deep learning models

Then applied all the deep learning models and concluded the results for all the models. The

below displays only one learning model.

8

4.6 Implementing Bert model:

Split train dataset into train, validation and test sets:

This code first splits the dataset into a training set 70% and temporary set 30% using a

train_test_split. The stratify parameter ensures that the label distribution is preserved across

both sets. Then, the temporary set (temp_text and temp_labels) is further split into validation

set 15% and test run 15%.

Import BERT Model and BERT Tokenizer

9

This code imports the BERT- base pretrained model and its tokenizer from the hugging face

transformer library for natural language processing tasks.

Tokenization

This code tokenizes and encodes text data from the training, validation, and test sets using the

BERT tokenizer, applying padding, truncation, and setting a maximum sequence length for

all sets.

Convert Interger into Tokens

This code converts the tokenized sequences, attention masks, and labels for the training

validation, and test sets into PyTorch tensors for use in deep learning models.

10

Define Model Architecture

This code defines BERT- based neural network model using PyTorch. It uses the pre-trained

BERT model for feature extraction, followed by a dropout layer, fully connected layers, and a

softmax activation for binary classification. The model returns classification logits.

Fine-Tune Bert

11

The train () function trains a BERT model by iterating over batches from the training data

loaders. It computes the loss using cross-entropy, performs backpropagation, updates model

parameters, and clip gradients to prevent exploding gradients. The function returns the

average loss and model predications for the epoch.

Start Model Training

This code trains and evaluates the model for each epoch, tracking training and validation

losses. It saves the model with the best validation loss and prints the loss value after each

epoch.

After we this steps, we evaluated the results for all the models.

Conclusion

This Configuration manual helps in settings up environment, verifying GPU availability,

loading and processing datasets, extracting Bert and other machine learning and deep

learning models by effectively addressing issues like class imbalance and using advanced

models. This setup is crucial for building the project aims to accurately detect the spam

messages with high performance.

.

