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Enhancing SMS Spam Detection using Deep Learning 

Techniques 
 

Tamil Selvan Giri Moorthy  

x23189975 
 

Abstract 

SMS spam is a major problem in mobile communication which will cause issues like 

financial loss and privacy violations. SMS spam detection is used to identify unwanted 

messages, protecting users from scams. The primary goal of SMS spam detection is to 

identify the difference between legitimate (ham) and unwanted messages(spam). Many 

models have been used to detect spam, but due to advancements in spam techniques we 

needed better detection methods to identify the advanced spam messages. Traditional 

machine learning models like Random Forest and deep learning models such as RNN, 

LSTM, BI-LSTM, and GRU have worked well in identifying spam messages, but it fails 

to understand the deeper meaning of the message. This research focuses on identifying 

these issues by using advanced Transformer models like Bert to compare whether these 

models will perform better than the traditional methods and other deep learning 

models. This research is very important because due to the rise in technology development 

spam messages are more sophisticated to identify, so we need powerful and accurate 

detection models to detect them. People use their mobile a lot for communication, 

transferring information and protecting them from unwanted messages will improve their 

security and user experience. Transformer models like Bert are good in understanding the 

deeper meaning of the word, so this research identify whether these models can expect to 

do a better performance compared to other methods in detecting SMS Spam.   
 

1 Introduction 
 

Spam messages, also known as unwanted or irrelevant texts, are a major issue in mobile 

communication, causing problems in financial scams and privacy violations. In this modern 

world mobile devices plays a vital role in communication and information exchange, so it is 

very important to have system to understand and identify the spam messages to stop these 

unwanted messages from the users to keep their information safe. Over the years, many 

techniques have been developed to detect the spam messages. Traditional machine learning 

models like, Random Forest and deep learning models such as RNN, LSTM, Bi-LSTM, and 

GRU. These methods are used before to identify the spam messages by understanding the 

patterns of text, but due to the advancements in spam messages it often changes the pattern of 

these messages, so these models struggle to detect more advanced spam messages 

 

The main issue in these models is that they don’t understand the deeper meaning and context 

of words in a message. For an instance, some spam messages use tricky language or hidden 

pattern in which it is difficult for these models to identify the context of message. These 

limitations reduce their effectiveness in identifying cleverly crafted spam. To overcome these 

challenges, advanced transformer models like BERT will give a better result in understanding 

sophisticated patterns and messages. BERT model is good at understanding the meaning of 

words based on the words around them. It will look the entire sentence to understand how 
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words are related to each other. By reading the entire sentence it will identify the true meaning 

of the message even if the text is tricky or complicated.  

 

This research focuses on using BERT to improve spam detection. It will compare BERT’s 

performance with older models to see if it does a better performance at identifying spam. By 

filling this gap in current research, the study aims to offer a stronger and more reliable solution 

providing new knowledge that could greatly improve spam detection system.  

   

The rise in technology has made spam messages more sophisticated and giving many 

challenges to detect spam messages with traditional methods. This research is crucial because 

it focuses on developing more accurate detection models to address this growing 

challenge. The immense rise of technology almost 80% percentage of peoples are using mobile 

devices, so stopping unwanted messages can help the users to their privacy information safe. 

 

Research question and Objectives: 

Research Question: Can Transformers models like BERT outperform traditional machine 

learning and deep learning model in detecting SMS spam.  

To analyse the performance of traditional machine learning models like Random Forest in 

spam detection. To evaluate the effectiveness of deep learning models such as RNN, LSTM, 

Bi-LSTM, and GRU for identifying spam messages. To assess the performance of Bert in 

detecting SMS spam and compare it with traditional and deep learning models. First, we need 

to understand the performance of each model. By go thorouging all this model performance we 

can determine which model is performing better.  

 

Limitations: 

This research has some challenges. First, the data used to train the models might have some 

biases which could affect the results. Also, the findings may not work well for every type of 

spam messages since spam can vary a lot. Another challenge is that advanced model like BERT 

need a lot of computer storage power to work, which might make it hard to use them in places 

with limited resources 

 

Assumption: 

The data used for training includes many different types of spam and regular messages, so it 

will give a good outcome. The result seen when testing BERT will work well on other similar 

data, not just the specific dataset used in the research. 

 

Structure of the report: 

 

1. Introduction: Provides the background, importance, research question and objectives. 

2. Literature Review: In this section we will discuss about previous research on SMS 

spam detection and identifies the gaps in the field. 

3. Methodology: Outlines the datasets, preprocessing steps, and models used including 

traditional machine learning, deep learning and Transformer models like BERT. 
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4. Results and Discussion: Presents and compares the performance of different models, 

highlighting the key findings. 

5. Conclusion: Summarizes the research, discusses implications, and provides suggestion 

for future work 

 

2 Related Work 

2.1 Understanding the classification of Ham and spam messages 

In this section we will discuss what we learned from the previous research paper to achieve our 

research question. First, we learnt about the basics of ham and spam messages. Saab et al. 

(2024), the author clearly explains ham and spam messages. This paper explains what kind of 

messages will lead to cause a spam message such as information overload users will receive 

too many irrelevant messages. Loss of productivity it takes time to sort out useful messages. 

Then security risks spam messages may contain malware or links to phishing websites. The we 

learned about what is ham message what type of information it will contain in the message. By 

analysing these papers, we learned about what is the difference between ham and spam 

message. 

2.2 Understanding the related work in SMS spam Detection 
 
In this section we will discuss the traditional methods which are used to classify the messages. 

By understanding this paper by Dada et al., 2019, we learned the rule-based filtering in which 

expert manually create rules to identify spam. For an instance message containing keywords 

were flagged as spam. In this paper the author explains the drawbacks of these models with 

lack of adaptability and high false positives. Then we learned about keyword-based filtering in 

which messages are scanned for specific words or phrases commonly found in spam. For 

instance, a message which words like ‘buy now’ or ‘exclusive offer’ might be flagged as spam. 

But these cannot adapt to new or disguised spam messages. Then false positives will legitimate 

the messages which contain flagged keywords are often misclassified. By reading this paper 

we learned about how traditional models analyze the text to classify the message.  

 

The field of SMS spam detection has been explored extensively with several approaches using 

machine learning and deep learning techniques. One such approach is the comparative study 

by Gandhi et al. (2024) which evaluates the performance of deep learning models such as Long 

Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) in SMS spam detection. 

The authors found that LSTM and Bi-LSTM models demonstrated a promising performance 

by achieving an accuracy of 92.98% and 93.98% respectively. The study highlighted the 

importance of model architecture in handling sequential data. However, one of the limitations 

of this study was its reliance on a relatively small dataset and the absence of hyperparameter 

optimization which could improve performance. Similarly, the Venkata Kalyani et al. (2024) 

study utilized a dataset which contains 5,570 samples and focused on handling class imbalance 

using oversampling techniques like ADASYN. The results show that hybrid model combining 

Bi-LSTM and GRU achieved an accuracy of 99% which outperformed the individual models. 

The paper emphasizes the potential of deep learning architecture in addressing class imbalance, 

but the study does not explore the computational complexity of these models, which may limit 

their scalability for large datasets. Additionally, Sarangi et al. (2024) performed a comparative 

analysis of various deep learning models, specifically focusing on SMS spam detection. Their 

work compared the performance of deep learning models such as Bi-LSTM and GRU, 

highlighting the superior performance of hybrid architectures. While the accuracy rates were 
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impressive, the authors did not provide an in-depth analysis of how their models handled 

varying data distributions or noise, which are critical factors in real- world applications. Now 

we will discuss about the Bert, Manish et al. (2019) performed a sentiment classification using 

BERT. The authors used BERT, a state-of-the-art model for natural language processing, to 

classify sentiments more accurately. Their experiments showed that BERT performs better than 

many other popular models for this task, even without using complex model designs. This 

paper suggests that BERT is an excellent choice for doing advanced text classification tasks. 

Raga and BL (2024) proposed a fine-tuned BERT model for SMS spam detection which 

outperformed traditional machine learning models like Naïve Bayes and Random Forest. The 

study showed an AUC of 96.10% and F1 score of 92% emphasizing BERT’s ability to capture 

the contextual meaning of messages. While BERT demonstrated superior performance, the 

study did not discuss the computational burden of fine-tuning BERT, which can be resource- 

intensive and may not be suitable for real-time spam detection in resource-constrained 

environments.   

2.3 Summary and Justification for research 
 

The reviewed literature highlights the effectiveness of machine learning and deep learning 

approaches in SMS and email spam detection, with notable success from models such as Bi-

LSTM, GRU and BERT. While these models offer significant accuracy improvements, 

challenges remain regarding class imbalance, scalability, and computational cost. Traditional 

machine learning methods like Random Forest and SVM are effective for smaller datasets, and 

it faces limitations in handling the complexities of evolving spam techniques. Given these 

finding, there is clear gap in the literature regarding the use of hybrid model that combine 

content-based and collaborative filtering approaches to enhance spam detection. Moreover, the 

computational limitations of fine-tuning deep learning models like BERT for real time 

applications need further exploration. Therefore, this research aims to address the gaps by 

leveraging a hybrid approach that incorporates both BERT-based content embeddings and 

collaborative filtering signals, with goal of creating a more efficient and scalable spam 

detection system. 

 

3 Research Methodology 
 

In this project, we followed a structured methodology to detect SMS spam messages effectively 

by using our traditional model approaches. The first step involves a collecting a dataset of 5,570 

SMS messages from Kaggle. These messages were classified as spam or ham, so it will give a 

foundation for training and evaluating our models. This dataset contains more legitimate 

messages than spam messages which provides an imbalanced dataset. To balance this dataset, 

we used the ADASYN oversampling technique to create a balanced representation. By 

conducting this step, we can check that the models will equally learn both spam and non- spam 

messages. After balancing the dataset, we pre-processed the data to make the dataset clean and 

organizes the raw text data to make easier for the model to analyse and understand the text 

data. Then we used TF-IDF (Term Frequency- Inverse Document Frequency) Sarangi et al. 

(2024) to convert text into numbers to help the model focus on the important terms to identify 

the message is spam or not and to predict the results more accurately. Then we applied our 

learning models to determine the results. The following process of this analysis are explained 

below in detail. 
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 Figure 1: SMS Spam Detection workflow 

3.1 Dataset Description 

In this analysis, we used dataset which is specially designed for SMS spam detection we 

gathered this dataset from Kaggle website. This dataset contains a total of 5,570 SMS messages 

which provides a reliable source for analysing and building a spam detection system. Each 

message is labelled as either spam or non-spam. Spam messages which contain a message that 

are unwanted, promotional, or fraudulent. It often sent the bulk messages to many people at 

same time. The non-spam messages which contain legitimate, and it will include regular 

conversations, personal texts or useful notifications 

 

      

Figure 2: describes the columns in the dataset 

3.2 Data Preprocessing 
 

Once we collected our dataset, we conducted a data preprocessing analysis. Firstly, we need to 

understand the dataset shape and how many columns and data entries are present in the dataset. 

Once we identified the data entries. Then we checked the number of null values and duplicates 

values presented in the dataset. We found there are 401 duplicate values present in the dataset. 

We dropped the duplicate values present in the dataset. After completing these steps, we 

cleaned the text data.  

3.2.1 Cleaning Text Data 

By cleaning the unnecessary elements, we can check the data is easier for the model to analyse 

and learn the text. The following steps will conclude how we clean text data. 

• Remove unnecessary characters: In this step we removed the unnecessary characters 

from the text data like exclamation marks and special characters such as @, #, $ and %. 
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These symbols will not give any meaning to the text and make it difficult for the model to 

understand the meaning of the words in-depth. By removing this special character from the 

text data, it will make the message simple and easier for the model to process the words. 

 

• Convert text to lowercase: we converted all text in a data to lowercase to check the 

consistency of the word. For an instance there are two words like “task” and “TASK” both 

the words will give the same meaning so it should be treated as same words, but casing in 

both words is different sometimes the model will mistakenly consider them as different 

words. To stop these mistakes, we lowercase the data and check uniformity across all 

messages. 

 

• Tokenization: In this process we break the text into smaller parts and store it as a token. If 

we have a sentence in our dataset, it will break the sentence, separate all the words from a 

sentence and store it as a token. By doing this process it will help the model to focus on 

individual words and their pattern instead of looking into a whole sentence. This step is 

very important to analyse the structure and meaning of the text. 

 

These above steps will ensure that the data is in simple, understandable, and organized form 

making it easier for the learning model to identify the pattern and relationships between words. 

3.2.2 Class Balancing 

After cleaning our text data, we need to build our model to detect spam messages. When 

building the model, one major problem will come which is data imbalance. This means there 

are more non-spam legitimate messages present in the dataset compared to spam messages. If 

we didn’t fix this imbalance, the model might focus too much on the majority class, and it will 

ignore the minority class. This issue will make the model fail to detect the spam message. The 

below figure 3 displays the number of ham and spam messages present in the dataset. We can 

clearly see that the dataset is imbalanced because 90% of messages are spam. So, we need to 

balance the dataset. 

 

                  
           Figure 3: displaying the imbalance between the messages 
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To balance our dataset, we used Adasyn (Adaptive Synthetic Sampling) technique. It will 

analyse the smaller group of messages in our dataset which is spam messages, and it will add 

the required amount of new spam examples to check both the spam and non- spam messages 

are equally balanced. By balancing the dataset, the model will identify better in spam messages 

even if the messages are hidden among a lot of non-spam messages. Now we ensure the model 

is trained in a fair mix of spam and non-spam messages in which it will help to detect spam 

messages more effectively. 

3.2.3 Feature Representation 

After balancing our dataset, now we need to convert the words in text messages to numerical 

format because the learning model will understand only the numerical values. To do this, first 

we need to split the messages into smaller parts and store them as tokens. A token is a single 

word which will store a character or a phrase.  

 

In machine learning, this tokenization process breaks the text into words and counts how often 

each word has appeared. These counts are helpful for doing calculations in TF (Term 

Frequency) – IDF (Inverse Document Frequency). This IDF will reduce the words which have 

appeared in all the messages in the dataset. These TF and IDF combine and calculate a final 

score for each word in a message. In deep learning these tokenization processes will not depend 

on basic word counts. First, it will break the text into tokens and then assign numerical 

embeddings to represent the deeper meaning of the words. 

 

For deep learning models tokenization and embedding will help the model to understand the 

relationships between the words and it will improve their ability to detect the unwanted spam 

indicators. By understanding the text as meaningful numbers, both approaches allow the model 

to understand and classify messages accurately.    

3.3 Data Transformation 

When we are working with text classification dataset, data transformation is essential to make 

the text into understandable structure for machine learning and deep learning models. This can 

be achieved by creating an interactive dataset and splitting the data. In this step we will explore 

how these processes were differed for traditional learning models, deep learning models and 

Bert. 
 

Creating interactive dataset: 

In traditional learning models we used TF-IDF vectorizer to transform each SMS message into 

a vector of numbers. Each vector represents the message numerically and captures the 

importance of specific spam- related words. Finally, it will combine these vectors with their 

corresponding labels (1 for spam, 0 for non-spam). In deep learning models will require the 

text to be tokenized and converted into sequences of number that will keep the order of words 

and context. First it will convert each SMS message into sequence of word tokens then it will 

assign each token into a unique numerical ID or embedding. If the SMS messages are varied 

in length, pad shorter messages to a mixed length to check the consistent input to the model. 

For Bert Model, it will work with pre-trained embeddings and special input formats. We used 

Bert tokenizer to split text into smaller chunks. Then we converted each token to unique ID 

from Bert and created an attention mask to understand which tokens are actual words and which 

are padding. By following these steps, we created an interactive dataset for our analysis. 
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Split Dataset: 

Once the dataset is we need to divide it into training and testing sets to evaluate the model 

properly. The data is divided into train and test. To train our model we used 80% of the data. 

To test our model, we used 20% of the data to evaluate the model performance. In deep learning 

model we used validation to monitor the model’s performance during training. For Bert model, 

since it is a pre-trained on large corpus, the focus is to fine-tune the dataset. We split the data 

into train, test and validation. It requires validation during fine-tuning to avoid overfitting on 

the training data.  

3.4 Data Modelling 

In this process we build the model development phase which involves training different models 

to classify messages which is ham and spam. It starts with a baseline model to set a performance 

benchmark and progresses to more advanced models for better performance. The below image 

gives a step in simple to understand the model for our analysis. The figure displays the proposed 

model for our analysis.   

 

                    

Figure 4: Proposed model for our analysis  
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3.5 Data Evaluation 

The final stage in building an SMS spam detection system is evaluating how well the model is 

performing. This step will help us to understand which model works best and we will describe 

why it is giving better performance compared to other models. It involves checking the 

performance of the models using specific metrics and analysing the results to draw meaningful 

conclusions. 
 

4 Design Specification 
In this section, we discuss the in-depth explanation of the design specifications, technique, 

tools and framework used in our spam detection analysis. It outlines methodologies 

implemented, the underlying requirements, and how these were integrated to achieve the goal 

of classifying the messages accurately. 

 

Overview of the Approach: 

In this spam detection project, we used three main approaches: Machine learning (ML), Deep 

learning (DL) and BERT which is a powerful tool used to understand the context of words 

effectively. Machine learning is started with simple models to create a starting point of the 

model to measure the result is good or bad these baseline models are fast and easy to train. In 

deep learning models we used more advanced techniques to improve the accuracy of spam 

detection by teaching the model to understand the complex patterns in the text. Finally, we 

used BERT, which is one the most modern and effective tools for understanding the meaning 

and context of words in sentences. BERT is especially good at understanding the relationship 

between the words, which makes it excellent for text analysis tasks like spam detection. 

4.1 Techniques and Frameworks Used: 

1. Machine Learning Techniques: 

We began our analysis with traditional machine learning models because it is very simple 

and fast by providing a baseline for performance comparison. 

 

Algorithms Used: 

We selected Random Forest (RF) because it works by combining many smaller decision 

trees to make accurate predictions. RF can easily handle numerical data, which is very 

important when working with transformed text data. 

 

Feature Representation: 

Venkata Kalyani et al. (2024) In traditional models we cannot process the text directly, so 

we used TF-IDF to convert text into numerical data. Term Frequency (TF), it measures the 

word which is most commonly present in all the messages. Words that show up more 

frequently are considered important within that message. Inverse Document Frequency 

(IDF) it measures the words which are uniquely present in all the messages. By combining 

TF and IDF we created a numerical vector that highlights words important for spam 

detection. 

 

 

 

 



10 
 

 

Implementation: 

Once we converted the text into TF-IDF vector, we can process this numerical data into 

the Random Forest classifier. The model will analyse these patterns to learn, and it will 

differentiate the messages between ham and spam. 

 

2. Deep Learning Techniques: 

After we finished the baseline models, we moved on to deep learning models to capture 

more complex relationships within the text. These models are designed to identify complex 

patterns. 

 

Architecture Used:  

The architecture used in this project is inspired by Gandhi et al. (2024). 

1. Simple RNN (Recurrent Neural Network): 

This model will read the text one word at a time, considering the order of words. It 

helps capture dependencies between words, but it can struggle when it is analysing 

longer messages. 

 

2. LSTM (Long Short-Term Memory): 

LSTM improves RNNs by remembering information from earlier in the message. Since 

it is very good in identifying the earlier words, it is useful for processing longer texts. 

 

3. BI-LSTM (Bidirectional LSTM): 

Bi-LSTM processes the text into two directions forward from start to end and backward 

from end to start. By reading the model in two directions it will give the model more 

context to understand the meaning of words based on their surroundings. 

 

4. GRU (Gated Recurrent Unit): 

GRU works like LSTM but is faster and simpler, it is very efficient to train the model 

particularly when we are working on the large dataset. 

 

5. Hybrid Bi-LSTM + GRU: 

To combine the strength of Bi-LSTM (it will understand the deep context of words) 

and GRU (it processes them quickly and efficiently) we build a hybrid model. This 

model balances accuracy with computational efficiency. 

 

Data Preprocessing for Deep learning models: 

Before training the models, we prepared the text by: 

• Cleaning: Removing the unnecessary punctuation and words which don’t add give any 

meaning to the sentence. 

• Tokenizing: In this process we break the sentence into token to provide an easy process 

and we converted the tokens into numerical formats using embedding layers in which 

it captures the meaning of each word into numerical form. 
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Implementation: 

• Each deep learning model was trained on the pre-processed data. During training, the 

models learned to identify patterns in spam messages (e.g. common phrases like ‘win a 

prize’ or ‘limited offer’) and non-spam messages (e.g. conversational texts like 

‘meeting at 3pm’). 

• We evaluated the models based on their accuracy, precision, and recall which measure 

how well the models are classifying the spam and non-spam messages. 

 

3. BERT 

Finally, we used Bert, which is a highly advanced tool for understanding text. It takes spam 

detection to the next level by capturing the meaning and relationship between all the words 

in a sentence. 

 

Why we use BERT? 

The traditional model will read the text one word at a time. But in BERT it looks all the 

words in a sentence at once both forwards and backward. This allows it to understand the 

full context of each word.  

Pre-trained knowledge: Bert has already been trained on massive datasets so it will 

understand a lot about language patterns. This will save our time and improve our 

performance. 

Context Understanding: It is excellent at understanding complex sentences, including 

sarcasm or ambiguous phrases that traditional models might failed to identify. 

 

Implementation: 

 

1. Tokenization:  

We used Bert’s tokenizer, which breaks the text into smaller pieces of words to ensure 

that every part of the message is identified by BERT model. For an instance ‘english’ 

might be broken into ‘eng’ and ‘lish’. 

 

2. Training the model: 

We fine-tuned the pre-trained BERT model on our spam dataset. This means we 

adjusted BERT to focus specifically on spam detection. During training, this model will 

learn the unique patterns of spam messages (e.g. promotional language or phrases like 

‘click here’) and how they are differing from non-spam messages. 

 

3. Classification:  

Bert generated contextual embeddings (numerical representations of words based on 

their meaning and context). These embeddings were used to classify the spam and non-

spam messages. 
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4.3 Implementation Required: 
 

1. Hardware specifications, dependent libraries and tools Used. 

 
For coding and testing, we used Jupyter Notebook and Google Colab. 
 
Jupyter Notebook: 
 

This tool allowed us to write and test code by step-by-step process. It’s user friendly and help 

us to visualize the results easily. 

 

Google Colab: 

 

This platform gave us access to run powerful compiler like GPU and TPU which made it faster 

to train our deep learning and BERT models. By using these tools and technique together, we 

can ensure that our project is efficient, accurate and well organized. These platforms will help 

us to handle simple and complex text pattern effectively, by improving our ability to classify 

messages as spam or not spam. 

 

 
 

5 Implementation 
 

In this process we explained the final process that we conducted for our analysis. 

5.1 Data Transformation and Preprocessing: 

Once we collected the dataset, first we focused on understanding the dataset. Then we go 

thorough the valuable insights of dataset. We pre-processed our dataset by removing the null 

values and unnecessary details from the dataset. Then we removed the extra characters like 

punctuation and symbols which doesn’t give the meaningful information. Then we converted 

all the text to lowercase to keep all the words consistent. Then break the sentence into token to 

provide an easy process and we converted the tokens into numerical formats using embedding 

layers in which it captures the meaning of each word into numerical form.  

5.2 Exploratory Data Analysis (EDA) 

Once we cleaned and transformed our dataset, we conducted an EDA to identify the valuable 

information of the dataset. In this step we visualized how many emails are spam and how many 

are non-spam. We identified most the emails are non-spam and only a smaller number of 

messages are spam. Then we measured the number of characters in emails to find the average 

length for spam and non-spam emails.  
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By visualizing this we identified spam messages are longer with an average length of 130 to 

180 characters. Non-spam messages are shorter averaging only 70 characters. Then we counted 

number of words and number of sentences are present in the dataset to find their average words 

and sentence are present in the dataset. By visualizing this we identified that the spam messages 

are longer, and it contains more words and sentence when we compared to non-spam messages. 

Features like length, word count, and sentence count can help to improve our spam detection 

model. This analysis will give a deeper understanding of the dataset and help us to prepare 

better features to train our machine and deep learning models. 

                               

 

Figure 5: Relationship between Email Length and spam classification   

 
 

                       

Figure 6: Correlation matrix for ham and Spam 

The above correlation matrix shows how features like email length, word count, and sentence 

count are connected. Email length and word count have a strong relationship (0.97). This means 
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longer emails usually contain more words. Word count and sentence count are also related 

(0.68) the emails with more words contain more sentences. Email length and sentence count 

have a weaker connection (0,62). This means that while longer emails might have more 

sentences, the relationship is not strong as with the number of words. 

 

Tools used:  

 

5.3 Model Development 

Machine Learning Model: In this process we divided the dataset into two parts 80% 

percentage of the data was used to train the model to teach it how to identify spam and non-

spam emails. 20% of data was saved to test how well the model works to check it can identify 

the spam emails. Then we trained the model with random forest algorithm to classify emails as 

spam or non-spam. The model was trained using TF-IDF in which we can transfer text into 

numbers by measuring how important words are in emails. After training our model, we tested 

the model performance using measurements like Accuracy, Precision and recall.  

Tools used: RandomForestClassifier, scikit-learn, TfidVectorizer. 

 

Deep Learning Model: In this process, first we balanced the imbalanced dataset. We changed 

the text labels ham and spam into numbers and then we mapped ham to 0 and spam is mapped 

to 1. After this step, we divided the dataset into test and train. We used 80% of data for training 

and 20% of data for testing the model.  

 

After splitting the dataset, then we pre-processed the text for further analysis. These models 

can’t understand the text, so we converted into numbers. To convert we tokenize the words and 

converted into numerical sequences finally we checked all the sequence are of the same length. 

To preprocess the hyperparameter we set a maximum length of sequence to 50 words. If the 

sequence has more than 50 words, it will cut off. We set a variable to cut off long sequences. 

In our code we create a tokenizer object with the defined hyperparameter and use it to process 

the training data. It will keep only the top 500 common words, and it adds a special token for 

any word not in the top 500. Then the tokenizer creates a word index where unique values are 

assigned in a unique integer. There are 4,169 unique words are present in the training data. 

 

After pre-processed the text we understanded few hyperparameter to control how the model 

works. Each learning model layer has 20 units to process the text data. We set return sequence 

to true to tell models to give output for every word in the input sequence. To prevent overfitting 

20% of nodes will be randomly turned off. Then we build the deep learning models. The models 

contain embedding layer which converts each word into numerical vector. The we processed 

the sequence of word embeddings. Each model uses two layers to analyse the sequence of 

words in the text. The first layer outputs a sequence for the second layer to analyse. The second 

layer processes the sequence and sends its output to final layer. The final layer uses a sigmoid 

activation function to give an output between 0 and 1 which indicates the message is ham and 

spam.   

 

After building the model we trained and compiled the models. Then we evaluated the results 

for all deep learning models. 
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BERT Model 

 

Splits the Dataset 

For this model we split the dataset into training, validation, and testing sets. First, we split the 

data for creating training and temporary data. The dataset split into 70% for training and 30% 

for temp text and temp labels. The labels indicate the spam or non-spam are also split in the 

same way. The second split is splitting the temporary data 30% from the first split. Validation 

data 15% of the total dataset. Test data 15% of the total dataset. The validation set is used to 

tune the model during training. The test set is kept separate to evaluate the model’s performance 

after training.  

 

Import Bert Model and Bert Tokenizer 

Bert cannot process raw text, so the tokenizer breaks text into smaller parts called tokens and 

converts them into numbers that the model can understand. Then Bert Tokenizer downloads 

and loads the tokenizer corresponding to the Bert-base-uncased model. It checks the text is 

processed in a way that matches how Bert was trained. The tokenizer ensures the text input is 

formatted correctly for BERT. 

 

Convert Integer sequence to Tensors 

In this step, The input id of training sets from the tokenized training data into PyTorch tensor. 

These input ids represent the words in training set, converted into numeric format by a 

tokenizer. Then we converted the attention mask from the tokenized training data into a tensor. 

An attention mask tells the model which parts of the input text are relevant, usually 1 for real 

words and 0 for padding words. It helps the model focus on the actual content and ignore 

padded parts. Then we converted the labels of the training data into a tensor. The labels are 

correct classifications (spam or ham) for each training message. The same step we followed 

for validation set and test set. 

 

Create Data loaders  

In this step, we prepared the training and validating datasets for use in a PyTorch model. First 

it defines a batch size then the training data, validation data are combined into tensor dataset 

which stores the input sequences, attention masks, and labels together. For training set, random 

sampler is used to shuffle the data during training, ensuring the model learns from varied 

samples. For validation set, a sequential sampler is used to keep the data in order. Both datasets 

are loaded into Data loader which helps manage batching during training and validation. 

 

Fine-Tune Bert 

In this step, we discuss Bert Fine-tune in this code function trains a model using a training 

dataset, optimizing its performance over multiple batches. The model is set to training mode 

total_loss and total_accuracy track the model’s performance, and total_preds stores prediction. 

The training data is processed in chunks every 50 batches are progressed and printed. Each 

batch is sent to the GPU for faster computation. Batch data is separated into input and target. 

For training the model previous gradients are cleared, predictions are made and difference from 

actual values is calculated using a function loss. Finally, predictions are moved to the CPU, 

reshaped and saved. After fine tune the Bert, we started model training and evaluated the 

results.  

 

Output: 

 After following these steps all the learning models are trained and ready to classify the 

spam messages with high precision and recall. 
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6 Evaluation 
 

In evaluation we will discuss the efficacy of the models used for spam detection highlighting 

their performance, strengths and trade-offs.  
 

 
    

Figure 7: Displays the top 50 ham words present in the dataset 

 

 

Figure 8: Displays the top 50 ham words present in the dataset 
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6.1 Key Findings 
 

Comparison of Models 

The chart below provides a comparative summary of the model performance 

 

Model  Accuracy    Loss   Precision  Recall  F1-Score 

Random Forest  0.89       - 0.58      -       - 

Simple RNN 0.51 0.49 0.92 0.66 0.14 

LSTM 0.92 0.87 0.97 0.92 0.92 

GRU 0.48 0.48 1.00 0.65 0.04 

Bi-LSTM 0.94 0.90 0.98 0.94 0.94 

Bi-LSTM + GRU 0.95 0.91 0.99 0.95 0.95 

BERT 0.98 0.89 0.99 0.93 0.99 

  

1. Random Forest 

This model achieved an accuracy of 89%. It means it identifies most of the messages. But 

the precision for spam detection is 58% means it misclassified many non-spam messages 

as spam. While it gives a overall good performance but it is less effective than advanced 

deep learning models in identifying spam messages accurately. 

 

2. Simple RNN 

The simple RNN has an overall accuracy of 51% which is very low. It performs well in 

detecting non-spam messages with a precision of 92% but struggles significantly with spam 

detection achieving only 49% precision. The recall for non-spam is extremely low at 8% it 

fails to identify most non-spam messages correctly. This imbalance shows that the model 

cannot handle complex data patterns effectively. 

 

3. LSTM 

The LSTM model achieves an accuracy of 93.98% it correctly classified most of the 

messages. The low error rate shows it effectively learned complex data patterns. This model 

is good in detecting longer messages. But it requires more computational resources and 

took longer to train the model compared to other simpler models. It is highly effective for 

spam detection task. 

 

4. GRU     

The GRU model performed poorly on this dataset, with an accuracy of 48%. While it 

correctly identified all non-spam messages with precision of 100%. But it struggled to 

recognize the actual spam messages with recall of 2 %. This indicates a strong imbalance 

in the results where the model favoured non-spam messages and failed to classify most 

spam ones. 
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5. BI-LSTM 

The Bi-LSTM model achieved an accuracy of 94% with strong performance in identifying 

both spam and non-spam messages. It had high precision and recall with F1 scores of 94% 

showing it was good at classifying both types of messages. Its strength lies in capturing 

context from both directions in text, making it one of the best models for detecting spam. 

 

6. BI-LSTM & GRU 

The Bi-LSTM-GRU hybrid model achieved 95% accuracy, performing even better than 

Bi-LSTM alone. It provided a better balance in classifying both spam and non-spam 

messages. By combining the strengths of Bi-LSTM and GRU, it improved the results 

slightly making it the best-performing model for spam detection. 

 

7. BERT 

The Bert model achieved an impressive 98% accuracy in detecting spam messages. It 

performed exceptionally well at identifying non-spam messages, with almost perfect 

precision and recall. For spam messages it also performed good by achieving a 93% F1- 

score. As a transformer model, Bert excels at capturing semantic and contextual 

information in the text. The most accurate model in the study highlighting its superiority 

for NLP tasks like spam detection. 

6.2 Discussion 

My research has some similarities and differences compared to the reference paper. The 

reference study showed that advanced LSTM-based models and hybrid architectures like Bi-

LSTM and GRU achieved excellent results with accuracy up to 99%. Similarly, in my research, 

LSTM models performed well, with Bi-LSTM achieving 94% accuracy and the Bi-LSTM-

GRU hybrid reaching 95%. However, the improvement from combining Bi-LSTM and GRU 

was minimal, suggesting that the hybrid model could be further optimized for better 

performance. My GRU model performed poorly, achieving only 48% accuracy, like Simple 

RNN, which struggled due to their inability to handle complex data patterns. This shows a need 

for better training techniques and fine-tuning. The Bert model in my research stood out, 

achieving 98% accuracy which aligns with the reference paper’s findings. However, Bert 

requires significant computational power, making it less practical in some cases.  
 

7 Conclusion and Future Work 
 

Conclusion: 
In this project, we aimed to answer the research questions: can Transformer models like BERT 
outperform traditional machine learning and deep learning models in detecting SMS spam. 
Through systematic analysis, we compared traditional models such as Random Forest, 
advanced deep learning models like LSTM and Bi-LSTM and the Bert model. Our key findings 
show that BERT significantly outperforms other models, achieving an accuracy of 98% and 
excelling in spam detection due to its superior ability to understand the semantic and contextual 
meaning of text. while traditional models like Random Forest provided reasonable accuracy of 
89% but it struggled with precision in identifying spam. Deep learning models, particularly Bi-
LSTM and the Bi-LSTM-GRU hybrid, demonstrated strong performance, with accuracies of 
94% and 95% respectively. However, they require optimization to achieve further 
improvements. The study highlights that spam messages are becoming more advanced and 
harder to identify. Models like Bert are very powerful because they can read messages like 
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humans do, understanding the meaning behind the text instead of just analysing individual 
words. By comparing these different models, this project shows that modern approaches like 
BERT are better suited for detecting spam messages in today’s world. These findings can help 
develop more effective tools to protect people from scams and unwanted messages. In our 
analysis Bert is the best choice model for detecting spam because it is accurate, smart and 
handles complex messages.  
 
Future Work: 
 
We can optimize a model Bert is powerful but requires a lot of computing power, which can 
be expensive and slow. To solve this, we can try light versions of BERT like DistilBert or 
ALBERT which are smaller and faster but still it maintains high accuracy. We can combine 
Bert with other deep learning models like LSTM or Bi-LSTM to take advantage of their 
strengths. This might create an even better system for detecting spam messages by using the 
best features of both types of models. So far, we worked with dataset of SMS messages. Next, 
we can test these models on real-world SMS data to see how they perform in practical solutions. 
This will show if the model work well outside of a controlled environment can handle real-life 
challenges like different languages or formats. Apart from the words in the messages we can 
extra features to improve the model. For an instance sentiment analysis to check if the message 
feels negative or promotional. Turn the research into a real product by creating a tool. This tool 
could be used by messaging platforms or mobile apps to automatically filter spam messages, 
improving user experience and security. There are steps we can implement in future to make 
the model more efficient, smarter, and can be used in real world applications. 
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