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Short-Term and Long-Term Traflic Flow Prediction in
Dublin Using Deep Learning

Gayathri Gangadharan
X22203427

Abstract

Efficient traffic control relies on accurate predictions of traffic distribution, par-
ticularly in highly interconnected cities like Dublin. This work assesses the effect-
iveness of Artificial Neural Networks (ANNs) and Convolutional Neural Networks
(CNNs) for predicting traffic flow across short-term (hourly) and long-term (daily
and monthly) intervals. The models were assessed using Dublin’s traffic flow data-
set with metrics such as R?, RMSE, MSE, and MAE.The results revealed that ANN
outperformed CNN in short-term (hourly) predictions due to its suitability for struc-
tured data. In contrast, CNN demonstrated superior performance in long-term
(daily and monthly) predictions by effectively capturing temporal dependencies.
However, both the models exhibited limitations in daily predictions.Additionally,
regional analysis highlighted the sensitivity of the models to localized traffic dy-
namics, emphasizing the challenges in accurately simulating specific regional traffic
behaviors.This paper explores the strengths and weaknesses of deep learning models
for traffic forecasting in Dublin, providing valuable insights into their application
for developing intelligent traffic systems.These findings contribute to a deeper un-
derstanding of the potential roles of ANN and CNN in enhancing smart traffic
solutions for urban environments.

Keywords— SCATS, Deep learning methods, Artificial Neural Net-
works, Convolutional Neural networks,Short-Term and Long-Term traffic
forecasting, Traffic flow prediction.

1 Introduction

Urban traffic management has become increasingly critical as cities like Dublin face rising
congestion, inefficiencies, and environmental challenges. Dublin’s road network exempli-
fies the complexities of managing growing traffic demand, necessitating innovative and
adaptive solutions. This study investigates the integration of the Sydney Coordinated
Adaptive Traffic System (SCATS) through deep learning techniques. SCATS, a widely
used traffic control system, adjusts signal timings based on real-time traffic flow (McCann
(2014)). By leveraging SCATS data and employing advanced neural network models, this
research seeks to enhance predictive accuracy and develop smarter traffic management
strategies.

Intelligent traffic control offers a robust solution to challenges such as traffic jams, pollu-
tion, and the exacerbated traffic issues caused by rapid urbanization. These difficulties
are further compounded by increasing vehicle populations and road density, highlight-
ing the need for efficient traffic control solutions. Among the various adaptive traffic



management systems,SCATS is a widely adopted example that adjusts signal phases in
real-time. While SCATS has proven effective, its ability to respond flexibly to the dy-
namics of traffic congestion requires improvement to address the growing complexity and
variability of traffic patterns.Machine learning techniques hold significant promise, lever-
aging traffic big data to solve complex modeling problems.Integrating neural network
models with SCATS to enhance real-time traffic predictions contributes significantly to
the development of intelligent transportation systems.

Dublin’s growing traffic congestion significantly impacts daily commutes, urban pro-
ductivity, and environmental sustainability. Addressing these challenges requires accur-
ate traffic forecasting and adaptive traffic control systems.Combining SCATS with deep
learning offers the potential to enhance traffic management by providing precise short-
term (hourly) and long-term (daily and monthly) predictions.Previous studies, such as
Medina-Salgado et al. (2022), have demonstrated the effectiveness of various machine
learning and deep learning models in traffic forecasting but underscore the need for eval-
uating performance across varying temporal intervals. By bridging this gap, this study
aims to advance Dublin’s vision for smarter and more sustainable city infrastructure.

Research Question: How do short-term (hourly) and long-term (daily and monthly)
prediction intervals impact the accuracy and reliability of deep learning models in pre-
dicting traffic flow in Dublin, both at a city-wide scale and within specific regions within
the city?

Research Objectives: The primary objectives of this study are:

e To analyze the impact of short-term and long-term prediction intervals (hourly,
daily and monthly) on the accuracy of deep learning models.

e To evaluate the effectiveness of Artificial Neural Networks (ANNs) and Convolu-
tional Neural Networks (CNNs) in forecasting traffic flow using Dublin’s traffic
dataset.

e To explore the applicability of this research in urban planning scenarios, such as
predicting traffic flow during events at specific locations in the city and at different
times, by leveraging actual traffic flow data and applying models like ANN and
CNN across various time intervals.

The study provides data-driven insights to aid urban planners in optimizing traffic man-
agement and developing sustainable city infrastructures.

The thesis structure is as follows: Section 2 discusses the Related Work, followed by
the Methodology in Section 3. Section 4 outlines the design specification, while Section
5 focuses on Implementation. The evaluation is discussed in Section 6, and the report
concludes with Section 7, which includes the Conclusion and Future Work.

2 Related Work

As urban centers expand and traffic volume increases, effective traffic management be-
comes vital for maintaining mobility, reducing congestion, and ensuring environmental
sustainability. Traditional methods struggle with the dynamic, non-linear nature of mod-
ern traffic systems.Deep learning has emerged as a powerful solution, addressing both
short-term and long-term forecasting challenges. This review categorizes the research
into four key areas as follows:



2.1 Deep Learning Approaches in Traffic Forecasting

Recent progress in deep learning has significantly enhanced the accuracy of traffic flow
predictions by effectively modeling intricate temporal patterns in traffic data.For instance,
Shao and Soong| (2016|) demonstrated the effectiveness of Long Short-Term Memory Net-
works(LSTMs) for short-term traffic forecasting, achieving a mean absolute percentage
error(MAPE) of just 5.4% on PeMS datasets, outperforming models like SVR, WNN, and
SAE.The research also emphasized the drawbacks of conventional methods like ARIMA
and Kalman filtering, which struggle to address the non-linear and stochastic nature of
traffic flows.While earlier non-parametric models like SOMs and K-NNs showed moder-
ate success, deep learning(DL) models, including LSTMs and DBNs proved superior by
capturing abstract data representations.The author also proposed integrating data from
adjacent roadways to enhance LSTM performance, emphasizing the potential of deep
learning in advancing intelligent transportation systems for urban environments.
Building on prior work in traffic forecasting with deep learning models,Fouladgar et al.
(2017) developed a decentralized deep learning architecture for real-time traffic conges-
tion prediction.Their approach uses local measurements and congestion levels from nearby
stations, eliminating the need for historical data and enhancing scalability.A regularized
loss function was employed to prioritize high-congestion samples, addressing dataset im-
balances. This decentralized method provides a real-time feedback, making it suitable
for new traffic station installations.Validated using traffic flow datasets from Northern
California, the model demonstrated its effectiveness in optimizing real-time traffic sim-
ulation and congestion estimation in urban contexts.These findings align with Shao and
Soong| (2016)) work, highlighting the potential of deep learning in advancing intelligent
transportation systems.

To improve traffic forecasting accuracy, |Ta et al.| (2022) proposed the Ada-STNet(Adaptive
spatio-temporal graph neural network) model, which enhances Spatio-Temporal Graph
Neural Networks(ST-GNNs) by addressing their limitations. Unlike ST-GNNs, which
rely on fixed graph structures, Ada-STNet dynamically learns graph topology using node
attributes, capturing both macro-level and micro-level spatial dependencies. This ap-
proach better represents complex traffic networks and enhances forecasting accuracy.The
proposed model, with a spatio-temporal convolutional layer and two-stage training, out-
performed existing models in real-world tests, excelling in normal and peak traffic condi-
tions, making it promising solution for intelligent transportation systems.

2.2 A Review on Short-Term and Long-Term Traffic Prediction

Short-term traffic prediction(STTP) has garnered significant interest due to the growth of
traffic data and advancements in Deep Neural Networks(DNNs).While traditional meth-
ods like ARIMA struggle to identify complex temporal and spatial interrelations, DNNs
excel in capturing these patterns to predict future traffic conditions.Recent research by ?
surveyed DNN-based methods for STTP and emphasized the importance of structuring
inputs to model spatial and temporal relationships effectively. Graph based models are
ideal for representing traffic networks, while grid-based models are often used in human
movement prediction. The study reviewed techniques such as Restricted Boltzmann Ma-
chines and graph-based networks, highlighting their reliance on inductive biases like loc-
ality and temporal continuity. However, a major challenge in the field is the lack of stand-
ardized benchmark datasets for method evaluation, which limits comparisons between
approaches.While STTP target short-term predictions, long-term forecasting of seasonal



trends also benefits from DNNs.

Accurate long-term traffic density forecasting is crucial for addressing fluctuations caused
by increasing vehicle populations and urbanization.? addressed this by developing the
W-CNN-LSTM model, which combines wavelet wavelet decomposition with CNN and
LSTM networks for improved day-ahead predictions.Wavelet decomposition separates
traffic data into high and low frequency components, allowing the model to better capture
long-term trends.Tested on an England traffic dataset, the W-CNN-LSTM outperformed
ARIMA, LSTM, CNN, and MLP models, demonstrating superior accuracy in forecasting
both fluctuations and trends.This integration of wavelet decomposition and deep learn-
ing represents a significant advancement, offering a reliable approach for long-term traffic
forecasting essential for urban transportation planning and congestion management.

? proposed a DBN(Deep Belief Network)-based ensemble model for short-term traffic
flow prediction, combining ensemble Empirical Mode Decomposition (EEMD) for data
decomposition and Minimum Redundancy Maximum Relevance (MRMR) for feature se-
lection.Each component is trained with DBN, and the forecasts are integrated to produce
the final prediction. This approach outperformed traditional methods, including single
DBNs, by effectively addressing the non-linear nature of traffic data.Validation on real-
world datasets confirmed its superior accuracy for short-term forecasting.Future research
could explore LSTM-based ensembles or optimization strategies to adapt the model to
more complex road networks.

2.3 Advancement and Challenges in SCATS Integration With
Deep Learning for Traffic Management

The integration of SCATS with deep learning has the potential to improve urban traffic
management through real-time signal control and predictive algorithms, as noted by
Panda and Nguyen| (2016).However, challenges include the spatio-temporal complexity
of SCATS data, irregular traffic patterns, noise, incomplete data, and significant compu-
tational demands.Scalability issues also arise, with risks of losing spatial relationships in
large networks.Additionally, random events like accidents, and public gatherings remain
difficult to predict, and real-time synchronization with SCATS is technically challen-
ging.Improvements could include advanced neural architectures like LSTMs or GRUs,
hybrid models, automated traffic data clustering, and IOT-based data acquisition for
higher accuracy.Incorporating contextual factors like weather or event data can further
enhance model robustness, paving the way for more intelligent and adaptive traffic sys-
tems.

Xu et al.| (2019) highlighted the importance of traffic forecasting in intelligent transport
systems, particularly under SCATS.Traditional methods like ARIMA, Kalman Filters,
KNN, and SVM struggle with the dynamic, non-stationary, and spatio-temporal nature
of traffic data. While LSTMs and GRus better capture temporal features, they fall short
in identifying spatial relationships critical to urban traffic patterns.To address this Xu
et al. (2019)) developed the Graph Embedding Recurrent Neural Network(GERNN), com-
bining Deep-walk for spatial features and LSTM for temporal dependencies. Tested on
Hangzhou SCATS data, GERNN improved RMSE and MAE by 19-25%.Future work
includes enhancing architectures, tuning parameters, and scaling GERNN for broader

SCATS datasets.



2.4 A comparison of Model Performances in Predicting Traffic
Flow Using Deep Learning Methods

Related works Methods Findings Limitations
“A Deep Learn- | Spatiotemporal Graph | The proposed STGCN | The proposed deep learn-
ing Approach for | Convolutional Net- | model excels in pre- | ing method is limited by
Long-Term  Traffic | works(STGCN), diction, achieving wup | its reliance on monitor-
Flow Prediction | GRU, Temporal | to 43.27% RMSE and | ing point data with clear
With  Multi-factor | Graph ~ Convolutional | 50.47% MAE reduc- | location, computationally
Fusion Using Spa- | network(T-GCN), tions, with R? value of | expensive fully connected
tiotemporal  Graph | LSTM, Attention- | 0.96,further enhanced | graphs for larger data-
Convolutional Net- | based Spatiotemporal | by integrating meteor- | sets, and a narrow focus
work.”lQi et all| Graph  Convolutional | ological factors, which | on meteorological factors
(2022]) Networks(ASTGCN), reduce RMSE by 5.82% | while neglecting influences
Adaptive Graph Con- | and MAE by 8.28%. like holidays or traffic acci-
volutional =~ Recurrent dents.
Networks(AGCRN)
“Deep learning for | Sparse Vector Auto- | DL model DLMS8L | The paper highlights lim-
short-term traffic | Regressive(VARMSL), | outperformed both | itations in the DL model’s
flow prediction” | Deep learning | VARMSL and NNMSL, | low interpretability, de-
Polson and Sokolovl | model(DLMS8L, us- | achieving higher | pendence on effective data
(2017) ing sparse predictors | accuracy(R?:0.87in- preprocessing, and reduced
and  median filter- | sample, 0.85 out-of- | accuracy without external
ing preprocessing), | sample) and lower MSE | predictors like weather
One-Layer Neural Net- | (6.32 in-sample, 6.54 | during non-current events.
work(NNMSL) out-of-sample).
“Short-term  traffic | ARIMS, SVM, K- | The Conv-LSTM | The limitations include re-
flow prediction with | NN, SVR, Stacked | model, enhanced by | liance on high-quality in-
Conv-LSTM” Liul | Denoising Autoen- | Bi-LSTM, outper- | put data, which may not
et al.| (2017) coder (SAE), Deep | forms CNN-LSTM and | always be available, and
Belief Network (DBN), | traditional =~ methods, | the computational cost,
LSTM,CNN-LSTM, achieving the highest | particularly in real-time
And proposed mod- | accuracy for urban | applications.Also, its per-
els:  Conv-LSTM and | and freeway short-term | formance may suffer from
Bi-directional =~ LSTM | predictions with RMSE | insufficient or imbalanced
(Bi-LSTM) 6.419 data during unusual traffic
events.
“Attention based | Baseline models (HA, | The proposed model | The ASTGAT model lacks
spatiotemporal ARIMA, VAR) and | outperformed other | validation for multi-scale
graph attention net- | DL models (LSTM, | models, reducing RMSE | information, broader util-

works for traffic flow
forecasting” |[Wang
et al. (2022)

GRU, STGCN, Geo-
Man, ASTGCN). And
the proposed model
Attention-Based  Spa-

tiotemporal Graph
Attention Network
(ASTGAT)

by 7.4% and MAE by
5.8%, while addressing
over-smoothing and
network  degradation
for improved medium
and long-term traffic
prediction accuracy

ity beyond traffic flow pre-
dictions, and generaliza-
tion to datasets with differ-
ing characteristics.

Table 1: A comparison of Model performance in traffic flow prediction




2.5 Conclusion

This review explores the potential for further advancements in deep learning (DL) to
enhance short-term and long-term traffic flow prediction. Deep learning models like
LSTM and GRU’s have demonstrated superior performance compared to simple baselines,
while ST-GNNs have also shown better results than traditional methods. However, most
previous research has focused on single-interval forecasts, such as short-term or long-term
traffic predictions, leaving a gap in models capable of having multiple intervals like hourly,
daily, and monthly traffic forecasting. The purpose of this project is to address this gap
by proposing deep learning models that accurately estimate traffic flow across different
intervals, providing valuable insights to urban traffic departments.

Despite these advancements, integrating deep learning with systems like SCATS presents
challenges, including computational complexity, data sparsity, and real-time processing.
Future works should prioritize hybrid models, enhancing scalability, and incorporating
external parameters such as weather conditions and public events to refine prediction
accuracy. Addressing these challenges will facilitate the development of robust traffic
management architectures capable of adapting to the demands of modern cities.

3 Methodology

The process of steps adopted in this study to apply and incorporate the SCATS data into
a deep learning model to forecast the traffic flow in Dublin is outlined in this section.
The CRISP-DM is used to follow a model approach to deal with raw traffic data to gain
valuable insights out of these data that will help to model accurately and effectively. There
are six potentially six distinctive parts of the proposed methodological framework as
depicted in Figure[I] These stages are designed specifically for incorporating SCATS data
with the deep learning model to enhance an accurate and efficient traffic flow prediction

system.

Data Understanding Feature Engineering
Data analysing. Handling Data Preprocassing
rull values and EDA to splitting data into training ,
examina traffic flow testing and validation sets

tramds

e

Data Collection
Gathering SCATS Data

&%
ES

35

. Model Training
Model Testing Model selaction
Model Evaluation Developing ANN and ANN and CNN,
Evaluating models CNN models and Training Process
using R2 values optimizing them for

specific intervals.

Figure 1: Methodology Flow Chart



3.1 Data Understanding
3.1.1 Data Overview

The dataset utilized in this study was sourced from the public platform Smart Dublin,
maintained by the four Dublin Local Authorities. It provides historical traffic flow re-
cords for Dublin, accessed through the link: https://data.smartdublin.ie/dataset/
dcc-scats-detector-volume-jul-dec-2024.

The SCATS traffic volumes dataset contains monthly traffic counts recorded by detectors
located at junctions, used for traffic signal control. These detectors also measure traffic
volumes approaching a junction, making the data suitable for analyzing vehicle move-
ment trends by focusing on key junctions that reflect overall traffic flows.

The July 2024 dataset was chosen for this study because it is the latest fully available
dataset on the website. The dataset comprises 11,046,124 rows and 9 columns. Key fea-
tures include End Time (indicating the conclusion of each hourly count period), Region
(detector site location, such as North City, South City, West City etc.), Site (mapped
to SCATS site files for precise locations), Detector(Sensor identifiers at each site), Sum
Volume (total hourly traffic volume), and Avg Volume (average traffic volume calculated
over 5-minute intervals in the preceding hour).

3.1.2 Data Preparation and Analysis

The data was loaded using Pandas library in Python. The first and last five rows of the
dataset were viewed to inspect its structure. A summary of the dataset was analyzed to
understand key statistics. Upon examining for null values, it was discovered that the last
three columns (‘Weighted _Avg’,‘Weighted _Var’, and ‘Weighted Std_Dev’) contained only
null values. These columns were removed using the drop function from Pandas library
for a cleaner dataset. The next process is to transform the end time present in the
‘End_Time’ column into a ‘DateTime’ format to handle the data within a period more
effectively. Other time segments including date, hour and the name of day of the week
are derived from this ‘datetime’ object. This transformation helps to better analyze the
dataset and improves the visualization of the data.

3.1.3 Exploratory Data Analysis

The graph in figure [2| represents the total sum of traffic volume across different regions
and dates within the month, plotted as a line plot created using the Seaborn library
.The traffic density demonstrate that Region ‘IRE’ consistently accounted for the largest
traffic loads, with peak figures exceeding four million vehicles, whereas Region ‘IRE 3’
consistently recorded the lowest traffic loads, which did not exceed 0.5 million. The
trends observed are quite different with traffic rising sometimes with a constant rise in
the regions and clearly indicating troughs at the middle and end of the week. Regions like
‘DCCT, ‘CCITY", ‘SCITY’, and ‘“WCITY’ exhibit similar traffic patterns with a moderate
cluster of around 1.5 million to 2.5 million in traffic. In summary, these findings give an
understanding of the traffic variation between the regions.

The second visualization shown in figure [3| represents the total number of vehicles
per region throughout each hour of the day. This analysis highlights that the busiest
hours for traffic in all regions consistently occur between 9:00 AM and 7:00 PM. These
peak activity periods generally correspond to the daily commute period and probably the
working hours. This information is useful for establishing the fact that the high traffic

7


https://data.smartdublin.ie/dataset/dcc-scats-detector-volume-jul-dec-2024
https://data.smartdublin.ie/dataset/dcc-scats-detector-volume-jul-dec-2024

1e6 Total Sum Volume by Region Over Dates

Region
IRE
DCCL
ccrTy
WCITY1
SCITY
NCITY
IRE3

4.0 q

3.5

3.0 1

2.5

Sum Volume

2.0

154

104

0.5 A

> o ) < A & o ) >
A8 g A8 A A b B b $

S S S
o o o »
W ) ¥ g
» A ° A

Figure 2: Sum of vehicles by Region Over dates

volume occurs during the day, compared to early morning and especially the late-night
hours.

1e6 Total Sum Volume by Region Over Hours of the Day
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DCC1
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~
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Figure 3: Sum of vehicles by Region Over hours

There are consistent daily patterns of traffic flow across certain locations, driven by

the routines of daily activities. These systematic variations can be segmented into distinct
time-based components, which are effectively visualized in the graph. To analyze these
patterns, the traffic volume data are grouped into two categories: weekdays and weekends,
as shown in figure 4 The plot reveals a notable difference in traffic behavior between
these 2 periods.
Weekdays: The morning commute (8 AM - 11 AM) and the evening commute (4 PM - 7
PM) show a sharp increase in traffic. Work-related travel is responsible for these peaks.
After 9 PM, traffic flow declines steeply, indicating a reduction in activity during late
night hours.



Average Traffic Flow by Hour (Weekdays vs Weekends)
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Figure 4: Weekdays vs Weekends traffic flow by hours

Weekends: There are more gradual changes in traffic patterns with a steady rise in the
late morning building sharp peaks in the afternoon, followed by a gradual decline in
the evening. These trends are due to personal activities, not work-related commutes.
Through segmentation and comparative analysis, this analysis provides valuable insights
into how traffic flow dynamics change throughout the week.

The traffic flow analysis in figure |5/ shows that traffic flow differs on different days of
the week. From this analysis we can see that Mondays, Tuesdays and Wednesdays show
the highest morning peaks, and Saturdays and Sundays show the lowest morning peaks.
All weekdays’ peak traffic levels stay the same in the afternoon. Mondays, Tuesdays, and
Wednesdays also have noticeable evening peak traffic hours compared to other days.

1e6 Distribution of Sum Volume by Hour and Day of week

Figure 5: Total number of vehicles by hour and Day of week



3.1.4 Congestion Analysis and Visualization

In this phase, the traffic data is analyzed for periods of congestion in terms of predefined
traffic volume thresholds. These thresholds are derived from statistical analysis of metrics,
‘Sum_volume’ and ‘Avg_volume’, and comparing them to statistical measures, such as
percentiles and standard deviations. When these thresholds are exceeded, the traffic is
classified as congested and labeled as 1, and non-congested traffic is labeled as 0. The
aggregated resulting congestion data undergoes an examination of variation over different
hours of day and regions. Those aggregations give directions towards times and places
of congestion. In practical terms, plotting the data into a ‘heatmap’ as shown in figure
[6] is an effective way to get an overview of potential patterns of congestion and identify
specific times and locations that require the most attention.
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Figure 6: Heatmap of Congestion frequency

3.2 Feature Engineering
3.2.1 Label Encoding

In this case, the ‘LabelEncoder()’ function from the ‘Scikit-learn’ library is used to con-
vert the categorical variables to numerical variables. For this specific case, the ‘Region’
column, which contain unique categories, are encoded using the encoder so that their
values become integers. It is important to have numeric inputs because deep learning
and machine learning models require them. The ‘fit_transform()’ function first trains the
encoder on the unique values in the columns and then assigns numerical labels to those
values based on the unique values it identified. This step primarily aims to transform the
categorical data so that the model can successfully handle the transformed data.

3.2.2 Data Splitting

In this step, the data is divided into Train and Test using the ‘train_test_split()’ function
from ‘Scikit-learn’ library.This is a very important step in machine learning as it provides
a means for model validation and evaluation using the test dataset. Using 80% of the
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data for training allows the model to learn patterns, while the remaining 20% serves as
a test set to measure how well the model performs on unseen data.This step makes the
validation process more credible, avoids over-fitting, and promotes better generalization
to new inputs.

3.2.3 Data Scaling

The next step is data scaling, which incorporates both the target variable and features.
The ‘StandardScaler’ class from the ‘Scikit-learn’ library is used for scaling the features.
Scaling is an essential step in deep learning and machine learning methods to reduce the
impact of features with exceptionally large scales, such as those found in traffic dataset.

3.3 Model Training and Evaluation
3.3.1 Model Training

Two deep learning techniques, namely Artificial Neural Network (ANN) and a Convolu-
tional Neural Network (CNN), were used to efficiently capture the underlying patterns
in the data. These models were employed to forecast traffic flow across hourly, daily, and
monthly time-frames, offering valuable insights into temporal variations. Additionally,
a specific region from the dataset was chosen for this analysis, enabling accurate traffic
flow predictions for hourly, daily, and monthly intervals.

e ANN: The ANN was chosen because its layers of connected neurons can effect-
ively learn complex pattern and nonlinear relationship within datasets, which make
them more appropriate in predicting traffic flow over different time intervals such
as hourly, daily, and monthly forecasts. Because of the architecture of the ANN
model, the model is capable of studying various patterns and dependencies con-
tained in traffic data and various traffic conditions. For example, [Kranti Kumar
and Katiyar (2015) demonstrated the application of ANNs for short-term traffic
flow prediction, relying on historical traffic information. This study shows that
ANNSs are particularly suitable for the analysis of traffic trends by being real-time
and high-performance solutions that can be used to support next generation traffic
management systems that seek to address traffic congestion and improve mobility.

e CNN: Convolutional neural networks are highly efficient at capturing spatial and
temporal dependencies in traffic patterns and are flexible for traffic flow prediction
across different time intervals, such as hourly, daily, and monthly. CNNs extract
many key features using convolutional and pooling layers to identify spatial and
temporal patterns in the data. As illustrated by Agafonov, (2020), CNN-based
methods, such as graph convolutional networks, are pivotal for traffic flow predic-
tion. The research compared the architectures of graph convolutional networks with
respect to traffic density predictions, incorporating daily and weekly trends.

3.3.2 Evaluation Metrics

The performance of the traffic flow prediction models was assessed using the metrics, R?
score, Mean Absolute Error(MAE), Mean Squared Error(MSE) and Root Mean squared
Error (RMSE) to ensure both accuracy and reliability (Duan et al. (2016))). These evalu-
ation metrics are implemented using the ‘Scikit-learn’ library.
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R? Score:The R? score is a metric used to assess the predictive performance of a model,
reflecting how closely the predictions match the actual data. It quantifies the proportion
of variance in the target variable explained by the model’s predictions. This score was
computed using the ‘R%_score’ function from the ‘Scikit-learn’ library and served as a
primary evaluation metric due to its ability to clearly indicate the model’s effectiveness
in capturing traffic flow patterns.

MAE: This error measures the average magnitude of prediction errors, providing a
straightforward and easily interpretable evaluation.

It is calculated using the ‘mean_absolute_error’ function from the ‘Scikit-learn’ library.
MSE : MSE represents the average squared differences between predicted and actual
values.By squaring this errors, it assigns greater weight to larger discrepancies, making it
useful for identifying significant prediction errors. This metric was calculated using the
‘mean_squared_error’ function from the ‘Scikit-learn’ library.

RMSE: RMSE is the square root of MSE, providing error measurements in the same
units as the predicted variable, enhancing interpretability. It is calculated using the
‘NumPy’ library.

4 Design Specification

The design specification (refer to fig @ relates to the design and implementation of Arti-
ficial Neural Networks (ANN) and Convolutional Neural Networks (CNN) for predicting
traffic flow, as supported by studies such as (Kareem et al. (2021)).The design starts
with traffic flow dataset sourced from SCATS detectors, which is analyzed and prepro-
cessed using various Python libraries, such as Pandas for Data preparation, NumPy for
numerical operations, and Seaborn for visualization and traffic trends exploration. The
prediction framework, Using ANN and CNN models developed in Python with the lib-
raries TensorFlow and Keras, was designed to forecast traffic volumes at hourly, daily
and monthly intervals.
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Figure 7: Design Specification Diagram

The ANN architecture comprises multiple dense layers utilizing ‘ReLu’ activation
functions to introduce non-linearity, enabling the model to learn intricate patterns. Ad-
ditionally, dropout layers are incorporated to reduce over-fitting, making it highly effect-
ive at capturing complex, nonlinear relationships within the data. The model was built
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using the ‘TensorFlow.Keras.Sequential’ API, which provides a straightforward way to
define the network layer by layer, and trained using the ’Adam’ optimizer, an algorithm
that ensures efficient and stable updates to the model’s parameters for faster convergence.

To accommodate the input requirements of CNN, the data was reshaped into a three-
dimensional structure using the ‘x_reshape’ function, where the final dimension represen-
ted a single feature. CNN uses convolutional layers that apply a set of filters to identify
temporal and spatial relationships in the input data, extracting essential features. Max-
pooling layers then reduce the dimensionality of the data, lowering computational de-
mands while preserving critical information. The pooling layer output is converted into a
one-dimensional array using flatten layers to enable dense layers to analyze the extracted
features for prediction. When combined with ReLLU activation and dropout, dense layers
enhance the model’s ability to effectively process and generalize the data.

To provide flexibility and accuracy across various time scales, both the models are trained
to forecast traffic flow at hourly, daily and monthly intervals.

One of the Key milestones of this work was the comparison of the ANN and CNN

models, focusing on specific regions within the dataset. Both models were designed to use
the same intervals, allowing for a detailed examination of their predictive capabilities at
varying time scales. For both models, the dataset was divided based on a specific region,
allowing the models to make localized predictions that accurately represent the unique
traffic patterns and behaviors in those areas. With region-specific data availability, the
resulting models were able to capture variations in traffic flow that are specific to various
locations, such as differences in road usage, congestion levels, and traffic signal timings.
Every model was evaluated using metrics such as R?, Mean Absolute Error (MAE),
Mean squared Error (MSE), and Root Mean squared Error (RMSE), which were used to
analyze the model’s performance, providing a comprehensive comparison of the model’s
effectiveness.
The design successfully implemented ANN and CNN models for predicting traffic flow,
highlighting their ability to generate accurate and localized forecasts. By incorporating
region- specific data and comprehensive preprocessing, the models adapted to varying
traffic patterns, offering practical insights for improving traffic management and reducing
congestion.

5 Implementation

This section details the use of Artificial Neural Networks (ANN) and Convolutional Neural
Network (CNN) (Cetiner et al.| (2010)) for predicting traffic flow across three-time inter-
vals: monthly, daily, and hourly. The models were developed using Python and Tensor-
Flow, with comprehensive preprocessing applied to the dataset to enhance prediction
accuracy.

5.1 Monthly Prediction
5.1.1 Implementation of ANN

An ANN model was designed to forecast traffic flow using aggregated monthly data.
The architecture included an input layer with 64 neurons and ReLu activation, fol-
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lowed by a hidden layer with 32 neurons and ReLu activation. Dropout layers with
a 20% rate were added to prevent over-fitting. A single output neuron was included
to handle the regression task. The model was trained using the Adam Optimizer, with
MSE as the loss function and MAE as the evaluation metric. The model was built using
tensorflow keras.Sequential function and trained on the monthly aggregated dataset for
10 epochs, with a batch size of 32 and 20% validation split. It was evaluated on the test
dataset, producing predictions and performance metrics that provided valuable insights
to the model’s ability to forecast monthly traffic volumes accurately.

5.1.2 Implementation of CNN

A convolutional Neural Network was implemented using the TensorFlow and Keras lib-
raries to model traffic flow. The architecture featured a convolutional layer with 32 filters,
a kernel size of 2, and a ReLLU activation, designed to capture spatial and temporal pat-
terns in the traffic data. This was followed by a max-pooling layer with a pool size of 2.
The output from these layers were flattened and fed into a dense layer with 64 neurons
and ReLU activation, accompanied by a dropout layer with a 20% rate. The final layer
comprised a single neuron for regression, enabling traffic flow value prediction. The model
was compiled with Adam optimizer and the training was conducted with a batch size of
32 for 10 epochs, while validation data was used to monitor performance.

5.2 Daily Prediction

For daily traffic flow prediction, the data was aggregated by grouping it based on attrib-
utes such as region, site, detector, year, month, and day. The resulting dataset included
features like ‘Avg_volume’, representing the mean traffic volume and the ‘Sum_volume’,
representing the cumulative traffic volume for each day. To prepare the data for mod-
eling, it was split into training and testing sets using the ‘train_test_split’ function. To
ensure uniform input values, both target variable and features were normalized.

5.2.1 Implementation of ANN

The ANN model was developed to analyze data aggregated at a daily level. The target
variable was the total traffic volume (Sum_Volume), while the dataset included features
such as region, site, detector,and temporal attributes like year,month, and day.The ANN
architecture comprised an input layer with 64 neurons, a hidden layer with 32 neurons
and dropout layers to mitigate overfitting. The model was compiled using the Adam
optimizer, with MSE as the loss function and MAE as the evaluation metric. The model
was trained for 10 epochs and after training, predictions were made on the test set and
rescaled back to their original scale for better interpretation.

5.2.2 Implementation of CNN

The CNN model for daily data followed the same architecture and implementation ap-
proach as described in the CNN model for monthly prediction.It began with a convo-
lutional layer of same filters and size and ReLLU activation.The model included a max-
pooling layer, followed by a flattening, a dense layer, and a dropout layer, with a final
layer for regression.It was compiled with Adam optimizer and trained for 10 epochs with
validation data to assess performance.
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5.3 Hourly prediction

The data was aggregated for hourly prediction by grouping it based on Region, Site, de-
tectors, and time attributes such as year, month, day, and hour. To ensure the consistency
and enhance model performance, feature scaling was applied.

5.3.1 Implementation of ANN

The architecture of ANN model, comprising multiple dense layers with ReLLU activation
and dropout for regularization, was the same that used form monthly predictions. The
model was trained for 10 epochs with a batch size of 32, using the test dataset for
validation. Following training, the model was evaluated on the test set to generate hourly
traffic flow predictions.

5.3.2 Implementation of CNN

To maintain consistency and scalability across various time periods, the CNN model for
hourly forecasts used the same architecture as the models created for daily and monthly
predictions. By leveraging its robust architecture, the CNN effectively captured the in-
tricate patterns present in hourly traffic data. This implementation will provide valuable
insights such as peak and non-peak hours.

5.4 Traffic Flow Prediction in a Specific Region: ‘IRE’

ANN and CNN models were created for a specific region ‘IRE’, selected from the seven
region’s in the dataset, to predict traffic flow at hourly, daily and monthly intervals. The
region ‘IRE’ was filtered from the dataset, with the columns divided into features (Region,
site, detector, year, month, day, and hour) and the target variable(Sum_volume).

5.4.1 Implementation of ANN

ANN models were developed for region ‘IRE’ using TensorFlow and Keras to predict
traffic flow on a monthly, daily, and hourly basis.

The target variable, ‘Sum_Volume’, was forecasted using features such as region, site,
detector, year, month, day, and hour for monthly predictions. The model, comprising
dense layers with ReLLU activation and dropout, was trained for 10 epochs and produced
accurate predictions.

Similarly, daily predictions, based on factors like average volume and day- specific attrib-
utes, were trained over 20 epochs, yielding precise results.

For hourly forecasts, the model, with dense layers of 64 and 32 neurons, was trained for
10 epochs to hourly aggregated data.

5.4.2 Implementation of CNN

For monthly prediction, the data was scaled, and reshaped to meet CNN input require-
ments, and processed through convolutional, max pooling, flattening, and dense layers
with ReLU activation and dropout for regularization. Trained for 10 epochs with the
Adam optimizer and MSE loss, the model produced accurate monthly predictions after
rescaling.

Similarly, for hourly predictions, the model applied the same architecture to aggregated
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data. The model was trained for 10 epochs with a batch size of 32 and the predictions
are made.

For daily predictions, the preprocessing steps were consistent, with input features includ-
ing region, site, detector, average volume, and day. After 20 epochs of training, the model
delivered precise daily forecasts.

6 Evaluation

This section represents an in-depth assessment of the ANN and CNN model, emphas-
izing their capability to predict traffic low across different intervals: hourly, daily, and
monthly. Furthermore, the analysis also specifically targets a specific region, referred to
as 'IRE’, and evaluated the model’s prediction efficiency at a regional level. To ensure a
thorough evaluation of the model’s effectiveness, standard performance metrics from the
Scikit-learn library were employed, including Mean Absolute Error(MAE), Mean Squared
Error(MSE), Root Mean Squared Error(RMSE), and R-squared (R?).These metrics were
selected to provide a well-rounded understanding of the model’s accuracy, both absolute
and relative, and to assess the overall quality of the model’s fit to the data. To check the
presence of overfitting, I compared the model’s R? values on the training and test sets.
The R? value represents the degree to which the actual data is fitted by the model, thus
showing how valid the model is as a predictor of variability in the dependent variable.
The model showed high accuracy on both training and testing sets. The small difference
between the accuracies indicates that the model generalizes effectively without significant
overfitting.

6.1 Experiment 1: Monthly Prediction

The ANN model for monthly predictions excelled in delivering accurate monthly pre-
dictions, achieving an R? of 0.9918, which highlights its ability to capture a significant
proportion of the variance in the data. More than that, the model highlighted remarkable
precision, as reflected in its performance metrics: a Mean Absolute Error of 2.8964, a
Mean Squared Error of 89.6810, and Root Mean Squared Error of 9.47. These results
emphasize the model’s strength in generating reliable and accurate forecasts, making it
a valuable tool for predictive analysis.

The CNN model demonstrates outstanding performance in monthly traffic flow predic-
tions, as evidenced by its evaluation metrics. A mean Absolute Error (MAE) of 2.0538
indicates that, on average, the model’s prediction differs from the actual values by just
units, which is exceptionally low relative to the data’s scale. The MSE of 54.2533 and
RMSE of 7.3657 further validate the model’s accuracy, with the RMSE showing that
even larger errors are minimal. Additionally, the R squared value of 0.9951 confirms that
the model accounts for 99.51% of the variance in the data, leaving only a small fraction
unexplained. These results highlight the model’s ability to effectively capture the un-
derlying patterns in the data, making it a reliable tool for precise monthly predictions,
particularly in applications such as traffic management.

6.2 Experiment 2: Daily Prediction

The Artificial Neural Network model captures daily traffic flow trends, but it struggles
to achieve the same level of accuracy as the CNN model for data aggregated over larger
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timeframes. This is evident in the evaluation metrics, with the ANN recording a higher
Mean Absolute Error (MAE) of 94.5117 and a significantly higher RMSE of 215.32. The
RMSE indicates larger prediction errors, particularly during traffic surges or anomalies.
Although the ANN achieves a strong R? values of 0.9892, explaining 98.92% of the vari-
ance in the data, its performance is less effective for daily traffic forecast.

The graph [§| visualizing the true versus predicted daily traffic flow values for ANN
was created using 'Matplotlib’ library, which allowed for the comparison of true versus
predicted values reveals that the ANN’s predictions tend to deviate more noticeably
during periods of high traffic, failing to fully capture the sharp peaks seen in the true
data. This suggests that the ANN model lacks the robustness and stability required to
generalize effectively for daily traffic flow predictions at this level of aggregation.

For daily traffic low predictions, CNN demonstrates superior generalization capabilities.
With an R? value of 0.9925, CNN successfully captures 99.25% of the variance in the
data. Its low RMSE of 14.3648 and MAE of 4.7157 indicate that the model consistently
delivers predictions with minimal deviations from actual values. The true vs. predicted
graph for the CNN (refer fig E[) illustrates a much closer alignment, particularly during
periods of high traffic. This performance underscores the CNN’s ability to leverage its
architecture to uncover patterns and relationships in the data over time, making it an
invaluable tool for accurate daily traffic predictions.

From a model perspective, ANN model is limited in its ability to capture all the temporal
and spatial details required to accurately predict daily traffic flow, as it relies on dense
layers, which are not as effective at recognizing complex temporal patterns. In contrast,
the true vs. predicted graph for CNN shows a closer alignment, particularly during high-
traffic periods, indicating the CNN’s ability to handle sudden spikes and fluctuations.
Some external factors such as weather conditions, road accidents, construction works,
or events, were not considered in this research, but which can affect traffic flow. Also,
the daily data aggregation may have missed out some valuable information, reducing
prediction accuracy. Changes in traffic patterns over time, such as urban development or
new policies, might also affect the model performance.
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Figure 8: True vs. Predicted daily traffic flow values for ANN
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Figure 9: True vs. Predicted daily traffic low values for CNN

6.3 Experiment 3: Hourly Prediction

The findings reveal that for hourly traffic flow predictions, the ANN model outperforms
the CNN model. With low error metrics (MAE: 3.013, MSE: 74.1687, RMSE:8.6121) and
a higher R? value 9932, the ANN demonstrates its effectiveness in capturing complex
relationships within the data. This suggests that the ANN’s architecture is particularly
well-suited for structured, tabular datasets, where feature interactions can be effectively
modeled without the need for advanced pattern extraction.

In contrast, while the CNN also delivered strong performance with an R? value of 0.991, its
slightly higher metrics (MAE: 4.3418, MSE: 108.3294, RMSE: 10.4081) indicate that the
added complexity of convolutional layers offers limited benefits for this type of predictions.
These findings suggest that simpler models like ANNs can provide more accurate and
efficient hourly forecasts, especially when the data does not necessitate complex feature
extraction techniques.

6.4 Experiment 4: Prediction in ‘IRE’

In region ‘IRE’, the CNN model demonstrated outstanding performance for monthly pre-
dictions, accounting for over 99% of the variance in traffic flow data with R? value of
0.9939. Its ability to generalize effectively and capture long-term trends is reflected in
the metrics, MAE of 4.5309 and RMSE of 9. 0402.The ANN model also performed well
for monthly predictions in this region, achieving an R? value of 0.9582, slightly lower
than the CNN. However, the ANN exhibited larger discrepancies between predicted and
actual values, with an MAE of 9.3309 and an RMSE of 23.758. These results suggest
that although the ANN is effective at capturing general trends, it is not good as the CNN
at addressing the temporal intricacies present in monthly traffic flow data.

For daily predictions in region ‘IRE’, both the CNN and ANN models predicted traffic
flow with R? values of 0.9269 and 0.9288, respectively. The other evaluation metrics such
as MAE and RMSE revealed considerable discrepancies between predicted and actual
values, indicating challenges in accurately modeling aggregated daily trends. These res-
ults suggest that the models may struggle to generalize effectively to daily data, due to
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complexity of traffic flow patterns.

The CNN and ANN models both demonstrated strong performance for hourly predic-
tions in ‘IRE’, with R? values of 0.9935 and 0.9882, respectively, showing their ability to
explain the majority of the variance in the data. CNN achieved slightly better accuracy,
with lower error metrics (MAE of 2.00 and RMSE of 9.50) compared to ANN’s MAE of
4.869 and RMSE of 12.775. These results indicate that both models are highly effective
for short-term traffic flow predictions in this region, with the CNN providing a slight edge
in precision.

The graphs below show the CNN model’s performance in predicting monthly (ﬁg and
hourly (fig traffic flow prediction values.
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Figure 10: True Vs. Predicted traffic low values- CNN Monthly
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Figure 11: True Vs. Predicted traffic flow values- CNN Hourly

The close alignment between the true and predicted values in both monthly and
hourly predictions demonstrate the CNN model’s ability to effectively capture overall
trends and fine- grained temporal patterns. However, occasional mismatches, especially
during sharp or sudden peaks, show that the model has some difficulty handling abrupt
changes in traffic flow.
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6.5 Discussion

Both the ANN and CNN demonstrate notable strengths in predicting traffic flow across
different temporal scales. The figure 12| is a table that presents the R?, MAE, MSE,and
RMSE values for all models.The consistently high R? values highlight their effectiveness
in explaining a significant portion of the variance in traffic data, affirming the use of
deep learning approaches in this field. The CNN excelled in daily and monthly forecasts
with R? values of 0.9925 and 0.9951, effectively capturing intricate temporal patterns,
while the ANN performed exceptionally well for hourly predictions with an R? value
of 0.9932, leveraging its suitability for structured, tabular data that does not require
complex temporal modeling.In the region 'IRE’, while both the models excelled in hourly
traffic predictions and showed moderate success in daily forecasts, the CNN consistently
outperformed the ANN, especially in capturing long-term trends for monthly predictions.

Intervals Model R2 RMSE MAE MSE
Monthly ANN 0.9918 9.4700 2.8964 89.6810
CNN 0.9951 7.3657 2.0538 54.2533
Daily ANN 0.9892 215.32 94.511 46364.09
CNN 0.9925 14.3648 4.7157 206.3462
Hourly ANN 0.9932 8.6121 3.0133 74.1687
CNN 0.9901 10.4081 4.3418 108.4081

Figure 12: Comparisons of ANN and CNN Models for Monthly, Hourly and Daily imple-
mentation

The challenges faced by the models in daily traffic predictions in this study, indicated
by higher RMSE and MAE values, are consistent with the observations made by ?.They
underscore the critical role of effective input data representation in capturing the spati-
otemporal dependencies inherent in the traffic data, particularly for short-term traffic flow
prediction. The paper highlighted that while deep learning models are highly effective at
capturing complex patterns, daily forecasts can suffer due to insufficient representation
of spatial and temporal relationships or the absence of standardized benchmark datasets.
To overcome these limitations, incorporating temporal features such as weather, holidays
and traffic incidents into the model design is essential. Furthermore, creating hybrid
architectures that leverage CNN’s strength in extracting temporal patterns and ANN’s
efficiency with structured data could improve performance across all prediction levels.

7 Conclusion and Future Work

High R? values across all intervals demonstrated strong predictive capabilities, confirming
that both models effectively assessed the performance of ANN and CNN models across
different intervals. The ANN outperformed in short-term (hourly) predictions due to
its strength in processing structured tabular data, while the CNN excelled in capturing
complex temporal patterns, particularly in daily and monthly forecasts. Regional ana-
lysis, such as in the ‘IRE’ region, further highlighted the model’s effectiveness, achieving
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high accuracy in hourly predictions but encountering challenges with aggregated daily
patterns due to the complexity of traffic dynamics.

The findings of this study have important implications for urban traffic management. The
ANN’s strong hourly prediction performance highlights its potential for real-time mon-
itoring and control. In contrast, the CNN’s accuracy in daily and monthly predictions
demonstrates its values for long-term strategic planning, such as optimizing infrastruc-
ture and guiding policy decisions that improve traffic management and urban planning.

Although the models delivered strong results, certain limitations are evident. Both
models faced challenges with aggregated daily predictions, indicating the need for more
robust architectures or enhanced datasets. Additionally, the absence of external factors
such as weather, public events, and incidents limited the model’s ability to capture more
complex traffic dynamics effectively.

Future Work: To enhance performance across all prediction intervals, future re-
search could focus on developing hybrid models that integrate CNN’s ability to capture
temporal patterns with ANN’s efficiency in handling structured data. Incorporating ad-
ditional contextual factors, such as weather, holidays, and traffic incidents, could improve
accuracy for regional variability and aggregated trends. Improving model explainability
through attention mechanisms would enhance transparency and build trust in predictions.
Extending the models for scalability and real-time applications would support intelligent
traffic management systems, with potential commercialization providing valuable insights
for policymakers and urban planners. These advancements will further expand the role
of deep learning in addressing the complexities or urban traffic forecasting.
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