

Big Data-Powered Temperature Prediction Using

PySpark and Time Series Machine Learning

Techniques

MSc Research Project

Data Analytics

Ms. Sneha Ramesh Dharne

Student ID: x23195703

School of Computing

National College of Ireland

Supervisor: Vikas Tomer

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ms. Sneha Ramesh Dharne

Student ID:

x23195703

Programme:

Msc in Data Analytics

Year:

2024

Module:

MSc Research Project

Supervisor:

Vikas Tomer

Submission Due

Date:

12/12/2024

Project Title:

Big Data-Powered Temperature Prediction Using PySpark and Time

Series Machine Learning Techniques

Word Count:

6054 Page Count 23

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ms. Sneha Ramesh Dharne

Date:

10/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Big Data-Powered Temperature Prediction Using

PySpark and Time Series Machine Learning

Techniques

Ms. Sneha Ramesh Dharne

Student ID: x23195703

Abstract

 In this study, I used predictive modelling techniques to predict global temperature trends using

ARIMA, SARIMA, XGBoost and Linear Regression. However, given the growing demand for

accurate climate predictions in a number of sectors, the research also assesses how the models

perform with historical temperature data. I assess the models based on performance metric,

Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and R-squared (R²). By

comparing the MSE (0.2269), RMSE (0.4764), and R² (0.9882) results it can be seen that

XGBoost delivered the most promising performance to dealing with complicated non-linear

phenomena. SARIMA also had good result: it has MSE of 0.3311, RMSE of 0.5754 and R² of

0.9828, which follows the seasonal trends. However, ARIMA was a success, but was less

accurate. Linear Regression’s results were much worse, with MSE of 32.1586, RMSE of

5.6709 and R² of 0.1689. Furthermore, the temperature patterns across Europe and Ireland were

analyzed using Power BI visualizations. From these findings, it is important that suitable

models be used for temperature prediction, and XGBoost is the most reliable model for scalable

and accurate forecasting.

1 Introduction

Because of the rise in uncertainty over weather patterns and extreme weather events, global

temperature and climate change have become topics of utmost research. Predicting temperature

is a crucial topic in many different fields, including agriculture, energy management, and

disaster relief. By discovering intricate patterns in vast amounts of data, machine learning (ML)

and deep learning (DL) have lately demonstrated their potential to enhance temperature

forecasting models. For example, machine learning was shown to have the capability of

weather forecasting, such as using freely available data (Abrahamsen et al., 2018), or chaotic

approaches for temperature time series (Bahari & Hamid, 2019). However, existing models for

this problem often break down with large-scale, high-dimensional climate data, and scalable

and efficient approaches need to be explored. The primary research question guiding this study

is:

 How can Big Data tools, such as PySpark, be integrated with time-series models like ARIMA

and SARIMA to improve temperature prediction accuracy and scalability?

The goal is to evaluate how well distributed frameworks, such PySpark, perform in

comparison to traditional time series models and look into ways to improve forecast accuracy

without compromising scalability.

This research fills the gap in scientific literature by integrating distributed Big Data tools with

time series-based temperature prediction models that are not explored well. From previous

studies in the same area, such as machine learning applications in weather prediction

(Bochenek & Ustrnul, 2022) or model optimization to improve forecast (Farsi et al., 2021), we

see that scalability is what is needed. Results from this work can be used to improve the

forecasting models in climate science and other related fields.

A review of previous work is covered in Section 2, the technique is explained in Section 3, the

dataset is described in Section 4, experimental setup and training is covered in Section 5, the

results are presented in Section 6, and implications and future research are discussed in Section

7.

2 Related Work

Current studies have investigated the use of the ML models, Neural networks and Deep

learning in enhancing the weather prediction and temperature forecasting. A number of

investigations have also revealed that these models improve prediction accuracy significantly.

The analysis of the forecasts conducted by Abrahamsen et al. (2018) was based on two models,

the AR-NN and the ARX-NN models, for the prediction of temperature at various time slots.

The authors of their study incorporated external variables such as precipitation to support their

conclusion. Local Mean Approximation Method (RMAM) was recently used by Bahari and

Hamid for chaotic time series forecasting with the prediction accuracy of 0.9789 for short term

temperature prediction in Malaysia. Similarly, Bochenek and Ustrnul (2022) discussed the

applications of ML in weather forecasting including the perspectives of deep learning and the

random forest approaches with the mentioned limitations, including data accessibility and

knowledge. In their recent work, Farsi et al., (2021) suggested the hybrid model, GA-SARIMA

in which the GA fine-tuned the parameters of SARIMA and enhance its performance. This

approach eliminated overfitting and improved the computation time in the temperature

prediction for India. In this research study Feigl et al. (2021) model comparison displayed that

FNNs and XGBoost models performed better than first generation models for stream water

temperatures and the model performance increased with catchment size. Feng et al. (2019)

utilized both a mind evolutionary algorithm and ANN for the prediction of daily solar radiation

when data regards only air temperature were used; the accuracy was higher than that of random

forests. The traditional tool wear models, namely the SSAEs-BPNN, was developed by Him et

al. (2021) employing a stacked sparse autoencoders-backpropagation neural network for raw

temperature signals. Hewage et al. (2021) proposed a lightweight data-driven forecast model

employing LSTM and TCN by integrating them where the proficiency was more eminent than

classical system individual WRF for 12 h forecast. In their article from 2022, Jaseena and

Kovoor discussed developments in deep learning, opportunities for the use of both hybrid

models and deep networks and the problems with the evaluation of stability in existing systems.

Kumari and Singh (2023) employed LSTM, ARIMA, and SARIMAX models for forecasting

CO2 emissions in India., and LSTM presents the highest accuracy of the forecast. In fact, their

study emphasized extrinsic factors that include economic conditions in their model. In Li et al.

(2023), called the Integrated Soil Diameter Network Model and based on CNN and LSTM, an

accuracy of up to 0.963 was obtained with R² values. Liu et al. (2019) described the ANN

based techniques for the rainfall prediction like RBF-NN with GAPSO and FLANN. FLANN

was rated as efficient in terms of faster computation, and higher prediction accuracy of RBF-

NN with GAPSO. Meehl et al. (2021) provided an article on climate model initialized still

showing observed data, where they have established that climate models could short-term

predict accurately but the model error reduces reliability of the long-term forecast.

The authors Meenal et al. (2021) identified the use of random forests in predicting the amount

of solar radiation and wind speed in Tamil Nadu with enhanced accuracy to regression and

SVM models. Purwandari et al., (2021) classified the tweets regarding weather using SVM

which turned out to be most effective. This approach could be extended further to use deep

learning for higher accuracy rates of prediction. Ren et al. (2021) summarise DLWP and

ascertain that temporal and spatial aspects can be well managed. Deep learning models are a

good fit, and can be used in combination with traditional models, but the downside of long

term forecasting prevails. Schultz et al. (2021) explored how deep learning can supersede the

NWP systems as they pointed out future development is still required to solve the convoluted

nature of the weather data. Shilong (2021) designed a sales forecast model based on XGBoost,

which confirmed the superiority of this method in terms of accuracy and time. This could be

applied to segmentation of resources in businesses. Last, Shrivastava et al (2023) have analyzed

temperature prediction in New Delhi using multivariate polynomial regression approach and

deep neural networks to note that DNNs outperformed MPR especially when more input

features were included. Tabari et al. (2015) used ANN to model and predict soil temperature

and they find out that the models are accurate in humid regions. This approach can be taken in

other regions for long term temperature forecasts.

Hence, considering the analyzed literature, it can be further concluded that machine learning,

and particularly deep learning models should be expected to improve the weather and

temperature prediction. However, there are limitations such as, inadequate data to carry out the

analysis, complexity of the model, applicability of the model in two different regions. More

work is required to enhance the reliability, applicability and advancing the time horizons of the

existing models.

Gap analysis

Another important gap noticed from analyzing the literature is that not enough Big Data tools

like PySpark are incorporated into the developmental process of those models that predict

temperature. Even though initial experiments with machine learning and specifically deep

learning techniques have been positive, many investigations fail to address the question of

efficient data handling and processing for climate data. Moreover, more traditional models

such as ARIMA and SARIMA while are handy models have not, however, been employed in

connection with distributed frameworks. This is a clear indication that there is a gap in the type

of models designed to solve time series problems in Big Data environment where there is need

for small models that are accurate enough to handle large datasets, thus this research seeks to

fill this gap.

3 Research Methodology

This thesis presents a structured approach to developing and evaluating predictive models for

global temperature trends using time series analysis. The methodology incorporates data

collection, data preprocessing, model development, evaluation, and visualization in order to

provide an adequate and efficient resolution for forecasting change in climate.

3.1 Research Procedure

Data Collection and Preprocessing:

Dataset: For this study, we use the Kaggle dataset "Climate Change: Earth Surface

Temperature Data" this includes historical temperature data from global land-based weather

stations. As such, it is an ideal candidate for time series forecasting, providing a complete view

of long-term global temperature change.

Dataset link- https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data

Dataset Selection: The data set was selected for its broad coverage of temperature trends over

different years from different geographical areas, which in our case is useful for analyzing and

forecasting global temperature trends. First, I did some data preprocessing (handling missing

values, removing outliers, normalizing, stationarity, etc.) since time series data is a requirement

and time series forecasting requires the time series data to be stationary.

Feature Engineering: Features including the average monthly temperature, country and city

were extracted and aggregated. I applied seasonal decomposition to detect the underlying

trends and seasonal patterns. To make the data stationary for predictive modeling, first order

differencing was applied to the time series data to remove seasonality from the time series data.

Model Development:

ARIMA and SARIMA: ARIMA and SARIMA captured trends and seasonal changes, with

SARIMA optimized via grid search for accuracy in seasonal patterns.

XGBoost and Linear Regression: Instead, these machine learning models served as other

ways to replace ARIMA/SARIMA that use engineered features, like the month and year. For

its efficiency in nonlinear patterns, I chose XGBoost and for comparison of performance and

Linear Regression as the baseline model. then fine-tuned both models via grid search for

hyperparameter optimization.

Model Evaluation and Selection: Model performance was evaluated using RMSE, MSE, and

R-squared, quantifying accuracy and explanatory power. The model with the best metrics was

selected for final analysis, demonstrating a comprehensive approach to forecasting with

traditional and machine learning methods.

3.2 Evaluation Methodology

Performance Evaluation:

Root Mean Squared Error (RMSE): All of the prediction errors have parameters of measure

because they are in the same unit as the target variable and the RMSE gives the average size

of the prediction errors.

Mean Squared Error (MSE): MSE is the average of the squared differences between the

predicted values, and the actual values. But it measures larger errors and is not measured on

the same scale as the outcome variable. The higher SE, the poorer is the fit of the model.

R-squared (R²): The value grouped under the symbol R² refers to the variation in

understanding of the dependent variable that is explained by the model. An R² of 1 indicates a

better fit through the model on 0 to 1scale while 0 means no predictability of the dependent

variable by the independent scores.

These metrics were used to evaluate and compare the predictive accuracy of ARIMA,

SARIMA, XGBoost, and Linear Regression models, with lower RMSE and MSE, and a higher

R² indicating better performance.

3.3 Statistical Techniques and Tools

Statistical Techniques: The results were obtained through the use of different statistical tools

to examine model assumptions and to enhance the performance.

Time Series Decomposition: Used to extract trends, seasonality and residuals from

temperature data.

Autocorrelation Analysis: Used to test for temporal dependencies in the data as the

stationarity requirement had to be met for the ARIMA and SARIMA models.

Residual Diagnostics: Carried out to make sure that the residuals of the model have these

characteristics. Model fit was evaluated with key tests such as Ljung-Box test for white noise

and ANOVA to compare the model’s performance.

Software and Hardware:

Software Requirements: The primary programming language was Python 3, essential

libraries used were PySpark for data processing and some machine learning modeling through

stats models. Data visualization was done with power BI to communicate results effectively.

Hardware Specifications: Intel Core i5/i7+, 8GB/12GB+ RAM, high-performance

computing resources

3.4 Research Process Steps

The following steps outline the research methodology:

Data Acquisition: Weather Data was acquired from Kaggle.

Feature Selection: I identified relevant features based on their correlation with the global

temperature patterns derived from the insights in the literature..

Model Training: Several ARIMA, SARIMA, XGBoost and Linear Regression models were

attempted with the dataset and trained, fitting the hyperparameters using grid search

techniques.

Model Validation: An 80-20 train-test split was used for validating the models and the

corresponding performance of the models were evaluated using RMSE, MSE and R² scores.

Analysis and Comparison: I critically analyzed results and compared each model's predictive

performance in the context of existing literature.

Visualization: Interactive dashboards were generated using Power BI to visualize model

predictions, seasonal trends and model comparison, to further comprehend temperature

dynamics.

3.5 Justification for Using Power BI and PySpark

Power BI successfully communicates complex results to stakeholders with its interactive

dashboards and real-time analytics. Its intuitive design improves data display and prediction

clarity while guaranteeing accessibility for non-technical users.

PySpark to process and preprocess large datasets, and for feature engineering. Lastly, its

scalability and speed made it necessary to use the large historical temperature data that made

this project especially necessary.

Final Results and Analysis: Final results compared ARIMA, SARIMA, XGBoost, and Linear

Regression, identifying the best model for global temperature trends. Combining Power BI’s

visualization and PySpark’s processing, this research delivers actionable insights into climate

change patterns and mitigation strategies.

4 Design Specification

The implementation is based on the techniques and architecture designed to efficiently process

large dataset data, specifically data preprocessing, machine learning and visualization. The

framework first deals with missing data, then, using Augmented Dickey-Fuller (ADF) test,

makes the data stationary and finally splits the data for model training and evaluation. The core

engine of big data processing is PySpark: it supports ARIMA, SARIMA, Linear regression,

and XGBoost models. I compared these models on the basis of RMSE, MSE, and R² and

selected the best performer. Further, visualization tools such as Power BI are used to visualize

the results and perform country as well as city wise analyses to provide actionable insights.

The architecture for this thesis combines statistical techniques with machine learning, thereby

delivering robust predictive analysis and decision support.

Figure 1: System Architecture

5 Implementation

As part of this study, time series analysis and machine learning models, ARIMA, SARIMA,

Linear Regression, and XGBoost are used to forecast global temperature trends. The dataset

was then preprocessed using PySpark, where missing values were handled, I ensured

stationarity, and extracted seasonal and trend components. For forecasting I applied ARIMA

and SARIMA model, evaluated their performance using RMSE, MSE and R² parameters. The

following sections describe the implementation process including tools, methodologies, and

the results achieved in forecasting objectives.

5.1 Implementation and Explanation of Data Preprocessing

Importing Libraries and Setting Up Environment: Figure 2 code starts by importing

libraries such as pandas and matplotlib responsible for data handling and visualization

respectively. After that, findspark and pyspark are used to bootstrap Apache Spark, a powerful

distributed computing framework. The environment is configured to assure Spark’s function

working on the JAVA_HOME and SPARK_HOME variables, that are needed for Spark

execution being required.

Figure 2: code for importing Libraries

Spark Initialization: All these can be seen in the Figure 3 a Python script for checking if

Apache spark is installed, setting up an environment to use it and initializing the findspark

module. SparkSession starting a SparkContext tied to it, for doing big data processing on a

cluster. Import SparkContext from pyspark, create a SparkContext object. It also points the

way to configuring environment variables JAVA_HOME and SPARK_HOME. For

organization, the application is dubbed "Global_Temperature."

Figure 3: Code for Spark check

Loading the Dataset: The dataset is loaded into a Spark DataFrame with header recognition

and schema inference enabled, so column types are handled automatically as seen in figure 4.

Figure 4: Code for Loading the dataset

Timestamp Conversion and Sorting: To convert the dt column which is initially a date

strings into a timestamp for doing time-based operations. Lastly, using the dt column, the

dataset is then sorted chronologically as in figure 5.

Figure 5: Code for Timestamp Conversion and Sorting

Monthly Aggregation: F.trunc truncates the dt column to the first day of each month. It is

then grouped by the truncated month_start and the average temperature for a month is

calculated to ensure consistency of the time series data granularity, as in Figure 6.

Figure 6: Code for Monthly Aggregation

Handling Missing Values (Forward Filling): In Figure 7, we can see as another window

specification that can do the missing value forward filling in the AverageTemperature column.

The rows that still have any remaining uncategorized null values after the forward-fill is

removed as well.

Figure 7: Code for Handling Missing Values (Forward Filling)

Stationarity Testing (ADF Test): A time series as seen in Figure 8 had its stationarity tested

by running the Augmented Dickey-Fuller (ADF) test. As the p value is greater than 0.05, this

meant the series could not be stationary.

Figure 8: Code for ADF test

First-Order Differencing for Stationarity: The time series is made stationary by applying

first order differencing. We then re-run Augmented Dickey-Fuller (ADF) test is and confirm

stationarity with a p value lower than 0.05 as shown in Figure 9.

Figure 9: Code for First-Order Differencing for Stationarity

Seasonal Decomposition: Additive decomposition decomposes the time series into trend,

seasonal and residual component. As shown in Figure 10, each component is then visualized

to determine their corresponding time series patterns.

Figure 10: Code for Seasonal Decomposition

Saving Preprocessed Data: The cleaned and aggregated Spark DataFrame was saved to a

CSV for further modelling as shown in figure 11.

Figure 11: Code for Seasonal Decomposition

These plots showed trends, issues of stationarity, and seasonal patterns, all of which are needed

in preparing data for modelling.

Original Time Series Plot: I visualized the Global average temperature over time.

Differenced Series Plot: This is to in order to check the effect of first order differencing in

achieving stationarity.

Seasonal Decomposition Plots: The purpose of seasonal decomposition plots is to break

down time series into trend, seasonal, and residual components in order to better understand

the underlying pattern.

Figure 12: Plot for Original Time Series

Plot

Figure 13: Plot for Differenced

Temperature Series Plot

Figure 14: Plot Seasonal Decomposition

5.2 Power BI Visualizations

Data visualization with temperature data is shown on Power BI dashboards and charts. These

visualizations were required to look at trends and check model outputs, and to understand

regional climatic behaviors.

The European Countries and Cities Dashboard (Figure 15) offers a macroscopic view of

temperature trends across 15 countries and 315 cities in Europe. It includes a heat map for

geographic temperature fluctuations, a scatter plot for average temperatures versus

uncertainties, and a line graph highlighting seasonal and long-term trends.

The Ireland Dashboard (Figure 16) focuses on Cork and Dublin, providing detailed metrics

on temperature uncertainty and changes over time through scatter plots and line graphs,

enabling localized analysis.

The Cork vs. Dublin Line Graph (Figure 17) compares 2013–2015 trends, showing Cork's

higher, steadier temperatures and seasonal variations in both cities, illustrating regional

climatic behaviors.

Figure 15: Dashboard on European Countries and Cities

Figure 16: Dashboard on Ireland (Cork

and Dublin)

Figure 17: Line Graph Comparing Cork

and Dublin (2013–2015)

5.3 Model Implementation

To implement the model to perform time series forecasting of global temperatures. It exploits

seasonality and trends by using Auto ARIMA and SARIMA models. For forecasting we

additionally use regression-based models like XGBoost and linear regression.

Imports and Setup: Various libraries, including matplotlib, seaborn, pandas, numpy, and

pmdarima, are used for data manipulation, visualization, and model training. PySpark is set up

for distributed data processing, using SparkSession and SparkContext for efficient handling of

large datasets as shown in Figure 18.

Data Loading: The temperature data is loaded into a Spark DataFrame from a CSV file

containing monthly data (month_start, AverageTemperature). This data is used for training and

forecasting as shown in Figure 19.

Figure 18: Code for importing and setting-

up

Figure 19: Code for Loading data

ARIMA Model: The Auto ARIMA model automatically selects the best parameters (p, d, q)

for time series forecasting. It is applied to the temperature data to predict future values without

considering seasonality, and the model’s summary and parameters are printed as shown in

figure 15.

SARIMA Model: A Seasonal ARIMA (SARIMA) model is trained to account for seasonal

patterns (12-month seasonality). The seasonal order of the model is extracted and printed as

shown in figure 16.

Figure 20: Code for AutoARIMA Model

Figure 21: Code for AutoSARIMA Model

AutoARIMA Model Implementation: An ARIMA model is trained using statsmodels library

by using the best parameters from Auto ARIMA model. Its performance is tested using metrics

like MSE, RMSE, and R².

AutoSARIMA Model Implementation: SARIMAX function in statsmodels trains the

SARIMA model with the best seasonal parameters. MSE, RMSE, and R² metrics are used for

performance evaluation.

Figure 22: Code for ARIMA Model

Figure 23: Code for SARIMA Model

Data Splitting and Feature Engineering for XGBoost: Data Splitting and XGBoost Feature

Engineering: The dataset is divided into two parts: an 80% training set and a 20% testing set.

The XGBoost model is trained using the month and year attributes that are taken from the

month_start column. The model's R2 and RMSE performance are employed.

Forecasting with XGBoost: Future temperatures are predicted using the trained XGBoost

model. I plot these predictions along with the historical data.

Figure 24: Code for Splitting

Figure 25: Code for XGBoost

Linear Regression Model: Feature vectors for the Linear Regression model using a

VectorAssembler. The model is trained by transforming the month_start column into a

numerical format (timestamp). The predictions are then evaluated with standard metrics.

Evaluation and Plotting: Evaluate each of the models performance, i.e. ARIMA, SARIMA,

XGBoost, and Linear Regression, using MSE, RMSE, and R² metrics. We visualize the

forecasted values against historical data to see how accurate the predictions are.

Key Points: In order to resolve inconsistencies and non-stationarity, we preprocessed our

dataset. The previous historical patterns were used as input to ARIMA and SARIMA models,

while engineered features were fed to Linear Regression and XGBoost models for better

predictions. PySpark was used for data processing and model training time, while Power BI

visualizations was used for validating the trends.

Figure 26: Code for Linear Regression Model

6 Evaluation

The findings of the ARIMA, SARIMA, XGBoost, and Linear Regression models are

thoroughly examined in this section. The performance of each model is evaluated using three

key metrics: R-squared (R²), Mean Squared Error (MSE), and Root Mean Squared Error

(RMSE). These measures serve as a guide for interpreting each model's usefulness in relation

to the temperature data forecasts and the research questions that the study aims to answer.

6.1 ARIMA Model Evaluation

The ARIMA model performed reasonably well in forecasting future temperatures, with the

following results:

Table 1: Result of ARIM

Metric Value

MSE 2.1626

RMSE 1.4706

R² 0.8879

The ARIMA model does a great job with an R squared value of 0.8879 which is about 88.79%

how the data varies. Although, its MSE is higher and its RMSE is higher than that of SARIMA

and XGBoost, there is space for improving, especially, capturing seasonal patterns, which is

important for the temperature data.

Plotting Results: The actual temperature data is accurately tracked by the SARIMA model

and it predict both trends and seasonal variations. As can be seen from the plot (Figure 19), the

data is modeled quite effectively by the model with minimal discrepancy from the actual data.

Figure 27: Predicted result of ARIM

Visually, historical data is very volatile, while the ARIMA forecast smoothes these variations;

a more stable trend over time is present. The forecast's confidence interval is the yellow shaded

area.

6.2 SARIMA Model Evaluation

The SARIMA model outperformed the ARIMA model very significantly. The results are as

follows:

Table 2: Result of SARIMA

Metric Value

MSE 0.3311

RMSE 0.5754

R² 0.9828

Whilst ARIMA performed marginally better than various random learners, the SARIMA model

outperformed, with lower MSE (0.3311) and RMSE (0.5754). It’s R² of 0.9828 indicates that

the temperature data are explained by 98.28% of the variation, demonstrating strong predictive

power. ARIMA is not always better than SARIMA since at least when there are seasonality,

SARIMA is more accurate than ARIMA due to its capability to capture the seasonality.

Plotting Results: Their SARIMA model is found to effectively follow the trend as well as the

seasonal changes of actual temperature data. This demonstrates that the model is effective in

modeling the data (plot shown in Figure 20), minimizing variance from actual values. The

SARIMA forecast follows the general trend but with smoother curves and with less fluctuation

and is above 10°C. And the graph shows that as you can see, temperature trends are predicted

by SARIMA with less variability than the actual data.

Figure 28: Predicted result of SARIMA

6.3 XGBoost Model Evaluation

XGBoost performed the best among the models, with the lowest error metrics:

Table 3: Result of XGBOOST

Metric Value

MSE 0.2269

RMSE 0.4764

R² 0.9882

XGBoost outperforms ARIMA and SARIMA with lowest MSE (0.2269) and RMSE (0.4764).

As for R² value it has 0.9882 which shows that it explains 98.82% of the variance, just beating

SARIMA. This is because XGBoost can model complex relationships well using gradient

boosting, which is one of the reasons XGBoost works so well with temperature forecasting

data which sometimes has seasonal as well as nonlinear patterns.

Plotting Results: Predicted values from XGBoost model rose very close to the actual data in

the forecasts. The plot below shows the ability of the model to capture both trend and

seasonality more than adequately. The model tracks temperature trends closely (green line)

following the blue line, with slight deviations towards the end with the ranges of 5 to 25.

Figure 29: Predicted result of XGBOOST

6.4 Linear Regression Model Evaluation

Linear Regression showed the poorest performance among the models:

Table 4: Result of Linear Regression

Metric Value

MSE 32.1586

RMSE 5.6709

R² 0.1689

Further, the Linear Regression model did the worst, with large MSE, RMSE and low R² of

0.1689. This linear model fails to catch the seasonal trends and nonlinear trends observed in

temperature data and therefore cannot be used for this time series analysis.

6.5 Analysis of Model Performance

ARIMA: The ARIMA model's strong performance allowed it to capture the general trend., but

did not fully achieve the requirement of seasonality. However, it explained a large portion of

the variance with an R² value of 0.8879, but the error metrics (MSE and RMSE) were higher

than those of SARIMA and XGBoost.

SARIMA: Interestingly, SARIMA considering the seasonal components worked much better

than ARIMA – lower MSE and RMSE, as well as higher R². We can see in the plot how

predicted and actual data lines up very close together and can certainly see seasonality in the

temperature as shown in the lines.

XGBoost: XGBoost demonstrated the best overall performance with the lowest MSE, RMSE,

and highest R². The model's capacity to capture intricate patterns in the data, like trends and

seasonality, makes it the best model for this time series forecasting assignment.

Linear Regression: The least effective model for this data was the Linear Regression with a

very high MSE and RMSE, and very low R². Since this did not capture the trend or seasonality

of the temperature data, this model is not fit to be used for this type of time series forecasting.

6.6 Comparison of Models

The models were evaluated using the following metrics: RMSE, MSE, and R². The table below

presents the comparison of these models based on these metrics:

Table 5: Result of Linear Regression

Model RMSE MSE R² Remarks

ARIMA 2.1626

1.4706 0.8879
Good fit with relatively low errors, captures linear

trends effectively.

SARIMA 0.3311 0.5754 0.9828
Best for seasonal data; performed slightly better than

ARIMA.

XGBoost 0.2269 0.4764 0.9882
Best overall performance, handles non-linearity well,

but computationally intensive.

Linear

Regression
32.1586 5.6709 0.1689

Performs well for simpler trends, but does not capture

seasonal or non-linear patterns.

But because temperature data has seasonality SARIMA fared much better than ARIMA, and

XGBoost, owing to its ability to analyze nonlinear patterns, achieved the best overall

performance with a lower RMSE, MSE, and higher R². On the other hand, Linear Regression

performed the worst as it contained the largest RMSE and MSE, this is the dataset with both

trends and seasonality. Trend of correct temperature predictions are compared, thus

highlighting the importance of using the right model for the right data to make correct

predictions.

6.7 Discussion

This study demonstrated how well sophisticated predictive models—particularly XGBoost

perform in weather forecasting. With the lowest error metrics and the greatest R2, XGBoost

outperformed more conventional models like ARIMA, SARIMA, and Linear Regression in

handling vast, complicated, and nonlinear data. However, SARIMA performed better at

identifying seasonal patterns, which is consistent with research by Liu et al. (2019) and Feigl

et al. (2021). Regional dataset validation demonstrated strong precision but revealed

limitations in scalability to diverse climatic zones, echoing Meehl et al.'s (2021) emphasis on

multi-regional datasets.

Hyperparameter tuning improved performance, consistent with Abrahamsen et al. (2018).

Future enhancements could include additional meteorological variables, such as humidity and

wind speed, or genetic algorithm optimization for SARIMA, as suggested by Farsi et al.

(2021). Hybrid methodologies, like SARIMA–XGBoost, and broader datasets incorporating

features like jet stream patterns and vegetation indices, could further improve accuracy,

supporting machine learning's transformative potential in weather prediction.

7 Conclusion and Future Work

This research aimed to forecast global temperature trends using time series analysis and

predictive modeling, evaluating ARIMA, SARIMA, XGBoost, and Linear Regression models

with historical data. Comprehensive preprocessing, feature engineering, and model evaluation

identified SARIMA as effective for seasonality, while XGBoost better captured nonlinear

patterns. Linear Regression proved less suitable for such data. Findings emphasize selecting

models based on data characteristics, especially for seasonal trends like global temperatures.

Future work could explore advanced machine learning methods, such as LSTM, for improved

predictive accuracy, leveraging their ability to handle sequential data. External factors like

greenhouse gas emissions, ocean currents, and solar radiation were integrated, enhancing

long-term climate prediction. Applying these models to localized climate data may reveal

regional influences. The results have practical applications for industries reliant on

temperature forecasts, such as agriculture, energy, and insurance, supporting decision-making

in climate-sensitive areas.

References

Abrahamsen, E.B., Brastein, O.M. and Lie, B., 2018. Machine learning in python for weather

forecast based on freely available weather data.

Bahari, M. and Hamid, N.Z.A., 2019, June. Analysis and prediction of temperature time series

using chaotic approach. In IOP Conference Series: Earth and Environmental Science (Vol.

286, No. 1, p. 012027). IOP Publ

Bochenek, B. and Ustrnul, Z., 2022. Machine learning in weather prediction and climate

analyses—applications and perspectives. Atmosphere, 13(2), p.180.

Bochenek, B. and Ustrnul, Z., 2022. Machine learning in weather prediction and climate

analyses—applications and perspectives. Atmosphere, 13(2), p.180.

Farsi, M., Hosahalli, D., Manjunatha, B.R., Gad, I., Atlam, E.S., Ahmed, A., Elmarhomy, G.,

Elmarhoumy, M. and Ghoneim, O.A., 2021. Parallel genetic algorithms for optimizing the

SARIMA model for better forecasting of the NCDC weather data. Alexandria Engineering

Journal, 60(1), pp.1299-1316.

Feigl, M., Lebiedzinski, K., Herrnegger, M. and Schulz, K., 2021. Machine-learning methods

for stream water temperature prediction. Hydrology and Earth System Sciences, 25(5),

pp.2951-2977.

Feng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L. and Cui, N., 2019. Evaluation of

temperature-based machine learning and empirical models for predicting daily global solar

radiation. Energy conversion and management, 198, p.111780.

He, Z., Shi, T., Xuan, J. and Li, T., 2021. Research on tool wear prediction based on

temperature signals and deep learning. Wear, 478, p.203902.

Hewage, P., Trovati, M., Pereira, E. and Behera, A., 2021. Deep learning-based effective fine-

grained weather forecasting model. Pattern Analysis and Applications, 24(1), pp.343-366.

Jaseena, K.U. and Kovoor, B.C., 2022. Deterministic weather forecasting models based on

intelligent predictors: A survey. Journal of king saud university-computer and information

sciences, 34(6), pp.3393-3412.

Kumari, S. and Singh, S.K., 2023. Machine learning-based time series models for effective

CO2 emission prediction in India. Environmental Science and Pollution Research, 30(55),

pp.116601-116616.

Li, X., Zhu, Y., Li, Q., Zhao, H., Zhu, J. and Zhang, C., 2023. Interpretable spatio-temporal

modeling for soil temperature prediction. Frontiers in Forests and Global Change, 6,

p.1295731.

Liu, Q., Zou, Y., Liu, X. and Linge, N., 2019. A survey on rainfall forecasting using artificial

neural network. International Journal of Embedded Systems, 11(2), pp.240-249.

Meehl, G.A., Richter, J.H., Teng, H., Capotondi, A., Cobb, K., Doblas-Reyes, F., Donat,

M.G., England, M.H., Fyfe, J.C., Han, W. and Kim, H., 2021. Initialized Earth System

prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment,

2(5), pp.340-357.

Meenal, R., Michael, P.A., Pamela, D. and Rajasekaran, E., 2021. Weather prediction using

random forest machine learning model. Indonesian Journal of Electrical Engineering and

Computer Science, 22(2), pp.1208-1215.

Purwandari, K., Sigalingging, J.W., Cenggoro, T.W. and Pardamean, B., 2021. Multi-class

weather forecasting from twitter using machine learning aprroaches. Procedia Computer

Science, 179, pp.47-54.

Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K. and Wang, X., 2021. Deep learning-based

weather prediction: a survey. Big Data Research, 23, p.100178.

Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari,

A. and Stadtler, S., 2021. Can deep learning beat numerical weather prediction?, Philos. In

Roy. Soc. A (Vol. 379, No. 20200097, pp. 10-1098).

Shilong, Z., 2021, January. Machine learning model for sales forecasting by using XGBoost.

In 2021 IEEE international conference on consumer electronics and computer engineering

(ICCECE) (pp. 480-483). IEEE.

Shrivastava, V.K., Shrivastava, A., Sharma, N., Mohanty, S.N. and Pattanaik, C.R., 2023.

Deep learning model for temperature prediction: an empirical study. Modeling Earth Systems

and Environment, 9(2), pp.2067-2080.

Tabari, H., Hosseinzadeh Talaee, P. and Willems, P., 2015. Short‐term forecasting of soil

temperature using artificial neural network. Meteorological Applications, 22(3), pp.576-585.

