
Configuration Manual

MSc Research Project

Masters in Data Analytics

Kesav Swaroop Reddy Devarapati
Student ID: x23196459

School of Computing

National College of Ireland

Supervisor: Cristina Hava Muntean

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Kesav Swaroop Reddy Devarapati

Student ID: x23196459

Programme: Masters in Data Analytics

Year: 2024

Module: MSc Research Project

Supervisor: Cristina Hava Muntean

Submission Due Date: 29/01/2025

Project Title: Configuration Manual

Word Count: Approximately 1500 words

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: D.Kesav Reddy

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Kesav Swaroop Reddy Devarapati
x23196459

1 Introduction

The goal of this project is to predict multiple biological targets from experimental gene
expression and cell viability data. The machine learning problem is to implement Lo-
gistic Regression, Random Forest, XGBoost, LightGBM, CatBoost, Gradient Boosting,
AdaBoost, K-Nearest Neighbors (KNN), and Decision Tree classifiers, in that order. The
project directory consists of :
Research-Project-Code.ipynb : All the code for preprocessing, training and evalu-
ation in a single Jupyter notebook.
Datasets : train-features.csv, train-targets-scored.csv, train-targets-nonscored.csv, test-
features.csv

2 System Configuration

2.1 Hardware Requirements

Processor: Hence minimum quad core CPU (Intel i5 or equivalent AMD Ryzen 5).
Memory: Minimum 8 GB RAM (16 GB is recommended for a smooth running).
Disk Space: Datasets and intermediate outputs, and models at least 10 GB free.
GPU (Optional): Use a NVIDIA GPU specifically with CUDA support for accelerated
processing, which is great with XGBoost, LightGBM, etc.

2.2 Software Requirements

Python: The entire development was being conducted in Python 3.8 to avoid any issues
with developing while also using all the required libraries and frameworks. Keep things
consistent with other project dependencies by making sure your system has Python 3.8
or higher installed.
Libraries: Pandas for Data manipulation and ingestion. High performance numerical
computation using numpy. Moreover, matplotlib and seaborn for more advanced data
visualisation. machine learning algorithms can be implemented using scikit learn for that.
Other gradient boosting frameworks that work great with tabular data include, xgboost,
lightgbm and catboost. Supplying progress bars as part of loops and processes makes
things much more traceable while long running.

1



Figure 1: Feature Encoding

3 Project Development

3.1 Dataset Overview

The datasets are primary to the project’s analytical capacity. They include:
train-features.csv: It consists of 875 features indicating gene expression and cell viab-
ility under many conditions.
train-targets-scored.csv: Projects core predictive tasks comprise binary targets indic-
ating the presence of biological activity.
train-targets-nonscored.csv: It also gives us additional unscored biological targets for
supplementary analysis or feature engineering.
test-features.csv: These are features associated to the test set, used to assess how our
model will generalise on the unseen data set.
train-drug.csv: The file can be used for stratified analyses, and for showing treatment
specific responses.

3.2 Data Pre-processing

Preprocessing is essential to prepare the data for machine learning:

3.2.1 Feature Encoding

One hot encode the categorical variables (cp-time, cp-type, cp-dose) to create numerical
representations that can be used by machine learning algorithms. The latter is then
merged with remaining original dataset and original categorical columns are dropped.

3.2.2 Feature Scaling

StandardScaler is used to scale all numerical features so that they are of same scale.

3.2.3 Splitting Features and Targets

The target labels (train-targets-scored.csv) are separated from feature columns for the
training of the model. Both features and targets are purged of the sig-id column to
guarantee data integrity.

3.2.4 Data Shuffling

To avoid biases during the model training, data is shuffled.

2



Figure 2: Data Shuffling

Figure 3: Exploratory Data Analysis

3.3 Exploratory Data Analysis

EDA provides insights into the dataset:

3.3.1 Distributions

We use bar plots to visualize class distributions of treatment types (cp-type) and dosage
levels (cp-dose).

3.3.2 Correlation Heatmaps

In order to identify redundancy and multicollinearity, correlations between features are
visualized.

3.3.3 Feature Distributions

Numerical properties are studied with box plots and density plots, and the observations
of numerical features are summarized through box and whiskers plots.

3



Figure 4: Distribution of Treatment Types Figure 5: Distribution of Dosage Levels

Figure 6: Box plot for selected features

3.4 Model Selection

3.4.1 Logistic Regression

Often as a baseline linear classifier for binary and multi label classification tasks, Logistic
Regression is a method. It supports the probability of a given class belonging to certain
label with the use of a sigmoid function. It is remarkably simple, and is very effective
in linearly separable datasets. Yet without feature transformation or engineering, it has
trouble with any non-linear relationship.

3.4.2 Random Forest

Bagging ensemble model includes Random Forest, here it will build many Decision Trees
by using different subsets of data and get together their predictions. Using this approach
we reduce overfitting and increase the generalizability, making this approach robust for
multi-label tasks. The problem that Random Forest excels at is high-dimensional data
and mixed feature types.

4



Figure 7: Training the models

3.4.3 XGBoost

An implementation of gradient boosted decision trees: Extreme Gradient Boosting (XG-
Boost). It is a speed and performance optimized tool which uses a variety of regularization
techniques for reducing the over fit. XGBoost is very useful for structured dataset, gives
higher accuracy and also ignore missing values.

3.4.4 LightGBM

Gradient boosting framework, lightGBM (Light Gradient Boosting Machine) is another
speed and efficiency focused framework. For large number of datapoints, with high feature
dimensionality, it handles it efficiently using a histogram based algorithm. Being very
scalable and also able to handle categorical features directly, LightGBM is obviously very
good for solving multi label problems.

3.4.5 CatBoost

A gradient boosting algorithm tuned for categorical data, catboost. It can handle cat-
egorical variables natively without need for extensive preprocessing; unlike other gradient
boosting models. It exhibits robust performance reducing overfitting and high inter-
pretability for feature importance.

3.4.6 Gradient Boosting

In Gradient Boosting, we have a sequential ensemble technique which builds up models in
an incremental fashion to reduce errors made by previous models. However, the flexibility
of their loss functions means that each model is minimizing a differentiable loss function.
It is slower than bagging models like Random Forest, but often has higher accuracy
because it emphasizes the hard to predict data points.

5



Figure 8: Pipeline

3.4.7 AdaBoost

Adaptive Boosting (AdaBoost) is an ensemble method, where weak learners, usually just
decision stumps, are combined to form a powerful predictive model. Then it has the effect
of assigning higher weights for misclassified examples, which will cause subsequent models
toinstruction, which models will pay more attention to these errors. For moderately
imbalanced datasets, we find that AdaBoost is effective, but it can be sensitive to noisy
data.

3.4.8 K-Nearest Neighbors (KNN)

KNN is an instance based non parametric learning algorithm to predict labels from the
labels of the nearest neighbors. The payoff is simple to implement and interpret but com-
putationally intensive with large datasets. However, KNN does well for smaller datasets
with well defined class distribution.

3.4.9 Decision Tree

Then Decision Tree is a tree based algorithm that makes prediction by recursively split-
ting data based on feature values. It is easy to speak, understand and visualize it for
exploratory analysis. Decision Trees do overfit however and this can be mitigated by
pruning or combining together multiple trees in ensemble methods.

3.5 Model Training

3.5.1 Pipeline Creation

Each machine learning model was wrapped inside of a pipeline to streamline the training
and evaluation process. The pipeline included a StandardScaler to normalize the features
and a MultiOutputClassifier to deal with the multi label shape of the classification prob-
lem. The pipeline scaled the data so that the scales of different features did not bias the
models. Each base model was wrapped to the MultiOutputClassifier which could predict
multiple target labels at once. This also allowed for modularity in which we were able to
easily swap out models or additional preprocessing steps.

3.6 Model Evaluation

To comprehensively assess model performance, several evaluation metrics were employed:
Accuracy: This is a metrics that computes the percentage of the predicted labeled
correct to total labeled, aggregating the model performance. However, accuracy is not
always accurate when imbalanced.
Precision, Recall, and F1-Score: A more nuanced view of model performance was

6



Figure 9: Model Performance Metrics

provided using these metrics. Recall measures the proportion of true positive predictions
out of all positive predictions, whereas precision concentrates on predicting the portion
of all the actual positive instances. If you are dealing with a case of imbalanced dataset,
F1 score is great because of the output that it provides, it balances precision and recall
together.
Confusion Matrices: To perform analysis over the predictions of each individual model,
these were used to determine which target label predictions were true positives, false
positives, true negatives, and false negatives. This helped me understand what labels
models struggled to predict.

3.7 Results and Outputs

The results of the evaluation were presented in both textual and graphical formats: Ac-
curacies, precisions, recalls and F1 scores were calculated and printed for each model.
These metrics made it possible to substantially quantitatively compare the algorithms,
and thus to identify which ones do well and where they fall short. The visual outputs of
the project were essential for interpreting results:
Performance Metrics Comparison: Accuracy and F1-scores of each model were bar
plotted to easily see the best performing algorithms.

7



Figure 10: Accuracy Scores for Models

Figure 11: Precision, Recall and F1 Scores for Models

8



Figure 12: Precision vs Recall for Moddels

Figure 13: Model Performance Heatmap

9



Figure 14: Feature Importance

Precision vs. Recall Scatter Plots: Specifically highlighting these was crucial in
multi label classification work, as some labels may be under represented and thus some
trade offs a model makes in tradeoff of precision and recall.
Heatmaps: These gave us the precision, recall, and F1-scores for all the models in order
to understand their behavior better across different labels.

3.8 Feature Importance Analysis

Feature importance scores were calculated from Random Forest, XG Boost, Cat Boost
and were visualized. For interpretability and perhaps input feature engineering improve-
ments, bar plots of the top 10 most influential features provided insights into character-
istics of the dataset.

10


	Introduction
	System Configuration
	Hardware Requirements 
	Software Requirements 

	Project Development
	Dataset Overview 
	Data Pre-processing 
	Feature Encoding 
	Feature Scaling 
	Splitting Features and Targets 
	Data Shuffling 

	Exploratory Data Analysis
	Distributions
	Correlation Heatmaps 
	Feature Distributions 

	Model Selection 
	Logistic Regression 
	Random Forest 
	XGBoost 
	LightGBM 
	CatBoost 
	Gradient Boosting 
	AdaBoost
	K-Nearest Neighbors (KNN) 
	Decision Tree 

	Model Training 
	Pipeline Creation 

	Model Evaluation 
	 Results and Outputs 
	Feature Importance Analysis 


