ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name

Arshil Deshmukh
Student ID: X23183063

School of Computing
National College of Ireland

Supervisor: Barry Haycock

Student
Name:
Student ID:
Programme:
Module:
Lecturer:
Submission
Due Date:

Project Title:

Word Count:

National College of Ireland
MSc Project Submission Sheet
School of Computing

Arshil Khalid Deshmukh

X23183063

Data Analytics Year:

MSc Research Project
Barry Haycock
12/12/2024
Configuration Manual

895 Page Count: 10

‘——
\ National

2024

Collegeof
Ireland

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section.
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Arshil Deshmukh

12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Students are

Attach a completed copy of this sheet to each project (including multiple

copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Arshil Deshmukh
Student ID: X23183063
11-12-2024

1 Introduction

This configuration manual shows minimum hardware and software configurations to replicate
the research project “Improving Waste Sorting Systems: Enhancing Sustainability and
Resource Recovery”. It also shows the libraries, code and each implementation steps with all
the requirements. This documentation is designed to reproduce with accuracy and precision
for further application of the research project.

2 System Requirements

2.1 Hardware Requirements

The below tablel shows the hardware requirements needed to for project execution.

Components Specifications
Processor Intel Core i7 4.7Ghz
GPU NVIDIA RTX 4050
RAM 16 GB
Storage 1TB SSD
Operating System Windows
Display 144Hz

2.2 Software Requirements

The below table shows the software configurations

Software Type Software Name Version
Programming Language Python 3.10.9
Coding Environment Jupyter Notebook 6.5.1
Platform TensorFlow 2.16.1

2.3 Required Libraries and packages

The below section shows us all the libraries and packages we have used in the process.

Libraries -
TensorFlow

Keras

NumPy

scikit-learn

matplotlib.pyplot
tensorflow.keras.applications
tensorflow.keras.preprocessing.image
tensorflow.keras.utils
tensorflow.keras.models
sklearn.metrics
sklearn.preprocessing

seaborn

Version
v2.16.1
3

2.1.3
1.6.0
3.9.0
v2.16.1
v2.16.1
v2.16.1
v2.16.1
1.6.0
1.6.0
0.11.2

~ | Use M
Used to develop various models such as image recognition
Implementing Neural Networks
a collection of high-level mathematical functions
efficient tools for machine learning and statistical modeling
used for creating static, animated, and interactive visualizations in Python
implementations of pre-trained deep learning models
Is primarily used for loading, preprocessing, and augmenting image data
provides utility functions for various tasks
It provides tools to create, save, load, and manage deep learning models
It provides functions for evaluating model performance
module is used for feature scaling, normalization, and transforming data
Is used for creating informative and visually appealing statistical graphics

Figure 1 Libraries and packages

3 Implementation of Code

In this section, we will see everything required to process the code successfully from scratch.

3.1 Creating Folder and loading all the required things.

The below figure2 shows the folder and all the codes files in it with data folder in it.

J > Desktop

Name
B .ipynb_checkpoints
B Augmented_data
B Augmented_data(1)

. Binary

8 Images
8 Papers
[_Relle]

8 YOLO_Annotations

> Research Project >

cuda_12.6.3_561.17_windows

E yolov3

E yolov4

‘ binary_crushed_bottle_c|

‘ bottle_classifier.h5
nsemble_binary_

‘ inception_v3_model.h5

esNet50.h5

T Sort ~ = View ~
Date modified Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
Application
Configuration Sou...
Configuration Sou...
H5 File
H5 File
H5 File
H5 File
H5 File
H5 File 1,17,544 KB
H5 File 791 KB

H5 File 11,145 KB

Figure 2 Directory

3.2 Data Preprocessing

In this process, we collected all the images and stored in a folder called data_waste. The
collected data has been labelled with the same name as folder. In Fig 3 and Fig 4 Below

Name) Date modified Type

I battery 9-11-2024 01: File folder
M Binary(1) 7-12-2024 21:3 File folder
M bulb 3-11-2024 1638 File folder
M cans 3-11-2024 1638 File folder
M cardboard 3-11-2024 16:38 File folder
M cigarettebutt 3-11-2024 16:38 File folder
I Crushed bottles 8-12-2024 20:5 File folder
M diapers 3-11-2024 16:38 File folder
I Entangled plastic bags 3-11-2024 16:38 File folder

M glass 3-11-2024 16:38 File folder battery (9 battery (10)

Figure 3 Classes Figure 4 Image labels

3.3 Data splitting and Transformation

In this section, we did split the data in three categories train, valid and test. But first we did
train and valid then out of it we made a test folder containing test images. Below Figure 5
shows the python code for train and valid data.

Splitting the data

import os
import shutil
from sklearn.model selection import train_test_split

original_dataset_dir = 'C:/NCI/Research Project/Waste_data’
train_dir = 'C:/NCI/Research Project/train’
test_dir = "C:/NCI/Research Project/test"

os .makedirs(train_dir, exist_ok=True)
os.makedirs(test_dir, exist ok=True)

categories = os.listdir(original_dataset_dir)

test] size = 8.2

for category in categories:
Create class-specific directories in train/test folders
os.makedirs(os.path.join(train_dir, category), ewist_ok-True}
os.makedirs(os.path.join(test_dir, category), exist_ok=True)

Get all image Filenames for this category
category_path = os.path.join(original_dataset_dir, category)
images = os.listdir(category_path)

SpLit intoc train/test sets
train_images, test_images = train_test_split(images, test_size—test_size)
Copy the images to the respective directories

for image in train_images:

shutil.copy(os.path.join{category_path, image), os.path.jeoin(train_dir, category, image})
for image in test images:

shutil.copy(os.path.join({category_path, image), os.path.join(test_dir, category, image})}

Figure 5 Splitting of data

The above code shows splitting. One change is we use test_size for validation folder you can
use valid_size and change as per requirements. Below Figure shows code for test folder
creation. We took 5 images per class to keep data short.

import shutil
import random

Correct the base directory poth

base_dir = "C:/Users/farshi/Desktop/Research Project/data_waste”
train_dir = os.path.join{base_dir, "train")

test_dir = os.path.join(base_dir, "test")

Create the test directory if it doesn't exist
os.makedirs({test_dir, exist_ok=True)

Number of images to move per class
MUM_IMAGES = 5

Check if the train directory exists
if not os.path.exists(train_dir)}:
raise FileMNotFoundError(f"Train directory does not exist: {train_dir}")

Move imoges to the test folder
for class_name in os.listdir{train_dir)
class_train_dir = os.path.join{train_dir, class_name)

if not os.path.isdir(class_train_dir):
continue # Skip if it’'s mot o directory

files = ps.listdir(class_train_dir)
selected_files = random.sample{files, min{NUM_IMAGES, len(files}))

for file in selected_files:
src_path = os.path.join{class_train_dir, file)
dst_path = os.path.join(test_dir, f"{class_name}_{file}")

shutil.move(src_path, dst_path)

print{"Test dataset created”)

Figure 6 Test Data folder creation

Later on, we made an Augmented dataset out of it to make data more robust and better.
Below Figure7 shows the Augmentation code.

from tensorflow.keras.preprocessing. image import Imagepatacenerator, img teo array, load_img
import os

Initialize Imagepotocenerator with vour augmentation settings
datagen = ImageDataGenerator(

rotation_range=4e,

width_shift_range=2.2,

height_ shift_range-=8.2,

shear_range=.2,

Zoom_range=a.2,

horizontal_flip=True,

fill_mode="nearest’

]

pirectory pathsd

input_dir = "data_waste/train®

output_dir = "Augmented_data' #& owtpuft directory to save augmented images
Loop through each subfolder in the input directory

for folder_name in os.listdir(input_dir)}
folder_path = os.path.join{input_dir, folder_name}

if os.path.isdir{folder_path}:
Ccreate the some subfolder in the output directory if it doesn't exist
save_ftolder = os.path.join{output_dir, folder_name}
os.makedirs{save_folder, exist_ok=True)

Loop through each image in the subjfolder
for file_name in os.listdir{folder_path):
file_path = os.path.join{folder_path, file_name)

if file_name.lower(}.endswith{{'jpg', 'Jpeg", 'png'}): # Check for wvalid image files

img = load_img({file_path)

x = img_to_array{img}

X = X.reshape((1,} + x.shape)

Generagte gugmented images and save them

i=8

for batch in datagen.flow{x, batch_size=1,
save_to dir=save_folder,
save_prefix=F"{folder_name}_aug",
save_format="jpes"):

i+=1
if 1 > 3: & change this number to generate more or fewer augmentotions per imoge
break

primt{"augmentation complete."™}

Figure 7 Augmentation data code
We can change i>3 to get more or less images as per the requirements.

3.4 Final Code

In this section, we will start making and processing the model by loading the images first in
required variables and then go on with all the implementations and training.

In this code what we did is loaded the data in the variables train_dir and val_dir to process the
data. We made the model in the same folder where our data is you can change path as per
your data folder. Then we used augmentation on our training set for better training and kept
valid set as it is. We later gave the batch size which is 64 but we can use (16, 32, 64 or 128).
The size of the images is kept at 224 x 224 but change as per the model requirements. Class
mode is categorical because we are performing multi class classification.

Below figure 8 shows the code

from tensorftlow.keras.applications import Inceptionv2
from tensorftlow.keras.preprocessing. image import ImageDataGenerator
from tensorflow.keras import layers, models, optimizers

Define directory paths jfor training and velidetion data
train_dir = "train”
val_dir = "walid"

Dota preprocessing and ougment for troining aond validaotion dotasets

train_datagen = ImageDataGenerat
rescale=1.8 / 255.@,
rotation_range=4a,
width_shift_range=08.2,
height_shift_range=98.2,
shear_range=a.z,
Zoom_range=e.2,
horizontal_+lip=True,
fill_mode="nearest",

a oo
G
P |

)

val_ datagen = ImageDatacenerator{rescale=1.8 J 255.8)

Lood dotasets
train_generator = train_datagen.flow_ftrom_directory(
train_dir,
target_size={2z4, Zz24),
batch_size=64,
class_mode="categoriczl”,

)
val_ generator = wval_datagen. flow_from_directory(
val_dir,
target_size={224, Z224),
batch_size=64,
class_mode="categoricsl”,
b
nNumber of classes for the output Layver
mum_classes = len{traim_generator.class_indices)

Figure 8 Data loading

In the below code, we started with loading the model. We loaded the pre-trained model of
InceptionV3 with pre trained weights using ImageNet. In the next step we froze the base
layer of the pre-trained model to retain trained features. Then we added the custom layers to
the model for fine tune the unique features of the model. We used dropout layers to avoid
overfitting and Dense layer using softmax activation for multi-class classification.

Later, we complied the model with Adam optimizer, loss as categorical crossentropy and
metrics of accuracy to show the training process. Then, we moved to training the model with
epochs 40 for better training and saved the model as .h5 file format.

In the end, we have written code to get the line charts for training and validation
accuracy/loss for better understanding using matplotlib.pyplot. We can see in the Figure 9
below.

Logd the pre-trained Inceplionv3 model
base_model = Inceptionv3{weights="imagenet", include_top=False, input_shape=(222, 224, 37)

Freeze the base model to retain pre-trained fFeatures
base_model.trainable = False

Add custom classificotion Lavers

model = models.Sequential([
base_model,
layers.cleobalaveragePooling2nq},
layers.Dense{1824, activation="relu"}),
layers.Dropout{e.5),
layers.Dense{num_classes, activation="softmax"},

I

Compile the model

model. compilef
optimizer-optimizers.adam(learning_rate-8.8e1),
loss="categorical_ crossentropy”,
metrics=["accuracy”],

)

Troin the model
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples f/ train_generator.batch_size,
epochs=48,
validation_data=val generator,
validation_steps=val_ generator.samples ff val_generator.batch_size,

)

Sgve the model fFor future use
model. save("inception_v2 _model.h5"™})

dptionally, plot the troining history
import matplotlib.pyplot as plt

Plot training and validotion @ccuracy

plt.plot{history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label="validation Accuracy')
plt.xlabel("Epoch')

plt.ylabel(Accuracy')

plt.legend(}

plt.title("Training and validation Accuracy')

plt.show()

Plot training and volidation loss
plt.plot(history.history['loss"], label="Trainimg Loss')
plt.plot(history.history[‘val_loss'], label='validation Loss"}
plt.xlabel("Epoch')

plt.ylabel("Loss")

plt.legend(}

plt.title('Training and validation Loss')

plt.show()

Figure 9 Model loading and training

3127 312 26JUS YS/STED - ACCUMBCY: ©.5¥bb - L0SS! ©¥.68/2 - VAL_BCCUracy: ®.Y¥11Y - VAl_lOSS! B.2//b
Epoch 34/48

312/312 7s ems/step - accuracy: @.7656 - loss: 8.7678 - val_accuracy: 1.2e88 - val_loss: ©.2878
Epoch 35/48

312/312 27335 9s/step - accuracy: 8.8838 - loss: 8.6149 - wval_accuracy: 8.9858 - val_loss: 9.2859
Epoch 36/48

312/312 6s ems/step - accuracy: @.7269 - loss: 8.6712 - val_accuracy: 8.8758 - val_loss: ©.3442
Epoch 37/428

3124312 2783s 9s/step - accuracy: 2.8835 - loss: @.6145 - val_accuracy: 2.918% - val_loss: 8.2711
Epoch 38/48

312/312 6s &ms/step - accuracy: 8.7959 - loss: ©.656%9 - val_accuracy: 8.9167 - val_loss: @.2162
Epoch 39/48

312/312 25185 85/ step - accuracy: 8.8879 - loss: 8.6147 - val_accuracy: 8.9121 - val_loss: 8.2689
Epoch 48/42

312/312 65 ems/step - accuracy: 8.8758 - loss: 8.4882 - val_accuracy: 8.7917 - val_loss: 8.8179

Figure 10 Training process
In figure 10, we can see the training process of the above model.

import numpy as np

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing. image import ImageDataGenerator
from sklearn.metrics import confusion_matrix, classification_report

Directory paths
val_dir = "val

Wy

Lood the saved model
model_path = "inception_vw3_model.hs”

model = lead model({model_path)

Volidation data preprocessing
val_datagen = ImageDataGemerator(rescale=1.8 / 255.8)
val_generator = val_datagen.flow_from directory(
val_dir,
target_size=(224, 224},
batch_size-£4,
class_mode="categorical”,
shuffle=False # Ensures dota order for confusion matrix computation

Generate predictions on the wvalidation dataset

val_pgenerator. reset()

predictions = model.predict(wal generator, steps=val generator.samples // val_generator.batch_size + 1)
predicted classes = np.argmax(predictions, axis=1)

Get true classes
true_classes = val_generator.classes

Compute the comfusion motrix
cm = confusion_matrix(true_classes, predicted_classes)
print("confusion Matrix:\n", cm)

Clossification report

target_names = list{val generator.class_indices.keys(})
print("\nClassification Report:Wwn", classification_report{true_classes, predicted_classes, target_names=target_names))

Figure 11 Graphs and charts

In the figure 11, we can see the code for making confusion matrix and classification report
for the above model.

model_path = “"inception_v3 model.hs™

model = lead_model{model_path)

Define the Labels (must match the Lobels wsed during tr

ining)

+
labels = list{wval generator.class_indices.keys()) # Assuming val_generagtor is defined as in the previous code

Lood and preprocess the image

def load_and_preprocess_image{img_path}:
img = image.load_img(img_path, target_size=(224, 224))} # Resize to match m
img_array = image.img_to array(img) # Convert the image to g numpy array
img_array = np.expand_dims(img_array, axis=e) # Add an extro dimension for batch (1, height, width, channels)
img_array /= 255.8 # Normalize the imoge
return img_array

(=]

el input size

Predict the Label of an image
def predict_imape_label{img_path}:
img = load_and_preprocess_image{img path)
prediction = model.predict(img) # Get model predictions
predicted_class = np.argmax(prediction, axis=1)} # Get the index of the highest probability
predicted_label = labels[predicted class[®]] # Map index to class Llabel

Display the imoge along with the prediction
plt. imshow(image.load_img(img_path}}
plt.title(f"Predicted Label: {predicted_label}"}
plt.axis{ "off")

plt. show()}

Test the function

img_path = “"cigarettebutt_cigarettebutt (38).jpg"
img_pathl = “"battery_battery (13&8).]jpg"

img_path2 = "bulb_bulb (124}.jpg"

img_path3 = “"cardboard carboard (258).jpg"
img_path4 = "Crushed bottles_crushed_bottle (24).jpeg”
img_paths = "diapers_diaper (28).jpz"

img_paths = "Greased pizza boxes_greased_pizza box (3).jps"
img_path7 = "Medical waste medical waste (285).jps"
img_pathg = “"paper_paper (2&9).jpg"

img_pathd = "Plastic Cup_plastic_cups (&3).Jpg"
img_pathie = "used mapkins_used_napkins (7).jpeg"
predict_image_label({img_path}
predict_image_label{img_pathl})
predict_image_label(img_path2}
predict_image_label(img_path3)
predict_image_label(img_patha)
predict_image_label(img_pathS}
predict_image_label(img_pathe)
predict_image_label(img_path7})
predict_image_label{img_path3}
predict_image_label{img_patha)
predict_image_label(img_pathla}

Figure 12 Model testing

Above in Figure 12, we can see the code for testing the model by input of images to test the
model predictions of the image classes.

4 References

Hasan, M.K., Atta, A., Khan, M.A., Akram, A.S., Issa, G.F. Hassan, M., 2022. Smart Waste
Management and Classification System for Smart Cities using Deep Learning. Proceedings of
the 2022 International Conference on Business Analytics for Technology and Security
(ICBATYS), pp. 1-6.

Ma, X., Li, Z. Zhang, L., 2022. An Improved ResNet-50 for Garbage Image Classifi cation.
Technical Gazette, 29(5), pp.1552-1559.

Mao, W.-L., Chen, W.-C., Fathurrahman, H.1.K. Lin, Y.-H., 2022. Deep learning networks
for real-time regional domestic waste detection. Journal of Cleaner Production, 344,

p.131096.

Sakr, G.E., Mokbel, M., Darwich, A., Khneisser, M.N., Hadi, A., 2016. Compar ing Deep
Learning and Support Vector Machines for Autonomous Waste Sorting. Pro ceedings of the
2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET).
Trivedi, N.K., Tiwari,

10

