~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Programme Name

Manoj Crasta
Student ID: x23199156

School of Computing
National College of Ireland

Supervisor:  Abdul Shahid




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Manoj Crasta
Student ID: x23199156
Programme: Programme Name
Year: 2024
Module: MSc Research Project
Supervisor: Abdul Shahid
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 591
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Manoj Crasta
x23199156

1 Introduction

This configuration manual will provide detailed instructions how to setup the system
or device for this study. This manual includes thorough explanation on how to carry
out the research study from start to finish. It also contains the machine specifications
and configurations needed to develop and execute all the models without any problems.
It contains steps on how to setup the basic environment for the project, along with
information on the necessary applications and packages to integrate into the working
environment.

2 Project Files Detail

2.1 Datasets

This project include 4 historical dataset files and a JSON file folder consisting financial
news articles encoded in JSON structure.

2.2 Google Collab File

Google collab is used for this project development. Hence one google collab file will be
there in the project folder.
3 System Specification

Figure 1] shows the system specifications. And Figure [2] shows the Google Collab specific-
ations.

4 Software Used

1. Google Drive
2. Google Collab



LAPTOP-TOF180CQ
HP Pavilion Laptop 14-ecTxxx

@ Device specifications

Device name

Processor

Installed RAM

Device ID

Product ID

System type 64-bit o

Penand touch  No pen o ble for thi

Related links ~ Domain or workgroup ~ System protection  Advanced system settings

Windows specifications

Edition
Version
Installed on
OS build

Experience

Figure 1: System Specifications

Specification Details
Processor Intel Xeon CPU (varies)
GPU Instance NVIDIA Tesla T4

RA 12 GB

Disk Space 0 GB (temporary storage)

Max Lifetime of VM

Figure 2: Collab Specifications



4.1 Libraries Used

® 0s
e json

e datetime

e pandas

e seaborn

e matplotlib.pyplot
e tabulate

e transformers

e sklearn

e xghoost

e tensirflow keras

e keras_tuner

5 Project Development

These steps gives a detailed guide how to implement the project in google collab.

5.1 Uploading Project Folder To Google Drive
First upload the project folder to the google drive as shown in Figure

Figure 3: Uploading Project Folder

5.2 Mount Google Drive

Open the collab file from the project folder. And run the mount drive code in the first
cell as shown in Figure [4



=i M X + Code + Text
Files

C B R ) )
N*/S [2] from google.colab import drive
— 8
# Mount Google Drive
» [ drive drive.mount (*/content/drive"’)

» [ sample_data

0

Mounted at /content/drive

Figure 4: Mount Google Drive

5.3 Changing The File Path
Change the file paths if necessary as shown in Figure [6]

™ v o+

D # Folder containing Json files
folder_path = "/content/drive/MyDrive/Thesis Files/JSON Files With Articles" # Update this to your actual folder path

Figure 5: Changing the path of files

5.4 Importing Libraries

Importing and installing all the necessary libraries that will be used in the project.

[ ] !pip install keras-tuner --upgrade
import - os
import json
from datetime import datetime

# Data manipulation and visualization
import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from tabulate import tabulate

# Transformers and-NLP
from transformers import pipeline

# Scikit-learn: preprocessing, model-selection, metrics

from sklearn.model selection import train test split, cross val score, GridSearchcCv
from sklearn.preprocessing import Standardscaler

from sklearn.metrics import mean_squared error, mean_absolute error, r2_score

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.svm import SVR

# XGBoost
import xgboost as xgb
from xgboost import XGBRegressor

# TensorFlow and- Keras: model building and-tuning
from tensorflow.keras.models import sequential

Figure 6: Importing Libraries

5.5 Pre-processing
5.5.1 Processing JSON Files
JSON files stored in the folder "JSON Files With Articles’” will be extracted one by one

and processed to get an excel file with columns pub_date and description.

4



LN S <IN T « 3
© # Folder containing Json files
folder_path = "/content/drive/MyDrive/Thesis Files/JSON Files With Articles” # Update thi:

data = []

# Loop through each Json file in the folder
for filename in os.listdir(folder_path):
if filename.endswith(".json™):
file path = os.path.join(folder_path, filename)

# Open and read the JSON file
with open(file_path, 'r', encoding='utf-8") as file:
content = json.load(file)

# Extract articles from the JSON structure
articles = content.get("articles™, [])

for article in articles:
pub_date = article.get("pubDate™)
description = article.get("description”, "")

if pub_date:
try:

Figure 7: Extracting pub_date and description from the JSON files

5.5.2 Sentiment Analysis

This below code uses ProsusAI/FinBERT model for sentiment analysis. And then single
sentiment score will be generated in the place of 2 columns sentiment label and sentiment
score Figure [0

TV e @ =W R W
Applying ProsusAl/finbert

[ ] # Load the deduplicated Excel file
file_path = "/content/drive/MyDrive/Thesis Files/cleaned articles.xlsx” # Replace with your file pat
df = pd.read_excel (file_path)

# Initialize the FinBERT sentiment analysis pipeline
pipe = pipeline("text-classification”, model="ProsusAI/finbert")
# Apply the pipeline to each description
def get_sentiment(text):
print("Text>>>", text)
result = pipe(text)[0] # Get the first result from the pipeline output
return result['label'], result['score’] # Extract label and score
# Apply the sentiment analysis to the 'description’ column and store results
df[['sentiment", ‘Sentiment Score']] = df['description’].apply(
lambda text: pd.Series(get_sentiment(text))
)
# Save the final DataFrame with sentiment results to a new Excel file
output_file = "/content/drive/MyDrive/Thesis Files/articles with_sentiment_scores.xlsx"
df .to_excel (output_file, index=False)

print(f"sentiment analysis results saved to {output_file}")

Figure 8: Sentiment Analysis

5.5.3 Processing of Historical datasets

Below codes performs the preprocessing of historical hourly datasets such as XAU/USD
rate, Crude Oil, SP 500 and VIX.

5.5.4 Data Splitting and Scalling

Data is split into 80% training and 20% test set. And then StandardScaler was used for
scaling Figure [15]



This script combines sentiment label and score multiple into a single sentiment score column

input_file = "/content/drive/MyDrive/Thesis Files/articles with sentiment scores.xlsx” # Update this

df = pd.read_excel (input_file)

# Transform the Sentiment Score based on Sentiment type
df["Sentiment Score”] = df.apply(
lambda row: rou["sentiment Score"] if row[“Sentiment"]
else -rou["Sentiment Score”] if row[“Sentiment"]
else 0,

axis=1

)

# select only the required columns
new_df = df[["pub_date”, "description”,"Sentiment Score"]]

# save the resulting table to a new Excel file
output_file = "/content/drive/My Drive/Thesis Files/single_sentiment_score_per_article.xlsx"

new_df . to_excel (output_file, index=False)

print("Transformation complete. Output saved to:", output_file)

Figure 9: Generating single sentiment score

This block of code merges the separate date and time columns from the hourly XAU/USD dataset into a single
timestamp column, enabling seamless integration with the sentiment score dataframe for further analysis.

[] # Load the Excel file
file path = '/content/drive/y Drive/Thesis Files/xauusd_hourly.xlsx"
df = pd.read_excel(file_path)

# Update this path to your Exce

# Combine DATE and TIME columns into a new TIMESTAMP column
GF['TIMESTAMP'] = pd.to_datetime(df['DATE' ].astype(str) + ' ' + df['TINE'].astype(str), format="%Y.%n.

# Drop the original DATE and TIME columns
df.drop(['DATE", "TIME', 'TICKVOL','HIGH',’LOW’,"OPEN’,"SPREAD’,’VOL'], axis=1, inplace=True)

# Reorder columns to place TIMESTAMP at the beginning
df = df[[ ' TIMESTAMP','CLOSE']]

# Display the final DataFrame
print("Processed DataFrame with TIMESTAMP:")
print (df.head())

# Save the result to a new Excel file
output_file path = */content/drive/My Drive/Thesis Files/cleaned_hourly_xauusd_data.xlsx’
df . to_excel (output_file_path, index-False)

# specify y

print(f"Processed data with TIMESTAMP has been saved to {output_file path}")

Figure 10: XAU/USD pre-processing

This code processes crude oil hourly csv data by combining date and time into a single datetime column, filtering it
for a specified date range, and retaining only the datetime and close price columns. The cleaned and filtered data is

then saved to an Excel file for further analysis.

[1

# Load the CsV file, specifying the delimiter and column names
data = pd.read_csv('/content/drive/My Drive/Research Project/crudeoil.csv’, delimiter=
ate’, 'time’, ‘open’, 'high’, 'low’, 'close’, 'volume'l)

# Conbine date and time columns into a single datetime column
data[ 'datetine'] = pd.to_datetime(data['date’] + ' ' + data['time'], format="%d/%n/%y %H:%1:%s")

# Drop the original date, time, and unnecessary columns, keeping only datetime and close
data = data[['datetime’, 'close’]]

# Filter data for the specified date range
start_date '2020-07-01"

end_date = '2023-12-31"

filtered data = data[ (data[ 'datetime’] >= start_date) & (data['datetime’] <= end_date)]

# Check the processed data
print(filtered_data.head())

# save the filtered data to a new Csv file
filtered_data.to_excel('/content/drive/My Drive/Thesis Files/crudeoil cleaned.xlsx’, indexFalse)

Figure 11: Crude Oil pre-processing



This code processes S&P 500 hourly csv data by creating a single datetime column from separate date and time
columns, filtering the data for a specific date range, and retaining only the datetime and close price columns. The
cleaned data is then saved as an Excel file for further use.

[ 1 # Load the Csv file, specifying the delimiter and column names
data = pd.read_csv('/content/drive/MyDrive/Research Project/es-ih.csv’, delimiter=';",
date’, ‘time’, 'open’, 'high', 'low’, 'close’, 'volume'])

# Combine date and time columns into a single datetime column
data[ datetime'] = pd.to_datetime(data['date'] + ' ' + data["time'], format='%d/%n/%yY %H:M:%s')

# Drop the original date, time, and unnecessary columns, keeping only datetime and close
data = data[['datetime’, ‘close']]

# Filter data for the specified date range
start_date = '2020-07-01"

end_date = '2023-12-31"

filtered_data = data[(data[ datetime’] >= start_date) & (data['datetime’] <= end_date)]

# Check the processed data
print(filtered data.head())

# Save the filtered data to a new Csv file
filtered data.to_excel(’/content/drive/MyDrive/Thesis Files/s&506_cleaned.xlsx’, index=False)

Figure 12: SP 500 pre-processing

# Load the csv file, specifying the delimiter and column names

data = pd.read_csv('/content/drive/My Drive/Research Project/vix-ih.csv’, delimiter=';",

names=[ ‘date’, ‘time’, 'open’, 'high', ‘low’, ‘close’, ‘volume'])

# Combine date and time columns into a single datetime column
data[ ‘datetime'] = pd.to_datetime(data['date’'] + * ' + data[ "time'], format='%d/%n/%Y %:%M:%s")

# Drop the original date, time, and unnecessary columns, keeping only datetime and close
data = data[["datetime’, "close']]

# Filter data for the specified date range
start_date = '2020-07-01"

end_date = '2023-12-31"

filtered_data = data[ (data['datetime’] >= start_date) & (data['datetime’] <= end_date)]

# Check the processed data
print(filtered_data.head())

# Save the filtered data to a new CsV file
filtered_data.to_excel('/content/drive/MyDrive/Thesis Files/vix_cleaned.xlsx’, index=False)

Figure 13: VIX pre-processing

Scripts merges the all the individual datasets into one using the date column

[ ] # Load the data
crude_data = pd.read_excel('/content/drive/My Drive/Thesis Files/crude0il_cleaned.xlsx’, parse_dates=|
xau_usd_data = pd.read_excel (' /content/d: Thesis Files/cleaned xauusd_sentiment_data.xlsx'
vix_data = pd.read_excel("/content/drive/Mybrive/Thesis Files/vix_cleaned.xlsx', parse_dates=['datetin
sp_data = pd.read_excel(’/content/drive/MyDrive/Thesis Files/s&P500_cleaned.xlsx', parse_dates=[‘datet

# Preprocess the datasets
xau_usd_datal 'datetime'] = pd.to_datetime(xau_usd_data[ ‘TIMESTAMP'])
crude_data.rename(columns={"close': 'crude close'}, inplace=True)
vix_data.rename(colums={'close’: 'vix_close'}, inplace=True)
sp_data. rename(columns={"close’: "sp_close'}, inplace=True)

# Merge XAU/USD with crude oil data
merged data = pd.merge(xau_usd_data, crude data[['datetime’, 'crude_close']], on='datetime’, how="inne
merged_data.drop('TIMESTAMP', axis=1, inplace=True)

# Merge the result with VIX data
final merged data = pd.merge(merged data, vix data[['datetime’, 'vix close']], on='datetime’, how='inr

# Merge the result with S& 5@ data
finally_merged data = pd.merge(final_merged data, sp_data[['datetime’, 'sp_close']], on='datetime’, hc

# Check for null values
null_counts = finally_merged_data.isnull().sun()
print("Null values in each column:")
print(null_counts)

Figure 14: Merging All Data

Dataset splitting into Test and Train set Using StandardScaler to normalize the data

[ ] # select features and target
X = finally merged data[['Sentiment Score, ‘crude_close', 'vix_close', 'sp_close']]
y = finally merged data['CLOSE']

# split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

scaler = standardscaler ()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Figure 15: Data splitting and scalling



5.5.5 Model building

First the hyperparameter tuning will be done and then best model will predict the test
set.

Random Forest Hyperparameter Tuning

AV oo B 0 0T
© # Define the Random Forest model
rf_model = RandomForestRegressor
n_estimators=100, # Number of trees in the forest
random_state=42, # For reproducibility
n_jobs=-1 # Use all available CPUs for training

)

# Cross-validation to get a better sense of model performance

cv_scores = cross_val_score(rf model, X train scaled, y_train, cv=5, scoring='neg mean squared error’
print(f"Cross-validation MSE scores: {cv_scores}")

print(f"Average MSE from cross-validation: {-cv_scores.mean():.4f}")

# Hyperparameter tuning with Gridsearchcv
param_grid = {
‘n_estimators': [50, 100, 150], # Number of trees to try
‘max_depth': [None, 10, 20, 30], # Max depth of trees
‘min_samples split': [2, 5, 10], # Minimum number of samples required to split an internal node
‘min_samples leaf': [1, 2, 4] # Minimum number of samples required to be at a leaf node

}

grid_search = Gridsearchcv(rf_model, param_grid, cv=s, scoring='neg mean_squared_error’, n_jobs=-1)
grid_search.fit(x_train_scaled, y_train)

# Best parameters from grid search
print(f"Best parameters from Gridsearchcv: (grid_search.best_params_}")

Figure 16: Hyperparameter Tuning

Random Forest Best Params

[ 1 # Define the Random Forest model with best parameters
best_rf_model = RandomForestRegressor(

n_estimators=158, # Best number of trees
max_depth=30, # Best max depth
min_samples_split=2, # Best min samples to split
min_samples_leaf=1, # Best min samples at leaf node
random_state=42, # For reproducibility
n_jobs=-1 # Use all available CPUs for training

)

# Train the model
best_rf_model.fit(X_train_scaled, y_train)

# Predict on the test set
y_pred = best_rf_model.predict(X_test_scaled)

# Evaluate the model

mse = mean_squared_error(y_test, y pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

# Print evaluation metrics

print(f"Mean Squared Error (MSE): {mse:.4f}")
print(f"Mean Absolute Error (MAE): {mae:.4f}")
print(f"R~2 Score: {r2:.4f}")

Figure 17: Best Model Used for prediction

Output from hyperparmeter tuning: Figure

5.5.6 Model Evaluation

Evaluation Metrics of Random Forest.Figure

5.6 Same steps from model building will be followed to other
models

5.7 R? Scores of Different Machine Learning Models

Below graph shows the performance of all models in terms of R? Scores :Figure 22

8



Cross-validation MSE scores: [-226.47352602 -243.35760551 -218.30592619 -217.13246802 -208.19748727]
Average MSE from cross-validation: 222.6934
Best parameters from GridsearchCv: {'max_depth’': 3@, 'min_samples leaf': 1, 'min_samples split': 2, 'n_estimators': 150}

v RandomForestRegressor (i

RandomForestRegressor(max_depth=38, n_estimators=15@, n_jobs=-1,
random_state=42)

Figure 18: Random Forest Best parameters

Mean Squared Error (MSE): 186.9992
Mean Absolute Error (MAE): 7.2035
RM2 Score: ©.9782

Figure 19: Random Forest Metrics

Actual vs Predicted XAU/USD Closing Prices Over Time - Random Forest

—— Actual XAU/USD Price
—— Predicted XAU/USD Price

2100

2000

1900

XAU/USD Closing Price

1800

1700

1600 1
3 >

S >
S S N S
’ v v 4 54
§ § 5 5
[ »

&
o
~»

Figure 20: Predicted vs Actual XAU/USD rates over time



Feature Importance - Random Forest

sp_close

vix_close

crude_close

Sentiment Score

T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Feature Importance

Figure 21: Feature Importance

R? Scores of Different Models

100

0.98 4

0.96 -

R? Score

0.94 4

0.92 4

0.90 -

Figure 22: R? Scores of Different Machine Learning Models

10




	Introduction
	Project Files Detail
	Datasets
	Google Collab File

	System Specification
	Software Used
	Libraries Used

	Project Development
	Uploading Project Folder To Google Drive
	Mount Google Drive
	Changing The File Path
	Importing Libraries
	Pre-processing
	Processing JSON Files
	Sentiment Analysis
	Processing of Historical datasets
	Data Splitting and Scalling
	Model building
	Model Evaluation

	Same steps from model building will be followed to other models
	R² Scores of Different Machine Learning Models


