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The Fusion of Mind and Motion: Classifying Activity
Levels with Biometric and Psychological Insights

Ajinkya Gajananrao Chintawar
23113561

Abstract

This study explores the application of machine learning models for classifying phys-
ical activities using biometric measures and personality traits. A dataset from
Figshare, integrated with survey responses, was analyzed using two algorithms:
Gradient Boosting and a Tuned Stacking Classifier. Gradient Boosting achieved
the highest accuracy at 73%, while the Stacking Classifier demonstrated balanced
performance across all metrics, achieving 72% and effectively addressing class im-
balances. The study highlights the models’ real-world applicability through valida-
tion and visualization using a Tableau dashboard. Key predictors included Resting
Heart Rate, Honesty-Humility personality trait, and BMI. Challenges such as class
imbalance were addressed using SMOTE and imputation techniques. The findings
emphasize the potential of machine learning in personalized health monitoring and
promoting active lifestyles via wearable devices.

Keywords: Physical Activity Classification, Machine Learning, Biomet-
ric Data, Gradient Boosting, Personalized Health Interventions

1 Introduction

1.1 Background

Wearable technology and machine learning have made some leaps forward in monitoring
human behavior and health outcomes. Wearable sensors have proved their ability to
capture and classify the level of physical activity by biometric signals such as heart rate,
electrodermal activity, and movement patterns Mannini and Sabatini (2010)); Piciucco
et al.| (2021)). Simultaneously, investigations in personality-related research, for instance,
on the Big Five model, have been shown to have significant associations in tendencies
toward behaviors for which critical insight into health, productivity, and the civil good
is important [Rochin Demong et al.| (2023)); Shaposhnyk et al. (2023). Studies such as
Bianco and Napoletano| (2019); Alsareii et al. (2022) highlighted how biometric signals
fit into the person’s traits, especially that part relates to effectively classifying physical
activity based on input from biometrics, which is still not fully explored.

The existing literature has established the potential to combine physiological and psy-
chological data to improve healthcare interventions. For example, biometric signals can
be combined with contextual and demographic data to enhance machine-learning mod-
els that recognize emotions and predict activity patterns, as shown by [Sanchez-Reolid



et al.| (2022)); [Saganowski et al. (2022)). Despite these recent developments, research is
still confined to controlled environments, leaving a significant gap in applying these tech-
niques to dynamic datasets in the real world. This gap, once addressed, paves the way for
more personalized, adaptive, and accurate systems for health monitoring and behavioral
analysis.

1.2 Importance

Gaining insight into the correlation between these biometric data and personality traits
could lead to a significant leap in predictive capabilities with machine learning models.
This would enable a much more holistic approach to activity classification. This integra-
tion will provide insight into how individual traits influence physical behavior, providing
actionable information for healthcare professionals, fitness enthusiasts, and behavioral
scientists. This research is also part of the more significant efforts worldwide in using
wearable technologies and machine learning to promote healthy lifestyle choices for better
mental and physical well-being |Brons et al.| (2024)); [Stockwell et al.| (2021).

1.3 Research Question

How can machine learning models use data from biometrics and personality traits to
classify physical activity levels effectively and show the relationship between biometrics
and personality traits?

1.4 Objectives

The following objectives are outlined to answer the research question:

1. Investigate machine learning techniques for combining biometric and personality
traits data.

2. Design a generic framework that effectively integrates biometric signals with per-
sonality traits for activity classification.

3. Implementation of models to analyze the relationship between the results of bio-
metric data and personality traits to identify the most powerful predictors.

4. Evaluate the proposed models’ accuracy, reliability, and generalizability using di-
verse real-world datasets.

1.5 Contribution

This research presents novelty by developing a framework using an intersection of bio-
metric and personality data in novel physical activity classification. Thus, the study
hopes to help bridge the gap by demonstrating the synergistic effects of collaboration of
physiological and psychological factors toward personal and effective health monitoring
systems [Fiedler et al.| (2020); [Seol et al.| (2024)).



1.6 Dissertation Structure

This dissertation is organized into the following sections:

1. Introduction: Provides an overview of the research problem, objectives, and sig-
nificance of the study, alongside a summary of contributions made.

2. Related Work: Discusses the current state-of-the-art literature in physical activity
classification using biometric and personality data, identifying research gaps this
study aims to address.

3. Methodology: Outlines the research framework, data collection, preprocessing,
and machine learning techniques for classifying physical activity levels.

4. Design Specification: Details the system architecture, algorithms, and tools for
building the solution pipeline.

5. Implementation: Describes the process of implementing the proposed solution,
from exploratory data analysis to developing and deploying machine learning mod-
els.

6. Evaluation: Presents the results and performance metrics of the models, including
experiments conducted and insights derived.

7. Conclusion and Future Work: Summarizes the findings, discusses limitations,
and proposes directions for future research and practical applications.

This structure ensures a logical flow of ideas and methods, providing clarity and cohesion
throughout the dissertation.

2 Related Work

Integrating biometric data and personality traits in machine learning models to classify
physical activity levels and explore their relationships has been a growing area of research.
This literature review critically evaluates the key studies that have contributed to this
field, highlighting their methodologies, findings, and limitations. The review identifies
the existing research gaps and justifies the need for the proposed study.

2.1 Biometric Data and Physical Activity Classification

Wearable technologies have done a lot in modern times to monitor physical activity levels
further. Mannini and Sabatini (2010); Harmouche-Karaki et al. (2023) demonstrated the
machine learning classification applied on-body accelerometers with support vector ma-
chines that attained high accuracy, but this study had several limitations due to being
done in controlled conditions.

Dinh et al. (2019)); Butte et al. (2012) extended machine learning for health monitoring
by integrating multiple biometric signals to predict diabetes and cardiovascular disease.
This work showed promising fusion results from various physiological signals but did not
focus on physical activity classification. On the other hand, Sanchez-Reolid et al.| (2022)



used CNNs to classify arousal levels based on electrodermal activity with a high F'1-Score.
However, their work did not cover personality traits as predictors, leaving a significant

gap.

Stockwell et al.| (2021) estimated the influence of the COVID-19 lockdown on physically
active measures by self-report and device-based measures. Their findings showed signi-
ficant declines in activity, which calls for adaptive, personalized interventions, which this
study aims to address.

2.2 Personality Traits in Health and Behavior Analysis

Personality traits have increasingly been recognized for influencing behavior and health
outcomes. [Rochin Demong et al. (2023)) classified students’ social well-being using ma-
chine learning algorithms based on personality traits, showing a strong predictive re-
lationship. On the other hand, [Shaposhnyk et al| (2023) investigated the relationship
between cognitive load and personality traits, providing a basis for exploring such rela-
tionships in physical activity contexts.

Garbarino et al.| (2014); (Cristi-Montero (2018)); [Islam| (2024)) identified wearables as real-
time feedback devices in behavioral modification. Their work points to a promising
avenue of merging physiological and psychological data, even though they did not relate
personality traits to activity classification.

2.3 Integration of Biometric and Personality Data

The integration of biometric and personality traits data for activity classification remains
underexplored. Ahmadi et al.| (2020)) conducted the exercise of integrating the group and
fully personalized models in human activity classification for children who had cerebral
palsy. Their findings emphasize the importance of a tailored approach but do not gener-
alize to broader populations and lack personality traits.

Fiedler et al.| (2020) systematically reviewed eHealth interventions focusing on integrating
biometric data, pointing to the potential for mHealth solutions. However, an overall lack
of personality traits within their study suggests more significant opportunities for further
research into the development of additional studies.

2.4 Strengths and Limitations of Reviewed Studies

The literature has pointed out several strengths, including high accuracy achieved in
controlled environments (Mannini and Sabatini; 2010; |Sanchez-Reolid et al.; [2022), the
feasibility of integrating biometric signals for predictive modeling (Dinh et al.j 2019),
and the significant role personality traits play in behavior prediction (Rochin Demong
et al.; 2023)). However, notable limitations exist, such as generalizability being restricted
because of controlled settings, biometric data being integrated with personality traits in
a limited way, and the lack of focus on real-world applications and adaptive approaches.



2.5 Gaps and Justification for Research

Despite advancements, none of the available studies have fully integrated biometric and
personality data toward activity classification. A literature review shows a gap in under-
standing how such factors interact and their collective impact on behavior. The present
study attempts to fill these gaps by developing machine learning models that combine
biometric signals and personality traits to classify physical activity levels and explore
their relationships.

2.6 Conclusion

In conclusion, while considerable research has been done on biometric signal analyses
and personality traits, their application to the classification of physical activities remains
unexploited. Therefore, this paper will bridge this critical gap, extending our knowledge
about where these domains overlap and providing actionable insights for personalized
health monitoring.

3 Research Methodology

The present research has adopted the CRISP-DM framework, a Cross-Industry Standard
Process for Data Mining, to ensure a structured, repeatable, and verifiable investiga-
tion. Each step should consider the six phases of CRISP-DM to agree with the research
objectives.
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Figure 1: CRISP-DM Methodology

3.1 Business Understanding

The main aim of this study is to classify the level of physical activity using machine
learning models and find the relationship between biometric data and personality traits.
This study aims to provide insights for tailored health interventions, encourage active
lifestyles, and improve well-being Brons et al.| (2024); Fiedler et al.| (2020).

Addressing gaps in previous studies, this study will try to show the practical utility of
combining personality traits with biometric indicators in predictive models.



3.2 Data Understanding

Ensuring data quality and suitability includes cleaning, addressing missing values and
inconsistencies, and removing duplicates. Feature engineering involves creating new fea-
tures, such as categorizing physical activity levels from raw biometric data. The final
training and testing datasets were split exclusively from the Figshare dataset for model
performance evaluation.

3.3 Data Preparation

Several steps were implemented to ensure data quality and suitability for modeling. To
maintain data integrity, missing values, inconsistencies, and duplicates were used to eval-
uate model performance and effectively address it during data cleaning. Feature engin-
eering involves creating new features based on raw biometric data, such as evaluating
model performance effectively; the training and testing datasets were split exclusively
from the Figshare dataset.

3.4 Modeling

Different machine-learning algorithms were utilized to classify physical activity and ex-
plore the relationship between biometric data and personality traits. The choice of al-
gorithms was guided by their efficacy in handling structured datasets and finding complex
patterns in multimodal data.

Algorithms Used:

1. Logistic Regression: Known for its simplicity and interpretability, this algorithm
provides a baseline for comparison in classification tasks.

2. K-Nearest Neighbors (KNN): Effective for smaller datasets, KNN captures
local relationships between data points, aiding in classifying similar activities based
on biometric and personality features.

3. Decision Tree: This algorithm was chosen for its intuitive structure and ability
to capture non-linear relationships.

4. Support Vector Machine (SVM): Utilized to maximize the separation between
classes, beneficial for handling high-dimensional data like biometric metrics.

5. Random Forest: A robust ensemble method aggregating predictions from multiple
decision trees reduces overfitting.

6. Gradient Boosting: Leveraging iterative learning, this model builds on weak
learners to achieve high accuracy, particularly on complex datasets.

7. AdaBoost: By weighting data points and focusing on difficult-to-classify samples,
AdaBoost improves classification performance.

8. Stacking Classifier: Combines predictions from multiple models through a meta-
learner, enabling the integration of strengths from various algorithms.



Relevance of Algorithms: [Shaposhnyk et al. (2023); Mesanza et al.| (2020]) have suc-
cessfully used ensemble methods such as Random Forest and Stacking Classifier in ana-
lyzing cognitive load based on physiological and personality traits. Their findings have
also underlined the appropriateness of algorithms such as Support Vector Machine and
Gradient Boosting for capturing complex relationships in multimodal data, thus address-
ing the objectives of this study.

Hyperparameter Tuning: For each algorithm, where necessary, [Shaposhnyk et al.
(2023)) recommend the HalvingGridSearchCV, which was used to optimize parameters to
develop models that were customized to capture the specific characteristics of the dataset.

Cross-Validation: To make the model more reliable, k-fold cross-validation was used.
This prevents overfitting and ensures the models generalize well on new, unseen data,
following best practices identified by |[Shaposhnyk et al.| (2023)).

3.5 Evaluation

Model performance was measured against accuracy, precision, recall, and F1-Score para-
meters. Rochin Demong et al.| (2023)) demonstrated the utility of such metrics in assessing
the relevance of activity classification models. A relative analysis of models using these
metrics was conducted to identify the best-performing classifier, following the benchmark-
ing principles demonstrated by Stockwell et al.| (2021)).

3.6 Deployment

The deployment phase translated the research findings into practical applications. Fur-
ther, interactive results visualization using Tableau was developed to highlight the re-
lationships between physical activity level, personality traits, and demographic factors.
The best-performing model was then deployed on survey data analysis to generate pre-
dictions and actionable insights for personalized health interventions.

Ethical Considerations: Data collection was anonymous, and data was gathered
through Microsoft Forms; thus, all responses were non-identifiable. Participants were
18 years and above, and 40 individuals contributed to the dataset. These measures en-
sure adherence to ethical guidelines and the protection of privacy.

This methodology reflects the rigor of the CRISP-DM framework, contributing to the
broader understanding of how biometric and personality data interact in activity classi-
fication models.

4 Design Specification

This section identifies and presents the techniques and architecture that underlie the
implementation and its associated requirements. This study employs a modular approach
integrating machine learning techniques for classifying physical activity levels within an
end-to-end pipeline, from data collection to visualization.



4.1 System Architecture

The system architecture utilizes machine learning techniques for classifying physical activ-
ity levels, as illustrated in Figure [2 The process begins with data sources, including the
Figshare dataset for training and testing and survey data collected via Microsoft Forms
for validation and deployment. Data understanding involved statistical analysis and visu-
alization using Pandas, Matplotlib, Seaborn, and Plotly libraries to uncover relationships
and patterns. The preparation of the data involved dealing with missing values, feature
engineering, and handling imbalanced classes using SMOTE, while preprocessing and
pipeline setup were handled by Scikit-Learn.

| System Architecture

Jupyter Lab/Python environment

ng

Figure 2: System Architecture

The modeling phase used machine learning techniques in the form of Logistic Regression,
Random Forest, and Gradient Boosting, optimized through HalvingGridSearchCV with
cross-validation using Scikit-Learn and XGBoost. Models were evaluated using accur-
acy, precision, recall, F1-score, confusion matrices, and ROC-AUC curves generated from
Matplotlib and Seaborn. The best model was then applied to the survey dataset, saved
using Pickle File, and loaded with Joblib library, after which Tableau was used in building
an interactive dashboard for exploring results.

This modular design assures that the tasks are efficiently integrated and Python tools
and compatibility with Tableau go smoothly to provide actionable insight.

4.2 Techniques and Algorithms

The different machine learning models used in the study are Logistic Regression, Decision
Trees, Random Forest, Gradient Boosting, and Stacking Classifier. For better accuracy,
hyperparameter optimization was performed using HalvingGridSearchC'V to ensure that
classification performance is sound. SMOTE handled class imbalance, ensuring that
training is well-balanced for better generalization. Ensemble methods used the Stacking
(Classifier to combine predictions for higher accuracy.



4.3 System Requirements

1. Hardware Requirements: A system with high enough processing power to train
machine learning and deploy. Preferably, a GPU-enabled system should be used to
handle large datasets.

2. Software Requirements: Python libraries such as Scikit-Learn, Pandas, NumPy,
Matplotlib, Plotly for modeling; Tableau for visualization.

3. Data Requirements: Public datasets on physical activity and personality traits,
complemented by a survey for the deployment and validation of the model.

This architecture ensures accurate classification of physical activity levels, offering ac-
tionable insights into participants’ activity levels.

5 Implementation

This section describes the proposed implementation solution, focusing on the final stages
of the development process. It also covers the output produced, such as transformed
datasets, models developed, and tools used.

5.1 Dataset Description and Exploratory Data Analysis (EDA)
5.1.1 Dataset Description

The primary dataset from Figshare had 12 columns and 2,580 rows, including biometric
measures and HEXACO personality traits. This dataset contained demographic and
psychological variables such as sex, Honesty-Humility, and Extraversion, plus wearable-
derived measures like steps from Fitbit, body mass index, and resting heart rate.

5.1.2 Exploratory Data Analysis (EDA)
A. Distribution & Box Plot of Fitbit Steps, BMI, and Resting Heart Rate:

Distributions of Fitbit Steps, BMI, and Resting Heart Rate

D of Fitbit Stops Distribution of BMI Dist of Resting Hoart Ratc

Frequency

51 2 E
Steps per Day BMI (ka/m?) Resting | leart Rate (BPM)

Figure 3: Distribution of Fitbit Steps, BMI, and Resting Heart Rate (HEXACO Dataset)

Figure [3| represents the Distribution of Fitbit steps, BMI, and resting heart rate. The
Distribution of steps from Fitbit is approximately symmetric, around 10,000 steps/day,
showing an active cohort in general but with variability. The Distribution of BMI is


https://figshare.com/articles/dataset/Dataset_HEXACO_personality_factors_as_predictors_of_physical_activity_resting_heart_rate_body_mass_index_and_healthy_lifestyle_behaviors/17755229

right-skewed, with most participants within a range of 20 to 30, although some outliers
indicate obesity. The Distribution of resting heart rate is normal, centered at approx-
imately 67 beats per minute, indicating the cardiovascular fitness level of the participants.

Figure 4] shows the box plots of the dispersion of values within the data sets, considering
the outliers in BMI and resting heart rate. In the case of Fitbit steps, this range falls for
most people between 8,000 and 12,000, while outliers below and above indicate persons
who are either sedentary or highly active.

Box Plots for Fitbit Steps, BMI, and Resting Heart Rate
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Figure 4: Box Plots for Fitbit Steps, BMI, and Resting Heart Rate (HEXACO Dataset)

B. Distribution & Box Plot of Personality Traits:

Figure || illustrates the distribution plots for personality traits, including personality
traits such as Honesty /Humility and Extraversion: their Distribution comes out close as
expected since most are 'very normally distributed,” and a wide range can be obtained
inside the trends of participants expressing every side of traits, thus setting new grounds
to understand why variability in physical activity was demonstrated after the tests.

Distribution of Personality Traits
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Figure 5: Distribution of Personality Traits (HEXACO Dataset)

Figure@ shows that some sets have outliers, such as Honesty /Humility and Agreeableness,
which may indicate atypical behavioral patterns for some participants.

10



Box Plots of Personality Traits with Outliers
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Figure 6: Box Plots of Personality Traits with Outliers (HEXACO Dataset)

C. Correlation Matrix:

Figure|[7|illustrates the correlation matrix, showing the variables with each other. As will
be seen, the correlations between personality traits and metrics of physical activity are
very poor, probably because substantial amounts of data were missing from this data set.
Hence, the imputation of further data or further analysis of these variables is warranted.
For example, the correlation of lifestyle scores with the metrics of physical activity is
moderate, which means that a good lifestyle is associated with better physical fitness. In
contrast, personality traits correlate weakly with all the physical activity metrics, which
may indicate complex relationships that require further investigation.

Correlation Matrix
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Figure 7: Correlation Matrix (HEXACO Dataset)

5.1.3 Conclusion of EDA

The EDA’s conclusion revealed huge data variability in the process, where most of the
characteristics of their biometric and personality traits included outliers. The process
involved the identification of missing values in key columns such as ’bmi’ and ’fitbhit
resting heart rate’, to mention just a few, which indeed need consideration during data
pre-processing. This study involves health-related data; hence, removing the outliers may
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lead to the loss of crucial information Gress et al.| (2018)); Kaur et al| (2023) , argued
that this might be a risk or lead to losing important details. We will, therefore, retain
the outliers so as not to affect the integrity of the data. With this, the next steps
in Data Preprocessing will include handling missing values, removing features, feature
engineering, splitting into train and test, and balancing data using SMOTE in preparation
for modeling.

5.2 Data Preprocessing
5.2.1 Handling Missing Values

Iterative Imputer applied to impute missing values for columns like ’fitbit steps’, 'fitbit
resting heart rate’, "bmi’, ’lifestyle score’, and "Honesty /Humility’. It kept the relation-
ship between the variables and handled the missing values accordingly.

Figure [§] illustrates the After Imputation distribution. Iterative imputation has filled
the missing values rather well, keeping the pattern of the original data. Comparing the
Distribution before and after imputation, one can find that imputed distributions show
a similar shape; hence, the underlying characteristics did not change much. This is one
of the ways to reduce the impact of missing data on further modeling steps.

After Imputation: fitbit_steps After Imputation: fitbit_resting_heart_rate After Imputation: bmi
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Figure 8: Distribution of Missing Values Columns After Imputation (HEXACO Dataset)

5.2.2 Feature Engineering

A new target variable, “activity level” is created based on Fitbit steps using thresholds
from established health guidelines Pallavi Suyog Uttekar| (2024):

e Sedentary: Less than 5,000 steps/day.
e Moderately Active: 5,000-9,999 steps/day.

e Active: Greater or Equal to 10,000 steps/day.

Figure [9]illustrates the Distribution of activity levels, showing class imbalance; therefore,
SMOTE would have to be used to prepare the training set.
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5.2.3 Train-Test Split

The proper work of model evaluation necessitated correctly splitting this dataset into
training and test portions. Stratification was carried out so that each class associated
with an activity level contributed to forming a test set on an equal basis. Exactly 10
percent of every class was set aside for the test set. Training set size (2,320 samples, 8
features) and test set size (260 samples, 8 features).

5.2.4 Data Balancing with SMOTE

After the initial train-test split, SMOTE was applied to the training dataset to handle
class imbalance. Figure [10] below shows this:

Activity Level Distribution Based on Fitbit Steps Activity Level Distribution After SMOTE
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Figure 9: Activity Level Distribution Figure 10: Activity Level after SMOTE
(HEXACO Dataset) (HEXACO Dataset)

After applying SMOTE, the training set was balanced to contain 3,897 samples and 8
features, while the test set remained unchanged with 260 samples and 8 features.

5.3 Modeling

The following steps involve the training and testing of baseline models, including Lo-
gistic Regression, KNN, Decision Trees, Random Forest, Gradient Boosting, SVM, and
AdaBoost, on different metrics such as precision, recall, Fl-score, and accuracy. Hy-
perparameter tuning has been performed with the help of HalvingGridSearchCV using
5-fold cross-validation to optimize performance in every model. In the case of ensemble
methods, the Stacking Classifier combined multiple base models with meta-models like
Gradient Boosting. This process was iterative to reach the best combination, balancing
the accuracy-robustness trade-off.

5.4 Deployment

Participant survey data were pre-processed identically to the Figshare dataset, calculat-
ing BMI from height and weight and creating the Activity Level variable with the same
thresholds. The best-performing Stacking Classifier was saved using the pickle module
and deployed to predict the activity level using the survey data. Model accuracy has
been rechecked to assess robustness.

13



Predicted activity levels are combined with the original survey data for complete analysis.
An interactive Tableau dashboard was created for better usability, where stakeholders
could investigate activity levels, personality traits, and biometric data..

This pipeline implementation underlines a structured approach to ensuring integrity in
the data, robust modeling, and smooth deployment for actual applications of the insights
derived from models.

6 Evaluation

This section is for the comprehensive evaluation of models and techniques. The analysis
is structured, focusing on key experiments and case studies that address the research
objectives. These findings are critically evaluated with rigorous statistical analysis and
visualizations to assess their significance and implications. Each subsection explores some
aspects of the experimental setup and its results.

6.1 Experiment 1: Baseline Classifier Results

The experiment aimed to investigate the results of individual classifiers and set a baseline
upon which further improvements will be made. Below is the summary of key performance
measures for each classifier as follows in Table [T}

Table 1: Baseline Models Results

Classifier Accuracy | Macro F1-Score | Weighted F1-Score
Logistic Regression 0.42 0.35 0.46
K-Nearest Neighbors 0.54 0.48 0.56
Decision Tree 0.62 0.50 0.63
Random Forest 0.70 0.56 0.70
SVM 0.58 0.48 0.59
Gradient Boosting 0.67 0.57 0.68
AdaBoost 0.55 0.45 0.56

The results show that the algorithms of Random Forest and Gradient Boosting ensemble
methods seem to run much more potent than any standalone classifier on their own
and generalize well between all classes. The modeling of Logistic Regression and the
AdaBoost requires substantive optimizations or might be unsuitable for this dataset in
general. These findings add potential scope to the ensemble models that have been further
explored in subsequent experiments.

6.2 Experiment 2: Model Training and Testing with Hyper-
parameter Tuning and Cross-Validation

This section presents the training and testing of models based on the best hyperparamet-

ers achieved from HalvingGridSearchCV using 5-fold cross-validation. It tries to analyze

the contribution of hyperparameter tuning to improving model performance to establish
the best-performing models.
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6.2.1 Optimized Parameters

The hyperparameter tuning done using HalvingGridSearchCV with 5-fold cross-validation
significantly enhanced the performance to match the dataset characteristics of the models
best. Table [2| shows the best parameters for each model.

Table 2: Model and Best Parameters

Model Best Parameters

Logistic Regression C=0.1, max_iter=500, solver="lbfgs’,
class_weight="balanced”

K-Nearest Neighbors metric="manhattan’, n_neighbors=3,
weights="distance’

Decision Tree criterion="entropy’, max_depth=20,
min_samples_split=2

Random Forest max_depth=20, min_samples_split=2, n_estimators=>50,
class_weight="balanced”

Gradient Boosting learning_rate=0.2, max_depth=>5, n_estimators=100

AdaBoost learning_rate=0.1, n_estimators=200

Support Vector Classifier | C=10, gamma="auto’, kernel="rbf’, probability=True,
class_weight="balanced”

6.2.2 Evaluation of Tuned Models

The tuned models were trained on the training set and tested on the test set. Table
summarizes the results of the best models:

Table 3: Evaluation of Tuned Models

Model Accuracy | Macro Accuracy | Weighted Accuracy
Logistic Regression 0.60 0.50 0.62
K-Nearest Neighbors 0.60 0.50 0.61
Decision Tree 0.67 0.57 0.69
Random Forest 0.68 0.53 0.69
Gradient Boosting 0.73 0.61 0.74
AdaBoost 0.55 0.44 0.56
SVM 0.63 0.54 0.64

Gradient Boosting turned out to be the best model with an accuracy of 73%, along with
the highest macro and weighted F1-scores. The accuracy of this performance underlined
its robustness in dealing with class imbalances and classifying physical activity accord-
ingly. In this regard, Random Forest and Decision Tree were comparably impressive, with
accuracies of 68% and 67%, respectively, though they had slight weaknesses concerning
the memorization of minority classes. On the other side, AdaBoost showed hardly any
enhancement, underperforming at an accuracy of 55% even after tuning.
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Confusion Matrix for Gradient Boosting
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Sedentary Active Moderately Active
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Figure 11: Confusion Matrix for Gradient Boosting (HEXACO Dataset)

Figure shows that the confusion matrix indeed points toward a strong performance
of Gradient Boosting, with high precision and recall for the ”Sedentary” and ” Active”
classes and a more moderate performance for the "Moderately Active” class, indicating
further room for improvement.

6.3 Experiment 3: Ensemble Techniques — Stacking Classifiers

This section reflects the performance of the Stacking Classifier, which uses several models
as base models and performs with a meta-model to improve accuracy. Extensive tuning
has been conducted after testing diverse combinations of base models coupled with meta-
models, which showed optimality.

6.3.1 Best Configuration

The best improvement in configuration for the used Stacking Classifier included the use
of Random Forest, Gradient Boosting, and AdaBoost as base models, while Gradient
Boosting was the meta-model. It had reached an accuracy of 77.69%, the weighted F1-
score measured at 0.77, and a macro-F1-score of 0.65, reflecting considerable balance
regarding the various cuts at which its performance will be assessed.

6.3.2 Final Tuning Results

Class weighting was done to fine-tune the stacking classifier for imbalance; this further
improved performance. The summary of the Classification Report is shown in Table

Table 4: Classification Report of Tuned Stacking Model

Class Precision | Recall | F1-Score
Active 0.83 0.81 0.82
Moderately Active 0.73 0.60 0.66
Sedentary 0.23 0.62 0.33
Overall 0.72
Macro Average 0.59 0.67 0.60
Weighted Average 0.76 0.72 0.73
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The Multi-Class ROC Curve (Figure gives insight into how the model classes are
separated; basically, this model does exceptionally well on recall for the ”Sedentary”
class. Class-level predictions are better visualized on a confusion matrix (Figure [13)).
The model generalizes way more to minority classes and, especially, does a far better job
distinguishing between the ”Moderately Active” and ”Sedentary” classes.

Multi-Class ROC Curve Confusion Mat rix
Active 100
— o]
. [}
E o _g
H = Moderately Active 60
H ]
E ©
Sedentary n
— Active (AUC = 0.86)
Mod (AUC = 0.82) v N
— Sedentary (AUC = 089) ActiveModerately ActiSedentary
e osive Rate” ° . Predicted Label

Figure 12: Multi-Class ROC Curve for  Figure 13: Confusion Matrix for Stacking
Stacking Classifier (HEXACO Dataset) Classifier (HEXACO Dataset)

The feature importance from the Gradient Boosting model offers an insight into the
decision-making process of the meta-model. Figure [14] reveals that Fitbit Resting Heart
Rate emerged as the strongest predictor, while BMI and the personality trait Honesty-
Humility also figured in high. Behavioral traits also had a valuable contribution, specific-
ally in sharpening the prediction for borderline cases, which pinpoints their role in the
classification process.

Feature Importances from Gradient Boosting
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Figure 14: Feature Importance from Gradient Boosting (HEXACO Dataset)

6.3.3 Key Observations

1. Stacking Classifier performed at 72% accuracy, impressive weighted Fl-score at
0.73, and a recall for the minority ”Sedentary” class at 62%.
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2. Weighting by class addressed the class balance well, improving those underrepres-
ented classes without losing too much overall accuracy.

3. The analysis reflected the importance of physiological metrics, represented by rest-
ing heart rate and BMI, while behavioral traits also contributed greatly to the
predictions.

6.4 Deployment Results

The last step was to deploy the best-performing model, the Stacking Classifier, to the
survey data of real-world participants. This was essential in determining the model’s
robustness and applicability to real-world scenarios beyond those seen during training
and testing.

Table 5: Classification Report of Participants Data

Class Precision | Recall | F1-Score
Active 0.69 0.65 0.67
Moderately Active 0.55 0.69 0.61
Sedentary 0.75 0.43 0.55
Overall 0.62
Macro Average 0.66 0.59 0.61
Weighted Average 0.64 0.62 0.62

As shown in Table 5], the deployed model’s overall accuracy improved to 62%, reflecting
stronger performance in a real-world setting. The Active group had the highest F1-score
of 0.67 among the activity classes, showing a reliable balance between precision and recall.
In contrast, the Moderately Active class obtained higher recall, 69%, which indicated that
for this group, the model was able to detect more subjects. The Sedentary group showed
high precision, 0.75, but lower recall, 0.43, reflecting difficulties in the identification of all
sedentary participants.

Further, an interactive Tableau Dashboard was created to see and analyze the deployment
results, with the help of some predictions and their relationships to biometric and per-
sonality traits. Follow this link to the dashboard: Activity Level Dashboard on Tableau

These results emphasize the robustness and practical utility of the model in personalized
health monitoring.

6.5 Discussion

The current study demonstrates that machine learning techniques, in particular, Gradient
Boosting and Tuned Stacking Classifier, perform very well in classifying subjects accord-
ing to physical activity based on physiological and psychological data. Figure[I5|compares
the Best Models from each experiment. The best performance was 73% using Gradient
Boosting, while the Stacking Classifier presented a balanced result of 72%, managing
class imbalances very well, especially regarding the minority ”Sedentary” class. These
findings also comply with previous studies that employ ensemble methods for handling
imbalance and improving generalization.
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Comparison of Best Models from All Experiments
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Figure 15: Comparison of Best Models from All Experiments (HEXACO Dataset)

The deployment phase confirmed the practical viability of the Stacking Classifier by
showing reasonable accuracy and good generalization in most activity classes. While
the model was good at detecting active participants, difficulties regarding the sedent-
ary participants’ classification highlighted that real-world data variability presents many
challenges that should be targeted with enhanced preprocessing and tuning.

Despite all these promising results, the limitations include, among other factors, the pres-
ence of missing data and class imbalance, besides which the modest size of the dataset is
a limiting factor that affects performance and generalization. Further improvements are
likely to be made by addressing these shortcomings with more and larger datasets and
better-advanced augmentation techniques.

The role of this study in emphasizing the application of machine learning in wearable
health technologies and personalized fitness interventions is excellent, bringing a gap
between theoretical modeling and practical applications. Generally, this contributes to
elaborating an emerging branch of health that involves person-specific health using ma-
chine learning with multidimensional data in actionable insights.

7 Conclusion and Future Work

The current study has answered the following research question: How can machine learn-
ing models use biometric and personality traits data to classify the level of physical activity
effectively, showing the relationship between biometric and personality traits? This re-
search combined physiological measures such as Fitbit Resting Heart Rate and BMI
with HEXACO personality traits using machine learning classification techniques
that have classified physical activity and shed light on the interaction between biometric
and personality data. The current analysis revealed that, among the biometric features,
Resting Heart Rate was the major contributor. In contrast, among personality traits,
Honesty-Humility played a key role in activity level predictions, thus affirming their
complementary role in influencing physical behaviors.

While the best performance of 73% was provided by Gradient Boosting, the Tuned
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Stacking Classifier balanced all the metrics relatively well, treating class imbalance
nicely, especially for the ”Sedentary” class. Deployment of the Stacking Classifier further
verifies practical applicability and shows reasonable accuracy and generalizab-
ility on diverse datasets. The results obtained significantly extend machine learning
applications to provide personalized health monitoring and create a backbone for
developing adaptive interventions to support active lifestyle and wellness.

Future work may extend the dataset to more diverse populations and additional fea-
tures, such as contextual and environmental features of physical activity. Real-
world deployment and user feedback could further refine the models. Deploying
such machine learning models within wearable devices or health platforms may cre-
ate commercial opportunities by providing personalized recommendations to foster
healthier behaviors and deepening our insight into the relationship between biometrics
and personality traits. The current study stands at the seam between machine learn-
ing and the science of health behavior to advance the subdiscipline of personalized
intervention.
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