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Carotid Artery Plaque Analysis Using Deep Neural
Networks for Improved Detection and Classification

Priyanka Bundela
x22247734

Abstract

Carotid artery one of the major blood vessels that carries oxygenated blood
to the brain and that buildup of plaque in the artery can lead to serious cardi-
ovascular disease including atherosclerosis, stroke or rupture of the arteries and
all of these conditions being life-threatening. Plaque clogging the flow of oxygen
to the brain causes strokes. High-penetration ultrasound scanners are commonly
used to identify problems such as plaque buildup in the carotid artery, but those
devices are costly. In other cases, general practitioners simply don’t have access to
low-cost, low-depth ultrasound scanners and available devices tend not to provide
sufficient sensitivity for plaque identification or measurement. The authors explore
whether Al methods can be used to derive the same diagnostic information from
low-depth ultrasound images as can be obtained with high-penetration scanners.
Specifically, characteristics from the images were extracted using CNN models in-
cluding U-Net, which also segmented the carotid artery and plaque sections. We
used Roboflow to improve segmentation accuracy for artery and plaque detection.
Additionally, SRCNN and Real-ESRGAN were used to enhance low-penetration
ultrasound images. Ultimately, Linear Regression was employed to successfully
determine measurements from these low-res images.

1 Introduction

With the growing burden of cardiovascular diseases, including stroke and atherosclero-
sis, innovative diagnostic tools that can provide precise and timely information about
clinical status are increasingly needed. Such high-resolution ultrasound scanners capable
of detecting plaque buildup in carotid arteries are critical, but go for exorbitant prices
and remain out of reach for numerous healthcare practitioners. Family doctors often use
low-price and shallow ultrasound device, unable for solid analysis due to a poor resolution
and sensitivity. This study explores how Artificial Intelligence (AI) can be used to over-
come these challenges through the reconstruction of low-depth ultrasound images and
extraction of clinically relevant features. To prove that inexpensive ultrasound machines
can produce sound diagnostic results equivalent to expensive ones when combined with
significant computer science methods such as U-Net for segmentation and Real-ESRGAN
for image upscaling, just like the studies presented in this one.



1.1 Motivation

One of the main arteries responsible for providing oxygen to the brain is the carotid
artery. Now, if cholesterol plaque blocks the inside of this artery and thereby prevents its
passage then serious cardiovascular diseases like atherosclerosis, stroke or arteriosclerosis
also stat causing potential harm to people that they never thought possible before. The
one thing all these conditions share in common: they’re deadly. Blockage of the carotid
artery’s circulation leads to strokes.Currently, there are no cheap low-penetration ultra-
sound scanners other than high-penetration devices. And although the latter are used
to identify problems such as plaque buildup in the carotid artery and elsewhere, these
are relatively expensive instruments.General practitioners do not have access to low-cost,
low-penetration ultrasound scanners in some cases. And the higher penetration devices
which are available to them tend not to be sensitive enough for plaque detection and
measurement.The authors investigate whether Al methods can be used to get the same
diagnostic information as is obtained by high-penetration scanners from low-depth ones.
In particular, the characteristics extracted from the images using CNN models include
U-Net, which also provides segmentation for the carotid artery and its present sections.
Being able to detect plaque in the carotid arteries early can help reduce death rates and
improve patient outcomes.However, the high cost and limited availability of ultrasound
scans with technologies of higher penetration in resource-constrained health care settings
present a serious challenge to accurate diagnosis.

A great many general practitioners are in a situation where they only have low-cost
ultrasound devices that do not give the necessary resolution for accurate detection and
measurement of arterial plaques. This makes it not only difficult to diagnose the patient
effectively and in a timely manner, but also leads to delayed treatment which puts the
patient at risk. It is essential to bridge this gap: cheap systems must produce valid
diagnostic output.

Al has the potential to make a major contribution to advanced medical diagnostics,
and this area of research is influenced by the vision of democratizing healthcare so as in-
deed deliver higher-quality acuity within these under-resourced areas both in low-resource
settings. Such rapid Al-imaging-based decisions can lead to much reduced long-term
disabilities, effectively a low-cost intervention. This research aims to demonstrate the
possibilities of Al enhanced imaging.

1.2 Research Objective

We conducted this research mainly to test and validate Al methods for enhancing the
diagnostic value of low-depth ultrasound images in carotid artery analysis. Directives
organized around models and methods used by subject are as follows.

1.2.1 Objective One

e There are those who can’t make contact without appearance from original low-
resolution scan image quality upscaled ones using like PSNR (Peak Signal-to-Noise
Ratio) and SSIM (Structural Similarity Index) metrics, look instead.

e By increasing picture resolution it brings greater detail into view thus demonstrates
up-scaled images holding the potential for maintaining diagnostic quality. This is



necessary to complete the gap between amateur cheap scanners and professional
high-speed models.

1.2.2 Objective Two

Use CNN-based models for segmentation of carotid artery features.

e Through the research on the degree of accuracy in carotid artery wall and plaque
total segmentation achieved by U-Net contrasted number training epochs (100 v
200) tests showed.

e Focusing on its capacity to detect above-mentioned, YOLOvVS is a plaque detection
and categorization tool.

1.2.3 Objective Three

Evaluate predictions statistically and measure arterial characteristics.

e Using high-depth measurements as a benchmark, Linear Regression was employed
to predict arterial wall thickness and plaque dimensions from low-depth ultrasound
images.

e Statistical assessments such as paired T-tests-cement that measurements made us-
ing low-resolution and upscaled pictures are reliable in clinical practice.

e Investigate whether upscaled image gives added diagnostic value by narrowing the
error margin for measurements of familiar features.

1.2.4 Objective Four
Deal with difficulties and suggest future improvements.

e Point up constraints such segmentation errors and short datasets, then provide
strong data augmentation methods based on synthetic data generation and Robo-
flow.

e Suggest architectural changes to CNN models using loss functions and ideal layers
to improve feature segmentation accuracy and lower false positives.

e Promote the creation of automated measurement extraction tools to lower hand-oft
mistakes and increase repeatability in diagnostic procedures.

2 Related Work

Recent improvements in Artificial Intelligence (AI) have had a major result on medical
imaging, allowing diagnostic solutions in a cost-effective and healthful manner. Carotid
arteries being vital components for human imaging due to plaque buildup non-invasively is
a common challenge since traditional imaging methods offer only low-quality inadequate
depth as-is-Ultrasound images of carotid arteries (Azzopardi, Hicks and Camilleri 2017
R. Zhou et al.2019). Here we present a summary of the relevant methodologies in feature
segmentation, image upscaling, and measurement of features, along with their limitations
and how they fit this study. To aid clarity, we provide summarizing tables within the
respective subsections with regard to approaches.



2.1 Early Models and Approaches

Methods developed in the early years like Hough Transform (HT) and SRCNN (Mit-
tal et al. 2022) were characterized by using feature detection and image enhancement
as primary approaches. Ultrasound boundary detection and segmentation—the Hough
Transform especially was suitable for line detection in ultrasound boundary detection
and segmentation , such as the boundaries of the carotid artery (Golemati et al. 2007
Matsakou et al. 2011).Even so, the utility in isolation was limited due to its inability to
resolve complex shapes — such as plaques. As one of the first deep learning-based super-
resolution methods, SRCNN was successful at enhancing images but remained unable to
maintain the informative details needed for medical imaging applications (Mittal et al.
2022).

Table 1: Approach/Model, Key Features/Innovations, and Performance Metrics

Approach/Model Key Features/Innovations Performance Metrics

Hough Transform (HT) | Linear feature detection, suitable | Struggled with irregular shapes

for longitudinal views

SRCNN Basic image clarity improvement, | Low PSNR, poor detail retention

early super-resolution

2.2 Feature Segmentation

It is crucial to segment the features of the carotid artery, as it plays an important role
in the diagnosis of cardiovascular diseases. Hough Transform and other traditional tech-
niques used are good for linear segmentation but are not accurate with respect to plaques
and other such features (Golemati et al. 2007).Convolution Neural Networks (CNNs) (U-
Net, 2015) implemented a new encoder-decoder architecture that has the advantage of
learning spatial hierarchies for segmentation at different scales and making possible ac-
curate segmentation of arterial walls and plaques (R. Zhou et al. [2019)). The last feature
that finely tuned these capabilities, was that YOLOvVS also detected and classified plaques
in the form of bounding boxes (Redmon et al. [2016)).

To overcome the challenge of small datasets, we relied on Roboflow for data aug-
mentation, which resulted in multiple datasets that were diverse and augmented, which
helps in training the model better. The Roboflow first full-scale segmentation datasets
we created were critical to the enabling U-Net, YOLOvS8 and other segmentation models
to generalize more smoothly from simulated to reals (Bai et al. 2023)).

Table 2: Approach/Model, Key Features/Innovations, and Performance Metrics

Approach/Model | Key Features/Innovations Performance Metrics

U-Net Encoder-decoder architecture, | Captures fine spatial details
high segmentation accuracy

YOLOvS Object detection with bounding | Accurate plaque classification
boxes

Roboflow Dataset augmentation and pre- | Enhanced model generalization
processing




2.3 Image Upscaling

The resolution for accurate diagnosis is often absent in low depth ultrasound images.
Frameworks such as SRCNN that pioneered convolution-based image enhancement for
simple super-resolution still struggled with maximizing the information required for dia-
gnostic value (Mittal et al. 2022). Since then, the Enhanced Super-Resolution GAN
(ESRGAN) and its modernized version, Real-ESRGAN, become powerful tools for syn-
thesising high-quality enlarged images (Wu and Ma 2020; Mekapothula, Pullagura and

Potharlanka 2023)).

In order to obtain sharper images with more high-frequency details, Real-ESRGAN

uses residual-in-residual dense blocks.

While the upscaling process greatly improved

visual clarity, the resulting images contained artifacts, that led to false positives in seg-
mentations. Real-ESRGAN with x4 scaling was used in this study as this was the optimal
setting between preventing artifacts and increasing the resolution.

Table 3: Approach/Model, Key Features/Innovations, and Performance Metrics

Approach/Model | Key Features/Innovations Performance Metrics
SRCNN Basic super-resolution Low PSNR, poor diagnostic clarity
ESRGAN High-fidelity upscaling Moderate PSNR and SSIM

Real-ESRGAN

Advanced dense blocks for

sharper images

High PSNR, SSIM (optimal at x4)

2.4 Feature Measurements

Measurements of arterial characteristics — wall thickness, dimensions of plaque sizes, — are
vital to carotid artery diagnostics. These metrics were extracted manually, which were
extremely high in labor but low in quality of consistency and high in labor (exposing the
manual nature to human error)(Dhupia et al. [2020)). To automate this process, regression
models (especially linear regression) have been applied to ensure consistent and scalable

solutions.

Linear regression models were trained on high-resolution images, able to correctly
predict depth on low-depth images, including upscaled versions. Statistical validation of
the equivalence of measurements between high-depth and low-depth scans was performed
using paired T-tests, with acceptance of clinical reliability (Kumar et al. 2019)).

Table 4: Approach/Model, Key Features/Innovations, and Performance Metrics

Approach/Model

Key Features/Innovations

Performance Metrics

Linear Regression

Automated measurement predic-
tion

Counsistent results across datasets

Paired T-Tests

Statistical validation of measure-
ment equivalence

No significant difference between
high-depth
and low-depth measurements

The below image Figure [1] is an example of how the U-Net architecture shows that
workflow for medical image segmentation. Complication: Input images from modalities
like MRI, CT, X-ray, and ultrasound may require different stages of pre-processing (e.g.




normalization, filtering) in order to achieve quality preprocessing. At the center of the
workflow is a U-Net model with an encoder-decoder structure and skip connections that
allow for pixel level segmentation with high-level and fine-grain features. 3D U-Net
has variants and other similar models that let you use this architecture for volumetric
data. Some post-processing (like morphological operations) might help clean up the
segmentation mask defined by U-Net but in the most cases U-Net outputs quite good
defined objects without post-processing steps. It returns a segmentation mask, which is
critical for detecting tumors and segmenting organs.

Sklp pre-] processmg Skip post- processmz

O ) Pre-processing ) Deel};gejerlmng Post-, processmg)

Adaptive median filter, U-Net, Morphological operations,
Medical imaging Normalization, 3D U-Net, Conditional random
Histogram equalization, and other U-Net variants, fields, etc.

Weiner filter, etc. etc.

Figure 1: Medical Image Segmentation Workflow Using U-Net Architecture

2.5 Summary

In contrast, this study builds on insights from earlier methodologies but takes pains
to overcome the shortcomings. A great pipeline for low-depth ultrasound images ana-
lysis was established by combining Roboflow for data augmentation (Bai et al. 2023),
Real-ESRGAN for image up-scaling (Mekapothula, Pullagura and Potharlanka [2023)) and
state-of-the-art CNN models such as U-net (R. Zhou et al. and YOLOv8 (Redmon
et al. . Such developments allowed for accurate segmentation and dimensions of vari-
ous features of the carotid artery, further closing the distance between low-cost imaging
technologies and advanced diagnostic devices.

3 Methodology

In this section,a systematic approach is provided as the methodology adapted in this
study to perform a content based analysis on low depth carotid artery ultrasound images
using Al techniques. This includes processes from data collection to pre-processing,
model designing to evaluation, with the inclusion of many visuals to depict the workflow
as clearly as possible.

3.1 Data Gathering

To ensure ethical conduct of the study, we used publicly available repositories for image
data to simulate both low-cost and high-cost ultrasound scanners. The dataset contained
publicly available images, representing high and low-depth ultrasound scans.

In order to reproduce low-penetration conditions, high-resolution images were arti-
ficially down scaled.Such data also meant that the study could evaluate and compare
Al-enhanced images with low-depth and high-resolution ground truth images. The wide
range of resolutions in the dataset made the training and testing of models sufficiently
diverse so the Al pipeline is generalizable enough for actual usage scenarios.



3.2 Data Preparation

Pre-processing of data was a general need to standardize the dataset and make it to be
a proper data for analysis. The following approach was done:

e Image Pre-processing: All images were processed at a specific size with normal-

ization on all pixel levels. As a result, this step was necessary for it to sync with
AT Models.

e Data Augmentation: In this approach we pumped the dataset through a series of
algorithms via using the Roboflow so we use flip, rotate,Add noise and then Robo-
flow was responsible to increase our dataset. This increases the range of imaging
conditions, improving the generalizability of the models.

e Annotation: Segmentation tasks for marking of arterial walls and plaques led to
the generation of ground truth labels. They were useful for training segmentation
models.

e Simulation of Low-Depth Images: Low-penetration ultrasound scans, which
are customarily performed, were emulated by down scaling high-resolution images.
Both the simulated images and original high-depth images were employed to assess
the performance of the Al pipeline.

e Data Splitting: To validate the model without over fitting, the dataset was split
into 3 separate parts training-70 percent, validation-20 percent, testing-10 percent).

3.3 Training the Model

A fine-tuning of the models was required during the training process in order to maximize
their performance for each individual task:

e Segmentation Training: U-Net and YOLOvS that were trained with the annot-
ated data for the 100 and 200 epochs. For U-Net performance measurement, we
employed the loading sample and obtaining the Dice coefficient values after seg-
mentation, and for YOLOvVS, we manually checked the bounding box predictions.

Patch-based approaches, such as U-Net, were trained with upscaled images leading
to increased false positives, particularly in plaque segmentation.

e Upscaling Training: IReal-ESRGAN was trained on x2, x4, and x8 upscaling
factors. In others, the x4 scaling never failed to improve image clarity while avoiding
excessive artifacts.

e Measurement Training: Linear regression models were fitted to low-depth im-
ages coupled with manually obtained measurements including the arterial thickness
and plaque measurements. Image-based ground truth with high-depth images.



Models Building Process

o Compressed to
Original lower quality Downscaled

Ultrasound Ultrasound
Images Images

Segmentation of
Carotid Artery Parts

Figure 2: Model Development Process For The Project

Figure [3]shows how original and down scaled images are prepared for segmentation and
analysis. Over here one can see how the images flow from raw images to the segmentation
step and how they were essentially used for up-scaling and prediction models.

4

Design Specification

The AI pipeline was built to solve three main problems: feature segmentation, image
up-scaling and prediction of measurement. Each component was customized to fulfill the
aims of this study

4.1

4.2

Image Up-scaling:

Real-ESRGAN: The main model used for upscaling was Real-ESRGAN, which
upscaled low resolutions of images with low depths. Three scaling factors (x2, x4,
x8) were experimented with; and again x4 yielded best results in terms of object
clarity with minimal artifacts.

SRCNN: Was used as baseline comparison but was inadequate for medical image
use since it does not retain small detail for diagnosis.

Feature Segmentation:

U-Net: As the anchor model for segmentation, the U-net’s encoder-decoder archi-
tecture allowed for accurate segmentation of arterial walls and plaques. Images were
downscaled for training and upscaled for testing to see how they ensure performance
at different resolutions.

YOLOvVS8: Using this model, plaques are also detected and arterial features are loc-
alized with bounding boxes. It was more helpful to U-Net pixel-level segmentation
due to the insights at the object level.



4.3 Measurement Prediction:

This means that if you have deep images, you can use them to obtain arterial meas-
urements (e.g.wall thickness, plaque sizes setting up a regression model to predict these
metrics from low-depth images. To test the accuracy, these predictions were validated
with high-depth measurements.

Main Process

oAy Measured using
Original ultrasound
Ultrasound Measurements
Images
5
mages —®

Upscaled
Ultrasound
Images

Figure 3: Project Workflow Overview

As shown in Figure [3] how the different components of the pipeline—segmentation,
up-scaling, and prediction—work together. It gives a clear picture of the general flow of
images through the pipeline up to the measurements

5 Implementation

This study established a comprehensive Al instantiation to process carotid artery ul-
trasound images by overcoming the challenges associated with low-depth imaging. This
mechanism handles image refinement, segmentation and measurement prediction, holding
valid results for diagnostic tasks.

5.1 Data Collection and Simulation

This dataset contains ultrasound images of carotid arteries collected in different condi-
tions. Low-penetration conditions were simulated by down-scaling high-resolution images
typical for low-cost ultrasound scanners. The synthetic examples of images at varying low
depth served as a controlled dataset to evaluate the performance of image enhancement
and segmentation algorithms in this domain.



(a) A high-resolution ultrasound image of (b) A low-resolution image of the same ca-
the carotid artery rotid artery

Figure 4: A low and High -resolution image of the same carotid artery.

5.2 Image Up-scaling Pipeline

Real ESRGAN-—state of the art deep learning model was applied to up-sample depth ul-
trasound images to a higher resolution. I had previously tried other up-scaling (definitely
up-sampled images) models but this one provided much better image quality. Its pipeline
included several sophisticated components intended to maintain diagnostic information:

5.2.1 Residual in Residual Dense Block (RRDB) Network:

Residual in Residual Dense Block (RRDB) Network: The Real ESRGAN uses RRDB as
backbone to extract features efficiently without losing high-frequency details relevant to
diagnosis.

5.2.2 Pixel Unshuffling and Grid-Based Flow Warping:
These pre-processing and manipulation techniques lent precision over the transformation
coupled with enhancing clarity.

5.2.3 Patch-Based Processing

Allowed processing of big images without degrading the output quality.

Images were up-scaled by three channels, x2, x4 and x8, describing different image
settings and degrees of enhancement. Out of these, x4 scaling always provided the best
overall result, striking the most appropriate balance of optimal resolution and minimal
artifacts.

10
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Figure 5: x2 Super-Resolution Using Real ESRGAN

Here, Figure [5| we compare the original low-resolution ultrasound image with its SR
counterpart (shown on the right) applying the x2 scaling factor from Real ESRGAN. SR
image showing a conspicuous improvement in A. resolution; B. the arterial border and C.
finer textures. These enhancements are essential in for correct diagnostic interpretation
and demonstrate the effectiveness of Real ESRGAN in improving low-depth ultrasound
images whilst preserving diagnostic features.

Original Low-resolution Image

SRCNN Output Image

0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Figure 6: SRCNN in Super-Resolution Compared to Ground Truth

Figure [6] shows three variations of the same image side by side, including the original
low-resolution ultrasound image, the SRCNN output after completing upscaling, and
the high-resolution ground truth. The original low-resolution image lost a lot of detail
and is blurry as can be seen. We can observe a minor improvement in resolution on
the SRCNN-upscaled image, however this upscaling does not dominate the clarity nor
diagnostic details needed for proper analysis of the specimen. As a comparison, the high-
res ground truth acts as the reference, demonstrating the best resolution and details which
are absolutely essential in clinical diagnosis. Analyzing the results, it becomes evident
that although the traditional method (SRCNN) has its merits, Real ESRGAN exhibits
a clear edge, revealing the necessity for advanced models when it comes to diagnostic-
quality super-resolution in medical imaging.

5.3 Segmentation of Arterial Components

CNN models trained for the segmentation of arterial components, Roboflow used for data
pre processing and data augmentation. The dataset preparation for the box-level and
segmentation works brilliantly was made through Roboflow. Two approaches were used
for segmentation: Figure [Ta] we see a demonstration of arterial segmentation and plaque
detection using bounding boxes in YOLOvS8. For preparing the dataset of Roboflow,
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Roboflow also helped with data pre processing and bounding box annotation. YOLOvS8
was trained for plaque detection and arterial component localization on the ultrasound
image. Bounding box annotations indicate certain areas where abnormalities like plaques
might be located. This method offers a high-speed way to use arterial features with
detection and localization.

(a) Semantic Segmentation with U-Net (b) Bounding boxes Plaque Detection

Figure 7: Plaque Detection-Segmentation using Roboflow

Figure [7b| Pixel-wise segmentation of arterial walls and plaques with U-Net Semantic
segmentation masks were generated using roboflow to accurately delineate the arterial
structures. With the use of the annotated dataset, U-Net is able to predict the edges
around the segmentation of the structures and thus provides a detailed overview of the
anatomy of the artery and any possible abnormalities. The segmented arterial walls and
plaques are shown in purple and yellow, respectively which shows the promise of U-Net
architecture in semantic segmentation.

Both segmentation models were evaluated using the Dice coefficient that measures
the overlap between the predicted segmentation outputs and the ground truth labels.
This leads to a higher Dice coefficient hence better segmentation accuracy, showing the
robustness of YOLOvS8 for plaque localization and U-Net for the semantic segmentation
of arterial structures.

5.4 Feature Measurement

Measurement of arterial wall thickness and plaque size was essential for assessing the
diagnostic usefulness of the images. Use of high- and low-resolution images.

5.4.1 Manual Measurements

A DICOM viewer was used to perform manual measurements of arterial features on
low- and high-resolution images. This data was used as a basis to compare against Al
predictions. Regression

12



5.4.2 Linear Regression Model

Regression model, to estimate wall thickness and plaque sizes based on images with a low
depth. We then compared the predicted measurements with manually measured value
on high-resolution images to prove the accuracy of the proposed model.

(a) Ultrasound Image Before Measurement (b) Arterial Measurement

Figure 8: Manual and Pre-Measurement Ultrasound Imaging for Arterial Analysis

Figure [§] showing ultrasound scans of arterial wall thickness and plaque dimensions
. Figure The ultrasound scan just before measurement without the annotation be-
fore processing, and this served as the baseline image for both manual and Al-based
assessments Figure [8b| Arterial features manually measured with a DICOM viewer, show-
ing annotated values (pixel dimensions of arterial features)These images, when paired,
show the relevant workflow for comparing Al predictions with manually computed ground
truth.

6 Evaluation

The evaluation phase provided a systematic assessment of the performance of the Al
pipeline in three primary components, namely, image up-scaling, segmentation, and meas-
urement prediction. We defined quantitative metrics that can rigorously assess the accur-
acy and reliability of a pipeline for a diagnostic purpose, precisely on the main difficulties
of low-depth ultrasound imaging.

6.1 Up-scaling Evaluation

Peak Signal to Noise Ratio(PSNR) and Structural Similarity Index(SSIM) were used to
evaluate the performance of the real ESRGAN model for super-resolution. The metrics
measured both the sharpness and perceptive quality of the up-scaled image against their
low-resolution counterparts The summary of the results is provided in the table below:

13



Architecture PSNR (dB) | SSIM
SRCNN 21.5 0.4

Real-ESRGAN (x2) 27.5 0.795
Real-ESRGAN (x4) 28.55 [0.838
Real-ESRGAN (x8) 25.6 0.78

Figure 9: Up-scaling Performance Metrics for different Architectures

Figure 0] Real ESRGAN outperformed SRCNN on all scaling factors, while x4 scal-
ing produced the highest PSNR and SSIM values. The x4 up-scaled images exhibited
enhanced structural integrity and detail preservation that were vital for subsequent seg-
mentation and diagnostic processes. On the other hand, for a scaling factor of x8, the
PSNR and SSIM values dropped, and diminishing returns, as well as artifact introduction,
became very noticeable.

Figure[10] A plotted radar chart to compare each PSNR and SSIM setups by up-scaling
models and scale factors. This chart illustrates the previous figure win rate of Real-
ESRGAN (x4) that excels high-resolution details with higher perceptual quality while
retaining structural information making it preferable for medical image enhancement.

PSNR
Radar Chart: PSNR and SSIM for Medical Image Upscaling SSIM (scaled)

SRGAN (x8)

Figure 10: Radar Chart of PSNR and SSIM for Image Up-scaling
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Heatmap of PSNR and SSIM Metrics
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Figure 11: Heat map of PSNR and SSIM Metrics for Up-scaling Architectures

Figure (11| This heat-map shows a comparison of PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index) metrics of different image up-scaling architec-
tures visually. Those results, in turn, point to Real-ESRGAN as having some superior
performance, especially with the x4 scaling factor where it had the best PSNR and SSIM
results meaning it has offered better sharpness and truthfulness of the images compared
to SRCNN and other scaling factors.

6.2 Segmentation Evaluation

Dice coefficient was employed to evaluate the segmentation models which quantifies the
overlap between predicted segmentation masks and the true labels. Table below demon-
strates the results for four test images segmented for Plaque and Artery features

vvvvv

(a) Bar Chart of Dice Coefficient for Seg- (b) Scatter Plot of Dice Coefficient
mentation Performance for Plaque and Artery Segmentation

Figure 12: Evaluation of Segmentation Performance

Figure This barplot summarizes the Dice coefficients for both plaque and artery
segmentation over various training configurations. 100 epoch, 200 epoch and 200 epoch
with Real-ESRGAN upscaled images The chart shows how much worse the performance
deteriorates for upscaled inputs and how easy to gain with longer training arterial features
are.

Figure The segmentation performance for plaques and arteries is further provided
in this scatter plot by the Dice coefficient for all four test images. This plot compares
results between three cases: (from left to right) 100 training epochs, 200 training epochs,
and 200 training epochs, with Real-ESRGAN upscaled images. This shows the inherent
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difficulties that stay unchanged between plaque detection and the performance in arterial
segmentation, which becomes worse when using larger inputs.

200 Epochs
(Upscaled
Image Feature 100 Epochs |200 Epochs with Real-
ESRGAN)
Image 1 Plague 0 0 0
Artery 0.829 0.852 067
Image 2 Plaque 0 0 0
Artery 0.811 0.843 0.467
Image 3 Plague 0.182 0.313 0
Artery 0.859 0.857 0.56
Image 4 Plague 0.082 0.033 0
Artery 0.707 0.667 0.4
(a) Segmentation Performance Metrics (b) Comparison of Ground Truth
Across Training Epochs and Model Prediction Mask

Figure 13: Segmentation Performance Metrics and Comparison

Figure U-Net produced larger Dice coefficients over more epochs for arterial
segmentation, revealing that arterial segmentation performance improved with longer
epochs. By adding Real ESRGAN up-scaled images into the pipeline, segmentation per-
formance slightly degraded, especially for artery features which may suffer from up-scaling
artifacts. Challenges like detection of plaques on vessels had limited number of repres-
entation in the data, indicating a clear need for incorporation of diversity in the data
generates.

6.3 Measurement Prediction Evaluation

Figure Comparison of arterial measurements from the corresponding high resolution
low depth images (the left half of the subplot) and that of up-scaled low depth ultra-
sound images (the right half of the subplot). The arterial wall thickness was measured in
both images using Interactive OnClick. Left: High-Res Low-Depth Image Values Right:
Results from an Up-Scaled Image using Real ESRGAN Annotated measurements show-
ing the potential of the up-scaling methods to preserve diagnostic performance in low
resolution scans.

(a) Comparison of High-Resolution Low- (b) Plaque Area Measure-
Depth and Upscaled Low-Depth Images ment

Figure 14: Interactive Measurement of Plaque and Arterial Features Using OnClick func-
tion
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Figure This illustrates the process of segmenting and quantifying a plaque volume
in an ultrasound image. An interactive OnClick function was used to manually select the
region of interest (plaque) and calculate the area, which is delineated and indicated as
36.02 mm2. This feature enables accurate manual user input, enabling precise segment-
ation and quantification of arterial plaques, an important consideration when evaluating
cardiovascular health.

Figure [I5} shows statistical comparison of HD and LD measurements demonstrated
strong equivalence of mean arterial wall thickness with small, clinically insignificant differ-
ences. There were no significant differences (p is greater 0.05, paired t-tests), supporting
the reproducibility of LD imaging for the quantitation of arterial thickness.

Although variations in plaque measurements were somewhat larger, LD imaging with
the HD was fairly close to the LD measurements on units in the scales. The observed
results support the concept of low-cost, low-depth imaging as an alternative to high-depth
imaging for cardiovascular diagnostics.

Comparison of High-Depth (HD) and Low-Depth (LD) Average Measurements

8.26 mmm Average HD Measurements
8 769 Average LD Measurements

o)

Measurements
IS

Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5 Candidate 6 Candidate 7 Candidate 8 Candidate 9 Candidate 10
Candidate

Comparison of High-Depth (HD) and Low-Depth (LD) Plaque Measurements

12 120 = HD Plaque Measurements
112 LD Plaque Measurements

Plague Measurements

Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5 Candidate 6 Candidate 7 Candidate 8 Candidate 9 Candidate 10
Candidate

Figure 15: Statistical Comparison of (HD) and (LD) Measurements

A linear regression model for prediction of arterial wall thickness and plaque dimen-
sions based on manual measurements from high- (HD) and low-definition (LD) images
was assessed. Here is what the expected results look like in a table Figure |16}
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CandidateAlias HD1 HD2 HD3 avghd HD_plaque LD1 LD2 LD3 avgld LD_plaque
Candidate 1 7.51 7.59 7.51 7.54 0.56 7.02 7.66 779 7.49 0.78
Candidate 2 7.03 7.27 7.19 7.16 0.32 6.23 6.36 6.36 6.32 0.49
Candidate 3 8.5 8.06 8.23 8.26 0.3 5.68 5.68 6.56 5.97 0.22
Candidate 4 7.59 7.03 7.51 7.38 0.45 7.76 7.76 7.56 7.69 0.4
Candidate 5 6.54 6.54 6.63 6.57 0.81 6.29 6.75 5.98 6.34 0.66
Candidate 6 6.15 6.15 5.59 5.96 0.25 5.58 5.84 5.84 5.75 0.26
Candidate 7 6.2 6.84 6.96 6.67 1.2 5.97 5.97 5.97 5.97 1.12
Candidate 8 6.47 6.55 6.47 6.5 0.56 6.76 6.75 6.75 6.75 0.29
Candidate 9 5.91 5.92 591 591 0.56 6.49 6.23 6.36 6.36 0.49
Candidate 10 6.16 6.26 6.31 6.24 0.36 6.31 6.31 6.81 6.48 0.34

Figure 16: Comparison of Arterial Wall Thickness and Plaque Dimensions

Paired T-tests were performed for statistical analysis to determine possible differences
of HD and LD images in terms of average thickness and plaque dimensions; however,
these results were not statistically significant. The high consistency of regression model
for predicting arterial features with high accuracy is confirmed by the present results.
While HD and LD plaque measurements differed by a small amount, the predictions were
still within a clinically acceptable range thereby demonstrating the feasibility of the Al
pipeline in diagnostics.

6.4 Discussion

We studied ways to improve low-depth ultrasound imaging specifically for carotid artery
composition analysis, where resolution and features sensitivity limitations can hinder
clinical applications. Real-ESRGAN was effective for up-scaling, with x4 scaling providing
the best combination of clarity and diagnostic integrity. but when used for segmentation
tasks where plaques need to be detected, this can lead to challenges such as false positive
generation. Implications-these results underline a necessity for more nuanced integration
between image enhancement and downstream analytical tasks.

As segmentation models, U-Net and YOLOvVS proved their usefulness, but the limited
diversity of the used dataset constrained this experiment. Whereas Early U-Net worked
extremely well with pixel-level segmentation, YOLOvV8 was better adapted for object-
level detection. However, both had issues with venerability in detecting rare pathological
cases, highlighting the need for larger and more inclusive datasets.

Measurement prediction models can accurately bridge low- and high-resolution im-
ages to generate similar diagnostic outputs.Even these manual processes were subject to
variability, indicating a need for automation to ensure both efficiency and consistency.

The findings point to the promise of narrow computational techniques to fill diagnostic
gaps, but also show important dependencies regarding data quality, the specific kinds of
models that are trained for narrow tasks, and the integration of these aspects into clinical
workflow. As these challenges are addressed and preparation for implementation in the
clinical space, future endeavors should focus on holistic system design and robust datasets.

7 Conclusion and Future Work

The work investigated the use of Al methods to improve low depth ultrasound imaging
approaches for the characterization of carotid arteries. The research tackled some of the
important limitations of low-cost ultrasound scanners including low resolution, sensitivity
to arterial features such as plaque. The study showed how Al-enhanced imaging asso-
ciated with a systematic approach through data preparation, segmentation, up-scaling,
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and measured prediction can obtain similar diagnostic results to high-cost, high-resolution
systems.

Their results showed that Al models can actually fill the gap between low-cost and
high-cost diagnostic tools. In terms of image up-scaling, Real-ESRGAN demonstrated
considerable ability to enhance image clarity without compromising key diagnostic com-
ponents. X4 scaling produced the best overall compromise between improving resolution
and artifactual content across all investigated scaling factors. But there were challenges
in integrating the up-scaled images including false positives in segmentation tasks such as
plaque detection.” Here, it further supports that up-scaling models need more fine tuning
especially for medical images.

U-Net also performed well on segmentation tasks when it came to identifying arterial
walls and plaques. YOLOvS used for object detection to achieve plaque localization
alongside U-Net for pixel-level segmentation. While they were effective, the authors
noted that the relatively small dataset size available to train these models had limited
their ability to generalize, for example, in detecting plaques that rarely occurred in the
dataset. This shortcoming underscores the need for larger datasets with more diversity
and inclusion of images with severely abnormal arteries.

This task validated the clinical viability of low-depth ultrasound images for measure-
ment prediction. To validate whether Al can generalize the estimated thickness of arterial
walls and the size of plaques from high-depth measurements to images with lower depth,
they trained a regression model and applied it to images at low depth. Statistical analyses
revealed no significant differences in measurements from low-depth vs high-depth images,
underscoring the clinical potential of Al-enhanced imaging. Together, these results lend
credibility to a strategy of lowering the barriers to ultrasonic diagnosis via low-cost ul-
trasound scanners, with a high level of performance achieved with the help of Al to
supplement image acquisition technology.

Although the results were encouraging, the study had several significant limitations.
The sample size was small and had more paucity of samples where arteries were highly
unhealthy with significant amount of plaque so that the models could identify and predict
plaques more reliably. Moreover, although Al-based up-scaling was useful for upon up-
scaling images in improved quality, downstream activities together with segmentation
had some difficult combinations which shall be further important challenges to explore.
We highlight a few limitations of this study which is intended to inform future work.

Moving forward, future research should focus on diversifying datasets and ensuring the
venerability of Al models. Segmentation models need a larger dataset with a set of diverse
arterial conditions especially a large set of normal arteries because the presence of a high
degree of plaque mainly creates challenges to identification. Furthermore, development of
optimized AI architectures, specifically for medical use cases, could prevent false positives
and aid workflow integration of up-scaled images.Another key area for future work is the
automation of the process of process extraction. While gaining acceptable results, the
manual procedure requires substantial time to complete and can involve errors. Computer
algorithms to automatically pull out arterial features and measurements would assist in
minimizing this variability in the diagnostic application. Moreover, the research on the
clinical application of Al-assisted imaging in the future will further confirm the clinic
value of Al-assisted imaging.

In summary, the current study provided evidence that Al can potentially convert low-
depth ultrasound-based imaging into a cost-effective alternative to standard/expensive
diagnostic equipments. This research overcomes existing approaches limitations and can
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leverage Al capabilities to address emerging needs, thereby laying the groundwork for
advancement in medical imaging technologies to support wider access to quality health-
care. Although Al-enhanced imaging will have a significant potential impact on the early
and timely detection and management of cardiovascular diseases, clinical translation in
resource-limited regions where cost remains a major obstacle will be crucial.
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