
 1

Configuration Manual

MSc Research Project

Data Analytics

Tejas Sandeep Bafna
Student ID: x23211741

School of Computing

National College of Ireland

Supervisor: William Clifford

 2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Tejas Sandeep Bafna

Student ID: X23211741

Programme: Master’s in data Analytics Year:

Module: MSc. Research Project

Lecturer: William Clifford
Submission Due
Date: 12/12/2024

2024-2025

Project Title: Detecting Adversarial Network Behaviors in IoT Environment

Word Count: 1798 Page Count: 24

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tejas Sandeep Bafna

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

 3

 Configuration Manual
 Tejas Sandeep Bafna
 X23211741

1. Introduction
This configuration guide explains step to step how to set up and duplicate the system we engineered for the
detection of IoT adversarial network behaviors and is therefore not exhaustive in detailing system requirements
and library installations, data preprocessing, training, evaluation, and visualization.

2. System Requirements and Libraries
This section provides the details of Software and Hardware requirements to implement the
research done.

Category Requirement/Library

Operating System Windows, macOS, or Linux
Processor Intel Core i5 or higher
RAM 8 GB or higher
Storage Minimum 10 GB free disk space
Python Version Python 3.8 or higher
Libraries
- numpy For numerical computations
- pandas For data manipulation and analysis

- matplotlib For creating static, animated, and interactive visualizations
- seaborn For statistical data visualization

- scikit-learn For preprocessing, model building, and evaluation
- imblearn For handling imbalanced datasets (SMOTE)
- tensorflow For building and training deep learning models
- keras For high-level deep learning API
- warnings For suppressing warnings during execution
- collections For counting occurrences in datasets
Other Tools Jupyter Notebook (optional) for running code interactively

 4

3. Data and its Execution

3.1 Importing Libraries and Modules

We start by importing the essential libraries needed for data processing, visualization, machine learning, and
deep learning. Below is the breakdown:

● warnings: Suppresses warnings to keep the output clean.
● numpy: Handles numerical operations and arrays.
● pandas: Manages datasets and tabular data structures like CSV files.
● seaborn: Visualizes data with attractive and informative graphs.
● tensorflow: Builds and trains deep learning models.
● matplotlib.pyplot: Plots graphs for data visualization.
● collections.Counter: Counts occurrences of elements in a dataset.
● sklearn: Provides tools for preprocessing, dimensionality reduction, and evaluation.
● imblearn.SMOTE: Balances imbalanced datasets using oversampling techniques.

TensorFlow Keras Layers and Model Functions:
● layers: Includes different layer types for deep learning models (like Dense, Conv1D).
● Sequential: Combines layers sequentially to build models.
● load_model: Loads pre-trained models for reuse.

Preprocessing and Data Transformation Tools:
● LabelEncoder and OneHotEncoder: Convert categorical labels into numerical formats.
● StandardScaler: Standardizes features by removing the mean and scaling to unit variance.
● to_categorical: Converts class vectors into binary class matrices for categorical classification

tasks.

Step 1: Importing Libraries and Modules
First, the libraries were imported to make easy execution of various tasks. Libraries that were used in handling data and
machine learning included numpy, pandas, tensorflow, and sklearn.
Visualization libraries such as matplotlib and seaborn allowed for producing some really insightful graphs. Packages
like warnings and collections were applied towards efficient scripting and debugging. That's the foundational step to
ensure that the environment has been set up for subsequent analysis and modeling.

 5

Figure 1: Importing all the necessary libraries

3.2 Dataset Information

We load the dataset named RT_IOT2022.csv using the pandas library. This dataset contains IoT network traffic data
which we will analyze and use for detecting adversarial network behaviors.

Step 2: Loading the Dataset
 The dataset was named RT_IOT2022.csv and loaded using the pandas library. This dataset contained IoT
network traffic data that is important for analysis and detection of adversarial behaviors. The first five rows of
the dataset were displayed by using head() to confirm a sucessful load

Figure 2: Loading the data into ‘data’ variable and then displaying it

We print a message indicating that we are showing the first few rows of the dataset. Then, we use the head()
function to display the first five rows for inspection.

 6

Figure 3: First few rows of the dataset

3.3 Statistical Analysis

Step 3: Statistical Analysis
Several statistical summaries were conducted to understand the dataset's structure:

● Dimensions: The shape function was used to retrieve the number of rows (samples) and columns
(features).

● Column Names: columns provided a list of feature names for exploration.
● Data Types: The dtypes function identified whether columns contained numerical, categorical, or

other types of data.
● Dataset Summary: info() provided a detailed summary, including non-null counts and memory

usage.
● Descriptive Statistics: describe() calculated metrics like mean, standard deviation, and range for

numerical features.

Figure 4: Illustration of dataset dimensions showing the number of rows (data points) and columns
(attributes).

Figure 5: Illustration of the dataset's column names, representing the features and attributes
available for analysis.

 7

Figure 6: Illustration of the data types for each column in the dataset, showing whether they are
numerical, categorical, or other types.

 8

Figure 7: Illustration of the dataset summary, showing the number of rows, columns, non-null
entries, data types, and memory usage.

Figure 8: Illustration of descriptive statistics for numerical columns, including metrics such as
mean, standard deviation, minimum, and maximum values.

Step 4: Handling Missing Values and Duplicates
To address data quality, missing values and duplicates were managed:

● The total count of missing values per column was calculated using isnull().sum(), sorted in
descending order.

● Duplicates were identified using duplicated() and their count was displayed.

 9

Figure 9: Illustration of missing value counts for each column, sorted in descending order,
highlighting columns with the highest data gaps.

Figure 10: Illustration of the total number of exact duplicate rows in the dataset, ensuring data
quality and avoiding redundancy.

3.4 Exploratory Data Analysis

 10

Step 5: Attack Type Distribution
The Attack_type column was analyzed to display the frequency of each attack category. This distribution was
visualized using a bar plot (sns.countplot()), which highlighted the prevalence of different attack types and
revealed potential class imbalances.

Figure 11: Illustration of the frequency distribution of attack types in the dataset, highlighting the
prevalence of different attack categories.

Figure 12: Visualization of the attack type distribution, showing the count of each attack type as a
bar plot. This helps highlight class imbalances and the prevalence of specific attack types.

 11

Figure 13: Visualization of the attack type distribution

Step 6: Protocol and Service Distributions

● Protocols: The proto column showed the frequency of different protocols in the dataset,
visualized as a bar plot.

● Services: The service column displayed the usage frequency of various services,
represented through a bar plot with rotated x-axis labels for readability.

Figure 14: Visualization of protocol distribution in the dataset, showing the frequency of different
protocols used in the IoT network as a bar plot.

 12

Figure 15: Visualization of protocol distribution in the dataset

Figure 16: Visualization of service distribution in the dataset, displaying the frequency of different
services used in the IoT network as a bar plot.

Figure 17: Visualization of service distribution in the dataset

 13

3.5 PCA

Step 7: Principal Component Analysis (PCA)
PCA was applied to reduce the dataset's dimensionality while retaining 95% of its variance. A cumulative
explained variance plot highlighted the required number of components

Figure 18: Cumulative explained variance plot showing how many principal components are
needed to explain 95% of the variance in the dataset.

 14

Figure 20: Scatter plot of the first two principal components, visualizing clusters and variations in
the data based on attack types.

Step 8: Data Preparation Pipeline
The data was scaled, encoded, and reshaped for compatibility with the CNN model. This step ensured consistency
across training, validation, and test datasets.

 15

Figure 21: Class distribution in the final training set after applying SMOTE, illustrating balanced
classes to mitigate biases during model training.

 16

Figure 22: Class distribution in the validation and test sets, ensuring consistent evaluation metrics.

Data Preparation

Figure 23: Data preparation pipeline, including scaling, label encoding, and reshaping, tailored for
CNN model input.

Figure 24: Data preparation pipeline

 17

3.6 CNN Model
Step 9: Model Architecture
The CNN architecture included convolutional layers, batch normalization, max-pooling, and dropout layers,
followed by dense layers with ReLU and softmax activations for multi-class classification.

Figure 25: Architecture of the CNN model, showing convolutional layers, pooling layers, dropout
measures, and fully connected layers for multi-class IoT network behavior classification.

 18

Figure 26: Architecture of the CNN model and its output

Step 10: Training and Evaluation

● The model was trained using early stopping to prevent overfitting, and training/validation metrics

were plotted over epochs.
● The model was saved for future use, and evaluation metrics (accuracy, precision, recall, F1-score)

were computed.

Figure 27: Illustration of the training process, showing how early stopping monitors the validation
loss and halts training when no significant improvement is observed, preventing overfitting.

 19

Figure 28: Illustration of the training process and its outcome

Figure 29: Visualization of the training and validation accuracy and loss over epochs.

Figure 30: Snapshot showing the process of saving the trained CNN model to a file named
cnn_trained_model.h5, preserving the model for deployment or further use.

● Saves the model in the HDF5 format (.h5 file), which includes the model architecture, trained

weights, and optimizer configuration.
● The file name is specified as 'cnn_trained_model.h5'.

 20

CNN Model Evaluation

Figure 31: Classification report table summarizing precision, recall, F1-score, and support for each
attack type in the IoT dataset.

Figure 32: Classification report table summary and results

 21

Figure 33: The test accuracy score presented as a percentage, indicating the model's effectiveness in
predicting attack types on unseen IoT network data.

● Evaluates the model's performance on the test data.
● Computes the test loss and accuracy.
● X_test_reshaped: Scaled and reshaped test features.
● y_test_encoded: Encoded true labels for the test set.

CNN Model Prediction and Actual Label Comparison

Figure 34: Tabular view of IoT features, actual labels, and predicted labels for 5 samples from each
class, providing a detailed comparison of the model's predictions.

 22

.

 3.7 GAN Model

Figure 35: Code depicting the workings of the GAN model

 23

GAN Data-CNN Model Training

Figure 36: Code showing the merger of the CNN and the GAN and the training process

Figure 37: Code depicting the workings of the GAN_CNN_model

 24

Figure 38: Plot training & validation accuracy values

3.8 GAN-CNN Model Evaluation

Figure 39: Classification report displaying precision, recall, F1-score, and support for each IoT attack
type.

 25

3.9 GAN-CNN Model Prediction and Actual Label Comparison

Figure 40: Tabular comparison of IoT features, actual attack labels, and predicted labels for 5 samples
from each attack type, illustrating model predictions and their accuracy.

 26

References

NumPy Documentation (n.d.) NumPy provides tools for numerical computations and handling
large datasets. Available at: https://numpy.org/doc/

Pandas Documentation (n.d.) Pandas is used for data manipulation and analysis. Available at:
https://pandas.pydata.org/pandas-docs/stable/

Matplotlib Documentation (n.d.) Matplotlib is used for creating detailed visualizations and graphs.
Available at: https://matplotlib.org/stable/contents.html

Seaborn Documentation (n.d.) Seaborn simplifies statistical data visualizations. Available at:
https://seaborn.pydata.org/

Scikit-learn Documentation (n.d.) Scikit-learn provides tools for preprocessing, model building,
and evaluation. Available at: https://scikit-learn.org/stable/documentation.html

Imbalanced-learn Documentation (n.d.) Imbalanced-learn offers techniques for handling
imbalanced datasets. Available at: https://imbalanced-learn.org/stable/

TensorFlow Documentation (n.d.) TensorFlow provides an open-source platform for building deep
learning models. Available at: https://www.tensorflow.org/

RT-IOT2022 Dataset (n.d.) RT-IOT2022 dataset contains IoT network traffic data for research
purposes. Available at: https://archive.ics.uci.edu/dataset/942/rt-iot2022

GAN Documentation (n.d.) Generative Adversarial Networks (GANs) are used for generating
synthetic data. Available at: https://paperswithcode.com/method/gan

https://numpy.org/doc/
https://pandas.pydata.org/pandas-docs/stable/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/
https://scikit-learn.org/stable/documentation.html
https://imbalanced-learn.org/stable/
https://www.tensorflow.org/
https://archive.ics.uci.edu/dataset/942/rt-iot2022
https://paperswithcode.com/method/gan

