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1. Introduction 
This configuration guide explains step to step how to set up and duplicate the system we engineered for the 
detection of IoT adversarial network behaviors and is therefore not exhaustive in detailing system requirements 
and library installations, data preprocessing, training, evaluation, and visualization. 

 

2. System Requirements and Libraries 
This section provides the details of Software and Hardware requirements to implement the 
research done. 

 
Category Requirement/Library 

Operating System Windows, macOS, or Linux 
Processor Intel Core i5 or higher 
RAM 8 GB or higher 
Storage Minimum 10 GB free disk space 
Python Version Python 3.8 or higher 
Libraries  
- numpy For numerical computations 
- pandas For data manipulation and analysis 

- matplotlib For creating static, animated, and interactive visualizations 
- seaborn For statistical data visualization 

- scikit-learn For preprocessing, model building, and evaluation 
- imblearn For handling imbalanced datasets (SMOTE) 
- tensorflow For building and training deep learning models 
- keras For high-level deep learning API 
- warnings For suppressing warnings during execution 
- collections For counting occurrences in datasets 
Other Tools Jupyter Notebook (optional) for running code interactively 
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3. Data and its Execution 
 

3.1  Importing Libraries and Modules 
 

We start by importing the essential libraries needed for data processing, visualization, machine learning, and 
deep learning. Below is the breakdown: 

● warnings: Suppresses warnings to keep the output clean. 
● numpy: Handles numerical operations and arrays. 
● pandas: Manages datasets and tabular data structures like CSV files. 
● seaborn: Visualizes data with attractive and informative graphs. 
● tensorflow: Builds and trains deep learning models. 
● matplotlib.pyplot: Plots graphs for data visualization. 
● collections.Counter: Counts occurrences of elements in a dataset. 
● sklearn: Provides tools for preprocessing, dimensionality reduction, and evaluation. 
● imblearn.SMOTE: Balances imbalanced datasets using oversampling techniques. 

 
TensorFlow Keras Layers and Model Functions: 
● layers: Includes different layer types for deep learning models (like Dense, Conv1D). 
● Sequential: Combines layers sequentially to build models. 
● load_model: Loads pre-trained models for reuse. 

 
Preprocessing and Data Transformation Tools: 
● LabelEncoder and OneHotEncoder: Convert categorical labels into numerical formats. 
● StandardScaler: Standardizes features by removing the mean and scaling to unit variance. 
● to_categorical: Converts class vectors into binary class matrices for categorical classification 

tasks. 
 

Step 1: Importing Libraries and Modules 
First, the libraries were imported to make easy execution of various tasks. Libraries that were used in handling data and 
machine learning included numpy, pandas, tensorflow, and sklearn. 
Visualization libraries such as matplotlib and seaborn allowed for producing some really insightful graphs. Packages 
like warnings and collections were applied towards efficient scripting and debugging. That's the foundational step to 
ensure that the environment has been set up for subsequent analysis and modeling. 
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Figure 1: Importing all the necessary libraries 

 

 
3.2  Dataset Information   

We load the dataset named RT_IOT2022.csv using the pandas library. This dataset contains IoT network traffic data 
which we will analyze and use for detecting adversarial network behaviors. 
 
Step 2: Loading the Dataset 
 The dataset was named RT_IOT2022.csv and loaded using the pandas library. This dataset contained IoT 
network traffic data that is important for analysis and detection of adversarial behaviors. The first five rows of 
the dataset were displayed by using head() to confirm a sucessful load 
 

Figure 2: Loading the data into ‘data’ variable and then displaying it 
 
We print a message indicating that we are showing the first few rows of the dataset. Then, we use the head() 
function to display the first five rows for inspection. 
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Figure 3: First few rows of the dataset 

 
3.3   Statistical Analysis 

Step 3: Statistical Analysis 
Several statistical summaries were conducted to understand the dataset's structure: 

● Dimensions: The shape function was used to retrieve the number of rows (samples) and columns 
(features). 

● Column Names: columns provided a list of feature names for exploration. 
● Data Types: The dtypes function identified whether columns contained numerical, categorical, or 

other types of data. 
● Dataset Summary: info() provided a detailed summary, including non-null counts and memory 

usage. 
● Descriptive Statistics: describe() calculated metrics like mean, standard deviation, and range for 

numerical features. 
 

Figure 4: Illustration of dataset dimensions showing the number of rows (data points) and columns 
(attributes). 

 

 

Figure 5: Illustration of the dataset's column names, representing the features and attributes 
available for analysis. 
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Figure 6: Illustration of the data types for each column in the dataset, showing whether they are 
numerical, categorical, or other types. 
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Figure 7: Illustration of the dataset summary, showing the number of rows, columns, non-null 
entries, data types, and memory usage. 

 

 

Figure 8: Illustration of descriptive statistics for numerical columns, including metrics such as 
mean, standard deviation, minimum, and maximum values. 

 
Step 4: Handling Missing Values and Duplicates 
To address data quality, missing values and duplicates were managed: 

● The total count of missing values per column was calculated using isnull().sum(), sorted in 
descending order. 

● Duplicates were identified using duplicated() and their count was displayed. 
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Figure 9: Illustration of missing value counts for each column, sorted in descending order, 
highlighting columns with the highest data gaps. 

 

Figure 10: Illustration of the total number of exact duplicate rows in the dataset, ensuring data 
quality and avoiding redundancy. 

 

 

 
3.4  Exploratory Data Analysis 
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Step 5: Attack Type Distribution 
The Attack_type column was analyzed to display the frequency of each attack category. This distribution was 
visualized using a bar plot (sns.countplot()), which highlighted the prevalence of different attack types and 
revealed potential class imbalances. 

 

 
Figure 11: Illustration of the frequency distribution of attack types in the dataset, highlighting the 
prevalence of different attack categories. 

 

 
Figure 12: Visualization of the attack type distribution, showing the count of each attack type as a 
bar plot. This helps highlight class imbalances and the prevalence of specific attack types. 
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Figure 13: Visualization of the attack type distribution 
 
 

Step 6: Protocol and Service Distributions 
 

● Protocols: The proto column showed the frequency of different protocols in the dataset, 
visualized as a bar plot. 

●  Services: The service column displayed the usage frequency of various services, 
represented through a bar plot with rotated x-axis labels for readability. 

 

Figure 14: Visualization of protocol distribution in the dataset, showing the frequency of different 
protocols used in the IoT network as a bar plot. 
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Figure 15: Visualization of protocol distribution in the dataset 
 

 

 
Figure 16: Visualization of service distribution in the dataset, displaying the frequency of different 
services used in the IoT network as a bar plot. 

 

Figure 17: Visualization of service distribution in the dataset 
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3.5 PCA 

Step 7: Principal Component Analysis (PCA) 
PCA was applied to reduce the dataset's dimensionality while retaining 95% of its variance. A cumulative 
explained variance plot highlighted the required number of components 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18: Cumulative explained variance plot showing how many principal components are 
needed to explain 95% of the variance in the dataset. 
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Figure 20: Scatter plot of the first two principal components, visualizing clusters and variations in 
the data based on attack types. 

 
 

Step 8: Data Preparation Pipeline 
The data was scaled, encoded, and reshaped for compatibility with the CNN model. This step ensured consistency 
across training, validation, and test datasets. 
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Figure 21: Class distribution in the final training set after applying SMOTE, illustrating balanced 
classes to mitigate biases during model training. 
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Figure 22: Class distribution in the validation and test sets, ensuring consistent evaluation metrics. 
 

Data Preparation 
 

Figure 23: Data preparation pipeline, including scaling, label encoding, and reshaping, tailored for 
CNN model input. 

 

Figure 24: Data preparation pipeline 
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3.6 CNN Model 
Step 9: Model Architecture 
The CNN architecture included convolutional layers, batch normalization, max-pooling, and dropout layers, 
followed by dense layers with ReLU and softmax activations for multi-class classification. 

 

Figure 25: Architecture of the CNN model, showing convolutional layers, pooling layers, dropout 
measures, and fully connected layers for multi-class IoT network behavior classification. 
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Figure 26: Architecture of the CNN model and its output 

 

 
Step 10: Training and Evaluation 

 
● The model was trained using early stopping to prevent overfitting, and training/validation metrics 

were plotted over epochs. 
● The model was saved for future use, and evaluation metrics (accuracy, precision, recall, F1-score) 

were computed. 
 

Figure 27: Illustration of the training process, showing how early stopping monitors the validation 
loss and halts training when no significant improvement is observed, preventing overfitting. 



 19 

 
Figure 28: Illustration of the training process and its outcome 

 

Figure 29: Visualization of the training and validation accuracy and loss over epochs. 
 

 

Figure 30: Snapshot showing the process of saving the trained CNN model to a file named 
cnn_trained_model.h5, preserving the model for deployment or further use. 

 
● Saves the model in the HDF5 format (.h5 file), which includes the model architecture, trained 

weights, and optimizer configuration. 
● The file name is specified as 'cnn_trained_model.h5'. 
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CNN Model Evaluation 
 

 
Figure 31: Classification report table summarizing precision, recall, F1-score, and support for each 
attack type in the IoT dataset. 

Figure 32: Classification report table summary and results 
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Figure 33: The test accuracy score presented as a percentage, indicating the model's effectiveness in 
predicting attack types on unseen IoT network data. 

 
● Evaluates the model's performance on the test data. 
● Computes the test loss and accuracy. 
● X_test_reshaped: Scaled and reshaped test features. 
● y_test_encoded: Encoded true labels for the test set. 

 
CNN Model Prediction and Actual Label Comparison 

 

Figure 34: Tabular view of IoT features, actual labels, and predicted labels for 5 samples from each 
class, providing a detailed comparison of the model's predictions. 
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. 

   3.7 GAN Model 
 

 

Figure 35: Code depicting the workings of the GAN model 
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GAN Data-CNN Model Training 

 

Figure 36: Code showing the merger of the CNN and the GAN and the training process 
 

 
Figure 37: Code depicting the workings of the GAN_CNN_model 
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Figure 38: Plot training & validation accuracy values 

 
3.8  GAN-CNN Model Evaluation 
 

Figure 39: Classification report displaying precision, recall, F1-score, and support for each IoT attack 
type. 



 25 

3.9  GAN-CNN Model Prediction and Actual Label Comparison 
 

Figure 40: Tabular comparison of IoT features, actual attack labels, and predicted labels for 5 samples 
from each attack type, illustrating model predictions and their accuracy. 
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