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Abstract 

The Internet of Things (IoT) has expanded rapidly across industries and enterprises bringing 

innovation and value to various sectors, while at the same time exposing critical cybersecurity 

risks arising from the growing complexity, heterogeneity, and resource constraints of IoT 

systems. IDS are not able to deal with threats such as zero-day threats, insider threat, encrypted 

traffic, polymorphic viruses and traffic camouflage. They also experience issues with low-and-

slow attacks, IoT exploits, and Advanced Persistent Threats (APTs) that are stuck in normal 

behavior patterns, thus leaving the opportunity for detection gaps and false negatives. In the 

context of this work, deep learning models for IoT intrusion detection are examined, with a special 

emphasis on CNNs and the proposed Conv-GAN model for data augmentation. The standalone 

CNN model was tested with the RT-IoT 2022 dataset and showed excellent performance with 

99.3% accuracy and good detection of most of the attacks. The Conv-GAN part of the feature set, 

when combined with synthetic data to tackle class imbalance, showed difficulties in synthetic 

data quality and incorporation leading to decreased performance compared with CNN. The results 

presented in this paper confirm the ability of CNNs and prove their potential for IoT intrusion 

detection, as well as identify further development possibilities for hybrid models. 

1 Introduction 

The growth of the Internet of Things (IoT) has exponentially increased in recent years, 

transforming connectivity by allowing the exchange of data between various objects across 

industries such as healthcare, manufacturing, and consumer goods. This transformation, 

however, comes with several security challenges. Yaras and Dener (2024) Predicted the number 

of IOT devices in both the consumer and enterprise sectors is expected to surpass 75 billion by 

2025. As IoT systems become larger and more complex, they are increasingly vulnerable to 

various forms of cyberattacks, including malware, Distributed Denial of Service (DDoS) attacks, 

and intricate intrusions Kwon et al. (2022). Due to the heterogeneity of the IoT systems, which 

encompasses heterogeneous hardware platforms, operating systems, and communication 

protocols, IoT systems are highly vulnerable to adversarial threats. Therefore, Intrusion 

Detection Systems (IDS) are essential in IoT networks defense against such attacks. 

Nevertheless, traditional IDS techniques, such as signature based detection, are not suitable for 

new or new attack vectors. Anomaly based detection methods have been developed to overcome 

these limitations. IDS systems create baseline standards to monitor normal traffic activity while 

triggering alerts when traffic stray from that benchmark. Anomaly detection techniques show 

effectiveness but struggle with excessive incorrect alerts specifically for new and evolving IoT 

network environments. Recent advancements in machine learning technologies and deep 

learning methods including Convolutional Neural Networks (CNNs) and Generative Adversarial 

Networks (GANs) present possibilities to upgrade ID System (IDS) performance so they can 

more effectively protect IoT networks from such security threats. When attacks rely on newly 

developed vector signature-based detection approaches proven ineffective for this situation. 
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Researchers introduced anomaly detection strategies because they addressed previously existing 

limitations. This detection system runs defined baseline values on normal network activity and 

flags all divergences as possible cyberattacks. Anomaly-based detection demonstrates success 

but its implementation faces difficulty due to elevated false positives in IoT networks undergoing 

continuous change. Recent developments in deep learning techniques with CNNs and GANs 

present opportunities to boost IDS performance levels. CNNs excel at identifying patterns across 

large datasets but GANs generate synthetic attack data to solve minority class distribution 

problems. 

A new hybrid Conv-GAN framework unites Convolutional Neural Networks and Generative 

Adversarial Networks to develop specialised intrusion detection systems for Internet of Things 

environments. The research integrates advanced feature extraction and sophisticated data 

synthesis beyond fundamental GANs combined with CNN only systems for more efficient class 

imbalance correction. The proposed model targets real-time IoT processing in resource-limited 

IoT systems because it outperforms standard models which do not consider efficiency or 

scalability requirements. Research potential is high because the immediate requirement exists for 

better detection of advanced IoT cybersecurity threats. The outstanding detection capabilities of 

CNNs for malicious activities remain limited because of insufficient labeled data that fails to 

include new kinds of attacks. GANs help address this problem through their ability to create 

synthetic data yet issues remain during their combination with deep learning frameworks. This 

research undertakes a study of security challenges while evaluating the performance of a 

proposed Conv-GAN model that merges CNN and GAN techniques to produce synthetic data. 

This research initiative seeks to enhance IoT network IDS detection through advanced scalability 

and flexibility and effectiveness for operational environments. 

1.1 Research Background 

There are a large number of devices connected to IoT networks now, and the security threats to 

these networks are incredible. However, maintaining the privacy, integrity, and access of the IoT 

networks is where IDS is most important. However, traditional IDS solutions are insufficient in 

responding to the sophisticated and dynamic nature of the IoT environment. The security threat 

to new complex IoT networks is also getting more complex as IoT networks become more 

advanced. Deep learning has been shown to be powerful for learning network behaviors to detect 

unknown threats with Artificial Intelligence. However, these models suffer from scarcity of 

labeled data for training and imbalance in attack distribution. Using synthetic data, such as that 

generated by GANs, has been proposed as a solution to address these issues, but integrating 

GANs with deep learning models remains an area for further research. This study seeks to address 

this gap by proposing the Conv-GAN model, a hybrid approach that combines CNNs and GANs 

to identify intrusions in IoT networks. The research aims to enhance the quality of IDS solutions 

and provide new perspectives on tackling data deficiency and class imbalance issues in the IoT 

context. 

 

1.2 Research Questions 

● What is the performance of CNN models as standalone intrusion detection systems in IoT 

environments, particularly in addressing diverse attack types and class imbalance? 

● What challenges arise from integrating GAN-generated synthetic data into deep learning-

based intrusion detection systems, and how do these challenges affect detection accuracy? 
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● How does the quality of GAN-generated synthetic data influence the overall performance 

of intrusion detection systems in IoT environments? 

● What improvements or alternative methods can address class imbalance without 

compromising model accuracy in IoT intrusion detection systems? 

1.3 Research Objectives 

The main aim of this work is to assess the effectiveness of the proposed hybrid deep learning 

models for intrusion detection in IoT networks. Specifically, the study will evaluate the 

performance of standalone CNNs in terms of detecting multiple attack types and addressing class 

imbalance. Additionally, the research will explore the challenges associated with training models 

using GAN-based synthetic data. The findings will provide insights into how IDS models can be 

improved, as well as how synthetic data can be integrated without compromising detection 

accuracy. 

2 Related Work 

The rapid development of Internet-of-Things (IoT) technology now impacts diverse industries 

and scientific achievements in sectors throughout the speed of implementation. The fast growth 

of IoT infrastructure created multiple cybersecurity risks because IoT networks rely on 

heterogeneous architectures built for interconnection. As IoT devices proliferate the number of 

vulnerabilities increases to benefit attacking opportunities in networks. Mazhar et al. (2023) 

notice that the complicated nature of IoT environments leads to poor security outcomes. The 

current inadequate collection of effective security measures makes critical data and systems 

susceptible to major defects and breaches. 

ML and Deep Learning In response to these concerns, researchers are gradually investigating 

integrated IDS and IDP solutions for IoT networks. Ling et al. (2023) notes that traditional 

approaches to cybersecurity fail in IoT circumstances and that anomaly detection and predictive 

analytics are critical concepts in ML to prevent cyber threats. The incorporation of these methods 

makes it easier also to notice any aberrations and intrusions in real-time which will go a long 

way in strengthening the IoT systems. In addition, Alsoufi et al’s systematic review shows how 

deep learning models can be used in creating a specific IDS for IoT systems, which are based on 

anomaly- based detection Alsoufi et al. (2021). 

Hnamte and Hussain (2023) introduced a new model which was a deep learning based hybrid 

approach, combining both the prowess of the deep convolutional neural networks alongside the 

bi-directional long short-term memory networks, resulting in a peculiar named model 

DCNNBiLSTM. This model was used for the feature extraction while also capturing the intricate 

temporal dependencies present inside the network traffic data for greater understanding and 

accuracy. In the research paper, they proposed this model which could notably reduce the false 

positive rate encountered during the epoch phase of a model’s life on testing for the malicious 

activity within the IoT traffic Network. This model’s architecture revolved around the 

combination of multiple architectures which could capitalize on the machine learning models 

strengths, thus creating a complex Network environment with better and robust solution. 

In 2022 a new study came out which proposed our dual integrating signature based alongside 

behavior-based technique, proven to enhance the ideas performance across all IoT Network, thus 

reducing reliance on the predefined attack signatures while also increasing and enhancing the 

security of the IoT Network itself Kwon et al. (2022). In their research paper the intuition 
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detection system presented contained both the statistical filtering that is signature based and also 

a component of the behavior-based detection that is auto encoders . This model initially tried to 

filter out and shift through various known attacks using signature-based methods Benaddi et al. 

(2022) but with its advanced behavior-based detection reduced the workload required for the 

module to work. This intern reduces the workload of the deep learning module for anomaly 

detection which could deviate from the normal behavior, thus resulting in a high performance 

gain. This study showed that the tests were conducted on the DS2OS benchmark, on which the 

model performed outclass and the approach was particularly relevant towards the goal of our 

research where the volume of the data could be strained on the deep learning models used in the 

IoT Network. 

In the study Aslan et al. (2021), explored the behavior based malware detection system but 

extended it to the cloud environment and gained significant recognition for their approach. In 

their approach, the use of the random Forest technique in combination with the API calls 

sequences gave the researchers a better accuracy boost to both the efficiency and security in the 

detection of the attack signatures. This was not only valuable to the IoT environment security 

concerns, but also to the ever evolving malicious attacks present. In the IoT settings and the 

context of the prevention of such cyber security attacks, the cloud services approach shows that 

the potential in creating comprehensive cloud compatible IDs solutions requires a combination 

of the machine learning approach like the random Forest used in this paper Bao et al. (2021). 

In one of the studies of 2021, the researchers found out that the continuous static models could 

degrade performance over time in the context of the cyber security challenges faced by the IoT 

Network. Darem et.al researched into the solution of this problem where he proposed that the 

malware detection model could use incremental batch learning and the concepts of the drift 

detection could be enhanced with the behavioral-based detection models. This new adaptation of 

the patrons in the malware detection, made sure that the models used in the research were 

effective without retraining from scratch Huang et al. (2020). This made the security of the 

dynamic iot environment, particularly suitable with the models, incremental learning capability 

and ensured that the security of the iot environment is never compromised by making sure that 

the attack signatures of the various malware’s and the emerging threats are dealt in real time 

malware detection Wu et al. (2021). While not explicitly for the iot environment, the research 

proposed by the Dutt et al. (2020) proved to be an immune inspired IDS which could mimic the 

biological immune systems adaptive response into the computational environment of the high 

load iot Network. In their research paper, they established that the combination of the negative 

selection and the clonal selection algorithms can recognize the attack signatures of the malicious 

iot services with better accuracy than the traditional machine learning models presented. 

Lansky et al. (2021) Conducted a systematic review of the various deep learning based IDS , and 

also made sure to evaluate the various architectures and data sets presented in this domain to 

solve the problem with the advanced techniques. In his hybrid approach, which combined 

multiple deep learning techniques for enhanced detection and accuracies, he highlighted the 

increasing trend for the detection of the malicious scripts and attack signatures in the overall 

network of the iot. He emphasized that the various architectures such as CNN’s LSTMs and 

generative adversarial networks, although offered a promising approach to balance out both the 

accuracy and processing speed, lacked in a adaptability paradigm. His review on the underscores 

of the necessity required for the hybrid models in the IoT to work was met with resounding 

success from the academic peers who acknowledged his understanding of the high variability in 

the data traffic and the unique challenges posed by them Nie et al. (2021). 
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Liu et al. (2021) reviewed rule-learning based IDS, focusing on their videos and few but mostly 

on the applicability side in the smart grid environments. While their focus was on smart grids, 

many of the challenges discussed are relevant to IoT, such as scalability, adaptability, and the 

need for real-time processing but not only stopping over there in their research, they also focused 

on the hybrid approach proposed by the combination of various machine learning and deep 

learning algorithms. The study examined techniques like association rule mining and sequential 

pattern mining, which could be adapted to IoT for detecting complex, multi-step attack patterns. 

The findings, although complex on the data streams and the IoT Network high payload 

environment, suggest that incorporating rule-learning approaches with deep learning 

architectures may provide a more comprehensive solution for IDS in IoT with the combination 

of the various machine learning algorithms such as random Forest, SVG, XG boost etc. 

Building upon the need for adaptable and robust detection methods, hybrid models combining 

deep learning with traditional approaches offer promising avenues for IoT security and this is 

further enhanced by the need of the iot security against the malicious attack signatures present in 

the network. By leveraging the feature extraction strengths of CNNs and sequence learning of 

LSTMs, these models can capture both spatial and temporal aspects of network behavior, which 

are essential for detecting adversarial activities in IoT Ullah and Mahmoud (2021). Additionally, 

behavior-based approaches using autoencoders or Random Forest classifiers provide a layer of 

protection against the ever- evolving nature of the malicious user scripts as well as the attack 

signatures by offering the adaptability which could focus on deviation from normal behavior 

rather than static signatures, essential in environments like IoT where attack patterns evolve 

rapidly. 

Network security challenges for IoT benefit from the exceptional characteristics of GANs 

combined with CNNs. The network architecture allows CNNs to bring effectiveness to intricate 

spatial relation examination alongside high-dimensional feature extraction from network traffic 

for IoT interaction analysis. According to Liu and Zhang CNN systems work effectively with 

multidimensional data storage arrays while their built-in feature extraction capabilities are crucial 

for IoT security detection Liu and Zhang (2020). According to Su et al. (2018) CNNs demonstrate 

scalability enabling them to extract basic features from data which makes them optimal for 

constrained IoT devices. Precise data pattern recognition functions as an essential requirement 

for IoT security threat detection in networks consisting of diverse and complex data structures 

Xiao et al. (2019). 

GANs offer multiple solutions to address class imbalance which commonly occurs in intrusion 

detection datasets. By generating low-frequency attack patterns GANs help reduce datasets' 

imbalance while also enhancing detection capabilities. GANs apply to decentralized intrusion 

detection for IoT systems through anomaly detection according to Ferdowsi and Saad (2019). 

According to Cheng (2019) GANs successfully create network traffic data packets that help build 

better IDS systems. The synthetic data generated proves particularly useful when attack 

frequency is low because it enhances model learning through diverse training data Almarshdi et 

al. (2023).  

Combining CNNs and GANs results in a synergistic model with the capabilities of both CNNs 

and GANs that was not present in either of the two models individually. CNNs are particularly 

used in classification and identifying patterns while on the other hand GANs are used in creating 

new samples in a dataset. This interlinkage is especially advantageous when dealing with IoT 

unique issues, like heterogeneity of data, fluctuating traffic rates, and a low occurrence rate of 

particular cyber threats. For example, the integration of CNNs with GANs can provide a solution 
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to enhancing the flexibility and extensibility of intrusion detection systems because traditional 

approaches are challenging to scale to meet current threats Odeh (2023). In turn, the increase in 

the general accuracy of detection allows the hybrid model to be considered as a promising option 

to protect IoT networks from various cyber threats Sayed et al. (2023). 

3 Methodology 

This section of the research study shows the complete methodology such that it develops and 

evaluates the proposed CNN, GAN and Conv-GAN hybrid model for detecting adversarial 

network behaviors in IoT environments. 

 

Figure 1: Process Flow Diagram illustrating the steps involved in developing and evaluating the 

proposed Conv-GAN hybrid model. 

 

As shown in Figure 1, the methodology begins with data collection from the RT-IoT 2022 

dataset, followed by preprocessing steps to clean and normalize the data. The dataset utilized 

in this study is the RT-IoT 2022, which provides comprehensive IoT network traffic 

simulations (UCI Machine Learning Repository, 2022). Subsequent stages involve exploratory 

data analysis to understand data distribution, feature engineering to select relevant attributes, 

and the development of the CNN and GAN models. The GAN is utilized for data augmentation 

to address class imbalance, after which the CNN is trained and evaluated using the augmented 

dataset. This methodology section consists of data collection and preprocessing, exploratory 

data analysis, feature engineering where each step addresses the unique challenges which were 

posed by the IoT networks and these challenges included a high data variability, class 

imbalance, and the need for real-time intrusion detection. Execution of process flow diagram 

in Figure 1 explain as follows: 
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3.1 Data Collection 

The dataset used for this work is the RT-IoT 2022 dataset obtained from UCI machine learning 

repository because it includes a rich IoT network traffic simulation. This dataset covers both 

normal behavior and different types of attacks, among which are Denial of Service (DoS), 

Distributed Denial of Service (DDoS), and malware attacks. Currently, it contains over 123,000 

records and 85 different features, which provides a solid foundation for analysis.  Some of the 

recorded metrics include network protocol, flow duration, forward and backward packet counts, 

payload size, inter-arrival time, and active/idle time. Additionally, the target variable, attack type 

is categorical and classifies traffic as either non malicious or associated with specific types of 

attacks. The inclusion of real-world data and diverse attack scenarios makes this dataset highly 

suitable for testing the effectiveness of the proposed model in identifying and categorizing threats 

within an IoT network. 

3.2 Data Preprocessing 

3.2.1 Data Cleaning and Transformation 

Preprocessing is one of the most significant steps when performing any machine learning study 

to obtain meaningful results. In order to diagnose missing values in this study, the null function 

was used and missing data were handled depending on the type of the missing data. To handle 

the missing values numeric missing values were imputed with median of the respective feature 

since they are signs of outliers while categorical missing values were imputed with the mode 

which is the frequent value of the feature. The use of duplicate function to find all duplicate 

entries which could lead to bias during the training of the model and these were deleted. Both the 

detection and treatment of outliers were done by using the Interquartile Range (IQR) where any 

number that fell below 1.5 IQR from the first quartile or above 1.5 IQR from the third quartile 

was considered an outlier. Moreover, features were being normalized and data points with z- 

score between over 3 or less than -3 were being considered as outliers. These few cases were 

either truncated at the 5th and 95th percentiles of their respective distributions or simply dropped 

out to obtain more refined inputs for the subsequent modeling steps. 

3.2.2 Data Normalization and Scaling 

In order to maintain model stability and to achieve faster convergence of the gradient descent, 

all feature scaling was performed as follows: 

• Numerical features were normalized to have a zero mean and unit variance using 

StandardScaler. 

• Some features were standardized to a range between 0 and 1 when required. 

• Encoding Categorical Variables: 

– The proto and service categorical features were label-encoded to transform 

them into numerical values. 

– For the target variable Attack type, one-hot encoding was discussed, but label 

encoding was ultimately used. 

– Ensured the compatibility of the features for model input, ensuring no feature 

was in an inappropriate format for the model. 
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3.3 Exploratory Data Analysis (EDA) 

To gain insights into the data distribution, identify important features, and understand patterns of 

different attack types, an exploratory data analysis (EDA) was conducted. The results of the EDA 

revealed a significant class imbalance in the dataset: 

• Dominant Attack Types: DOS_ SYN Hping accounted for approximately 76% of the 

dataset, indicating the major presence of DoS attacks in the collected traffic. 

• Minority Classes: Attacks such as Metasploit Brute Force SSH and NMAP FIN SCAN 

were underrepresented, each contributing less than 0.1% of the dataset. 

 

Figure 2: Illustration depicting various attack types and their count in the dataset 

From the preliminary exploration of the data, there were some important things to note with 

regards to the class imbalance and the characteristics of the data set whereby methods to deal 

with the class bias that may occur in the modelling process were also learned. Majority of the 

observed flows were determined to have low staying times with a mean of 3.81 secs and large 

standard deviation of 130.01 secs, implying variability. Forward and backward packet totals 

showed low means along with high standard deviations, which indicate high packet 

fluctuations. Furthermore, the first forward and backward window sizes were left-skewed, as 

with the DOS_ SYN_ Hping attack. 
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Figure 3: Bar graph showing distribution of the various protocols 

In order to beforehand define these characteristics, several visualizations were made. Histograms 

showed numeric characteristics, like flow duration, total forward packets and total backward 

packets. Count plots shown in Figure 3 depicted the proportion of attack types and protocols, 

with the result showing that attackers prefer to use TCP. Simple linear regression plots were used 

to identify correlation between the features for instance flow duration against forward packets 

totals. Finally, the correlation between features was tested and, to do so, heatmaps were created 

to better understand the structure of the used dataset. 

3.4 Modelling 

The proposed Conv-GAN architecture combines a Convolutional Neural Network for feature 

extraction and classification with a GAN that addresses the class imbalance of IoT traffic data. 

To capture other patterns of the CNN the Conv1D layers of 64 and 128 filters are used, max 

pooling, dropout to avoid overfitting and finally the dense layers with softmax for the multi-class 

classification. It is compiled with the Adam optimizer with the learning rate equal to 0.001. The 

GAN synthesises samples for minority classes including a generator that creates new data from 

noise and a discriminator that distinguishes between real and synthesized data. 

An adversarial training method based on binary cross-entropy for data augmentation and an 

enhanced modeling the present study, the use of CNN layers with 64 and 128 filters has been 

adopted bearing in mind the performance and efficiency considerations within an IoT network 

traffic context. The first layer with 64 filters aimed at detecting relatively simple patterns which 

include shapes and low level features in order to easily understand the architecture of the network 

traffic. This is in agreement with Su et al., who observe that CNNs can be fine tuned to pick basic 

features from data, which makes them appropriate for the IoT devices who are resource limited 

Su et al. (2018). The second layer with 128 filters comes on top of this by identifying even the 

interactions of more complicated features of the network behavior and the possible attacks. This 

layered approach is in agreement with Fu et al. Observing that the number of filters must be 

changed in order to enhance the classification accuracy in the case of network traffic Fu et al. 

(2023). 
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When using fewer filters, for example 32, events with important details were filtered out thus 

reducing the accuracy of the model. Regarding this analysis, Alabsi et al. (2023) also establish 

that lack of adequate filter sizes compromises feature extraction, which impacts IDSs’ 

performance. On the other hand, extending the filter amount to 256 highly affected the model’s 

efficiency and consumed a lot of memory, which is not suitable for IoT devices. These problems 

are not unique to this study but are standard issues in deep learning as highlighted by Wang et al. 

(2023). Hence, after much experimentation, the number of filters was decided to be 64 and 128 

since it offered both, precision to identify threats and the necessary speed of IoT applications. 

Therefore, the proposed decision of using 64 & 128 filter CNN layers has empirical evidence 

and more research is ongoing to improve deep learning models for IoT security. This way the 

configuration ensures that it captures key aspects of the IoT traffic while at the same time keeping 

the model light and capable of handling the dynamic nature of the traffic 

3.5 Model Evaluation 

The models were then evaluated by the test set and performance of the standalone CNN compared 

to the Conv-GAN hybrid was done. Metrics of interest in the assessment included accuracy, 

defined as the percentage of correctly classified samples, and generalizing about model 

performance. It was particularly emphasized that precision and recall of the model were 

evaluated, to give balanced performance in all categories. A confusion matrix was also used to 

visualize misclassifications, to provide insights into where to improve specific areas by showing 

patterns of error across different classes. 

3.6 Hyper-Parameter Selection 

The hyper-parameters for both the CNN and GAN models were selected using a grid search 

approach to systematically explore combinations of parameters and identify the set that yielded 

the best performance on the validation set. Parameters such as the number of filters, kernel sizes, 

learning rates, and dropout rates were varied within predefined ranges based on insights from 

existing literature (e.g., Su et al., 2018; Fu et al., 2023). This systematic tuning ensured an 

optimized balance between model accuracy and computational efficiency. 

4 Design Specification 

This proposed model can detect adversarial network behaviors and learning the pattern of benign 

and malicious in the IoT environments, thus, the design of the hybrid model is the major objective 

of this research. The model architecture used, data processing pipelines, and the integration of all 

the relevant components are thoroughly specified in this section as this design is designed to 

address the challenges the IoT intrusion detection system presents such as very high 

dimensionality of data, class imbalance, and need for real time processing. 

4.1 Architectural Overview 

The Conv-GAN model consists of two primary components i.e. the Convolutional Neural 

Network (CNN) for feature extraction, and the Generative Adversarial Network (GAN) for 

synthetic data generation to reduce the high class imbalance of rare malicious attacks. Following 

are the various architectural steps to implement the proposed hybrid Conv- GAN. 

 



13  

4.1.1 Convolutional Neural Network Design 

The first one of the two components that make up the hybrid Conv-GAN architecture is the CNN, 

which is a network designed to process input tensors of a particular shape and configuration. The 

input tensors are of the form (batch size, sequence length, num features), where sequence length 

is the number of features after preprocessing and feature selection, while num features is 1. 

Architectural design of each layer in CNN model shown in Table 1. For compatibility with the 

CNN’s expected input dimensions, features are normalized first to scale them to the same range 

before reshaping the features into a tensor structure acceptable by the CNN. This preprocessing 

is crucial to maintaining the CNN’s consistency and achieving optimal performance. 

Table 1: CNN Layers Design 

Layer Type Details Purpose 

Convolutiona

l Layer 

First Conv1D: Filters: 64, Kernel Size: 

3, Activation: ReLU, Batch 

Normalization applied. 

Captures local patterns and 

extracts low-level features. 

Pooling MaxPooling1D: Pool Size: 2 
Reduces spatial dimensions and 

focuses on dominant features. 

 

Regularization 

 

Dropout: Rate: 0.4 

Mitigates overfitting by randomly 

disabling neurons. 

Convolutiona

l Layer 

Second Conv1D: Filters: 128, Kernel 

Size: 3, Activation: ReLU, Batch 

Normalization applied. 

Learn higher-level abstractions 

and complex patterns. 

Pooling MaxPooling1D Further reduces dimensionality. 

Regularization Dropout: Rate: 0.5 
Mitigates overfitting by randomly 

disabling neurons. 

Transition Layer Flatten 
Transforms multidimensional 

output to one-dimensional vector 

for dense layers. 

Dense Layer Units: 128, Activation: ReLU 
Integrates features learned from 

previous layers. 

Regularization Dropout: Rate: 0.6 
Further mitigates overfitting by 

randomly disabling neurons. 

Output Layer Units: 12 (Number of classes), 

Activation: Softmax 

Provides probability distributions 

over classes for multi-class 

classification. 
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4.1.2 Generative Adversarial Network (GAN) Design 

The second component of the proposed hybrid Conv-GAN is the GAN component which is 

designed to generate synthetic data samples for low representative classes to balance the dataset. 

Architectural design of each layers in CNN model shown in Table 2. 

 

Table 2: GAN Layers Design 

Network Input Architecture Output Layer Purpose 

 

 

Generator 

Noise Vector: Latent 

dimension (100) 

Class Labels: One-

hot encoded. 

 

Dense: 128, 256 

units (ReLU). 

Units: Equal to 

features 

Activation: Tanh. 

 

Generates synthetic 

feature vectors. 

 

 

Discriminator 

Data Samples: 

Real/Synthetic vectors 

Class Labels: One-hot 

encoded. 

 

 

Dense: 256, 128 

units (ReLU). 

 

Units: 1 

Activation: Sigmoid. 

 

 

Classifies inputs as 

real or fake. 

 

The use of CNN and GAN combined requires applying the GAN to generate additional samples 

of training data sets for CNN especially when there is a condition of class imbalance. In this 

process, the GAN is used to create new synthetic samples for each of the minority class to bring 

their count to the level of sample size in the majority class. These synthetic samples are combined 

with the training dataset to form the new augmented training data set. The training sequence starts 

with the training of the GAN to only provide high quality synthetic data, meaning that the 

generated samples should be realistic and should cover different input space regions. Afterwards, 

the CNN is trained once more from the GAN enriched dataset that has a better generalization 

performance for all the classes. 

4.2 Data Flow and Processing Pipeline 

The data processing pipeline means that data is turned and prepared correctly for the model 

components by following processes. First, the data is inputted into the system, this forms the 

basis on which other processes will be performed on the data. Subsequently, the records are 

addressed to ensure that there is no missing data and all the data is clean to avoid any skew in the 

results. Outlier treatment is then done by applying techniques such as IQR and Z-score to 

eliminate bias that comes with outliers. Feature scaling is done using the standard scaler because 

the range of values in each feature can vary widely and they need to be standardized for 

compatibility. Finally the feature encoding is done through a method called label encoding to 

ensure that the model is in a position to understand the data provided in the categorical form 

appropriately. The data splitting strategy is shown in Table 3: 
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Table 3: Data Splitting and preprocessing 

Step Details Purpose 

Initial Split Training Set: 70%, Test Set: 30% 
Separates data for model training 

and testing. 

Resampling Apply SMOTE on the training set. 
Handles class imbalance before 

GAN use. 

Final Split 
Training: 80% of resampled data, Validation: 

20% of resampled data. 

Prepares training and validation 

subsets. 

GAN 

Augmentation 

Generate synthetic samples for minority 

classes, combined with resampled data. 

Balances training set with 

synthetic data. 

To optimize the model, a sequence of model training and evaluation is followed as a procedure 

in this interface implementation. First when training GANs the discriminator and generator are 

trained in turns; there should be a close check on the generator loss to be sure that it has reached 

the convergence point. After this, the Convolutional Neural Network (CNN) is trained for the 

augmented dataset and includes early stopping para- meters in terms of validation loss to avoid 

overfitting. After the training session, the model evaluation is performed on the CNN with an 

aim of testing the trained network on the test set. Measurements for assessment are derived, and 

contingency tables are produced to give more clarity about the model’s prediction and prediction 

errors. SMOTE used to handle class imbalance, ensuring that training is well-balanced for better 

generalization. 

5 Implementation 

The implementation of the hybrid model consisted of setting up the computational environment, 

data preprocessing, model development, training, and evaluation such that it outlines the practical 

steps taken in highlighting the technical difficulties and various integration challenges. 

5.1 Environmental Setup 

The development and execution of the models were conducted using Python 3.8 for scientific 

computing and machine learning such that the computational environment was established on a 

workstation with following hardware and software which mention in Table 4: 

Table 4: Environmental setup and Libraries required to execute code 

Component Details 

Processor Intel Core i7-10700K CPU @ 3.80GHz 

Memory 32 GB DDR4 RAM 

GPU NVIDIA GeForce RTX 3080 with 10 GB GDDR6X VRAM 

Operating System Ubuntu 20.04 LTS 
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GPU Utilization 
Accelerated training of computationally intensive models (e.g., CNN and 

GAN). 

Key Libraries/Frameworks  

- TensorFlow 2.5 For building and training deep learning models. 

- Keras API High-level neural network interface. 

- Scikit-learn Data preprocessing, feature scaling, encoding, and evaluation metrics. 

- Pandas and NumPy Data manipulation and numerical computations. 

- Matplotlib and Seaborn Data visualization during exploratory data analysis. 

- Imbalanced-learn Handling class imbalance (e.g., SMOTE). 

- Jupyter Notebook Enabled interactive coding and iterative experimentation. 

 

5.2 Data Processing 

The RT-IoT 2022 dataset was loaded using Pandas, and an initial exploration, along with 

Exploratory Data Analysis (EDA), was conducted to better understand and visualize the data 

structure and its content. During the data preprocessing phase, we determined there were no 

missing values, nor duplicate rows in the dataset. For that, categorical features like 'proto' and 

'service' were converted into numerical representations. The dataset was finally divided into 

training, validation and test sets with a 70:15:15 split to allow for a good model development and 

evaluation. 

5.3 Model Development 

5.3.1 Data Balancing with SMOTE 

After the first train-test split, Synthetic Minority Over-sampling Technique was applied to the 

training set to handle class imbalance. SMOTE, the synthetic generation to complete under 

represented classes, by interpolation of the known minority class instances. This approach helps 

to achieve spread of attacks in the training set, which is an important factor for improving the 

ability of the model to discriminate between abnormal attacks. Through minority class 

supplementation, SMOTE ensures that the model has enough exposure to these rare but 

important attack patterns, which leads to more robust training and better generalization. Figure 

4 shows the performance of SMOTE in balancing the data set by exhibiting the class distribution 

of the training data before and after the application of the SMOTE. 
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Figure 4: Dataset Balance after SMOTE 

5.3.2 Convolutional Neural Network 

The CNN architecture was implemented using TensorFlow and Keras and the model 

consists of the following layers shown in Table 5: 

Table 5: CNN Implementation Code Design 

 

Layer Type Details Purpose 

Input Layer Reshaped input data with a singleton dimension. 
Ensures compatibility with 

Conv1D layers. 

 

Convolutiona

l Layers 

- Conv1D: 64 filters, Batch 

Normalization, MaxPooling, Dropout. 

- Conv1D: 128 filters, Batch 

Normalization, MaxPooling, Dropout. 

Extracts features, prevents 

overfitting, and reduces spatial 

dimensions. 

 

Flatten Layer 

 

Converts 3D convolutional output to a 1D vector. 

Prepares data for fully connected 

layers. 

Dense Layer 
Fully connected layer with 128 neurons 

(ReLU activation), followed by a Dropout 

layer. 

Learn high-level features. 

 

Output Layer 

 

Dense layer with 12 units (softmax activation). 

Outputs probability distribution 

for classes. 
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The model was compiled with the following configuration: 

• Optimizer: Adam optimizer with a learning rate of 0.001. 

• Loss Function: SparseCategoricalCrossentropy, as it is intended for integer-encoded 

labels. 

• Performance Metric: Accuracy was utilized to evaluate and monitor the performance of 

the model during training. 

The training was carried out over five epochs with a batch size of 32. Early stopping was 

introduced to minimize overfitting and enhance the model’s generalizability. The model 

achieved high accuracy rates on the validation set, demonstrating that it was effectively learning 

from the balanced dataset. 

5.3.3 Generative Adversarial Network (GAN) 

The GAN was developed to generate synthetic samples for the minority classes, addressing the 

class imbalance for rare malicious attacks. The GAN training process included the following 

steps: 

• Adversarial Training Loop: 

– Discriminator Training: Alternated between training on real samples with true 

labels and synthetic samples with false labels. 

– Generator Training: Trained to produce synthetic samples that could deceive the 

discriminator. 

• Loss Function: Binary cross-entropy was used for both the generator and discriminator. 

• Optimizer: Both networks used the Adam optimizer with a learning rate of 0.0002 and a 

beta 1 of 0.5. 

Due to the complexity of GAN training and resource constraints, the number of training epochs 

was limited. However, despite these limitations, the generator produced synthetic samples that 

resembled the distribution of the minority classes. 

5.3.4 Integration of CNN and GAN (Conv-GAN) 

The GAN synthetic data was then augmented with the original training data in order to create an 

augmented dataset with balanced class distributions. After using the same architecture and 

training parameters, as before, the CNN was retrained on this augmented dataset. Balanced class 

distributions. The CNN was then retrained on this augmented dataset, following the same 

architecture and training parameters as before. But integration was not easy. It was found that 

when tested on the test set, the Conv-GAN model performed worse than the standalone CNN. 

This decrease in performance indicated that the quality of the synthetic data or the training 

process could be an issue that needed to be investigated further. 

6 Evaluation 

The evaluation phase is critical in assessing the effectiveness of the Conv-GAN hybrid model in 

detecting adversarial network behaviors within IoT environments. This section presents a 
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comprehensive analysis of the model’s performance, comparing it against the standalone 

Convolutional Neural Network (CNN) model. Various metrics are employed to provide a 

detailed understanding of the strengths and limitations of the proposed approach. The standalone 

CNN model demonstrated robust performance on the test set. The key results are summarized as 

follows: 

• Accuracy: The model achieved an overall accuracy of 99.30%, indicating that it correctly 

classified the vast majority of instances. 

• Precision and Recall: High precision and recall values were observed across most 

classes, particularly for the majority class DOS SYN Hping. 

Following is the Table 6 shown results for the Classification Report for CNN Model: 

Table 6: CNN Result 

Attack Type Precision Recall F1-Score Support 

ARP_poisioning 0.986 0.9389 0.9619 2,325 

DDOS_Slowloris 0.75 0.9938 0.8548 160 

DOS_SYN_Hping 1 1 1 28,398 

MQTT_Publish 1 0.9976 0.9988 1,244 

Metasploit_Brute_Force_SSH 0.0935 0.9091 0.1695 11 

NMAP_FIN_SCAN 0.875 0.875 0.875 8 

NMAP_OS_DETECTION 1 1 1 600 

NMAP_TCP_scan 0.9934 1 0.9967 301 

NMAP_UDP_SCAN 1 0.9305 0.964 777 

NMAP_XMAS_TREE_SCA 

N 
1 0.9967 0.9983 603 

Thing_Speak 0.9774 0.9782 0.9778 2,433 

Wipro_bulb 0.7979 0.9868 0.8824 76 

 

The CNN model as shown in Table 6 exceptional performance, particularly for the majority class 

and several minority classes. Notable observations include: 

• High Precision and Recall: For classes like DOS SYN Hping, NMAP OS DETECTION, 

and MQTT Publish, the model achieved perfect or near perfect precision and recall. 

• Minority Classes: Despite the class imbalance, the model performed reasonably well on 

some minority classes. For instance, NMAP FIN SCAN had an F1-score of 0.8750. 
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• Challenges with Rare Classes: The Metasploit Brute Force SSH class had a low precision 

but high recall, indicating that the model correctly identified most instances but also had 

a high false positive rate for this class. 

The following is the line chart graph of the performance of the CNN training and validation 

accuracy and loss shown in Figure 5. 

 

Figure 5: CNN model accuracy and model loss as line chart 

Comparison of the results presented in the Table shows that the proposed approach achieves 

remarkably different detection rates while addressing different types of cybersecurity attacks. 

DOS SYN Hping with 28,398 samples has the highest support but no precision, recall, and F1-

Score to detect anything, and ARP Poisoning has 2,325 samples and an F1-Score of only 0.0115. 

For example, Metasploit Brute Force SSH has an R-Recall of 0.3636 but has very low P-Recall 

0.0006 and F1-score of 0.0011, revealing high false positives. The highest F1-Score overall is 

given by DDOS Slowloris: 0.3186, precision: 0.5455 and recall: 0.225 over 160 samples. 

Moderate performance is observed for Thing Speak F1-Score: 0. The two identified attacks are 

NMAP TCP Scan (Precision: 0.7586, recall: 0.4529) and NMAP UDP Scan (F1-Score: 0.2047, 

recall: 0.3115). However, some of them including MQTT Publish, NMAP TCP Scan and NMAP 

Xmas Tree Scan are shown to have zero performance in all three parameters, thus, meaning that 

they are entirely ineffective in detection. When analyzing the results, it is possible to identify 

which of the studied attacks are easier for detection: DDOS Slowloris and Thing Speak were 

detected most often, DOS SYN Hping, as well as numerous attacks associated with the use of 

NMAP, reveal the most significant vulnerabilities which show in Table 7 shows results for the 

Classification Report for Conv-GAN Model: 

Table 7: Conv-GAN Result 

Attack Type Precision Recall F1-Score Support 

ARP_poisioning 0.0067 0.0404 0.0115 2,325 

DDOS_Slowloris 0.5455 0.225 0.3186 160 

DOS_SYN_Hping 0 0 0 28,398 

MQTT_Publish 0 0 0 1,244 
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Metasploit_Brute_F 

orce_SSH 0.0006 0.3636 0.0011 11 

NMAP_FIN_SCAN 0 0 0 8 

NMAP_OS_DETEC 

TION 
0 0 0 600 

NMAP_TCP_scan 0 0 0 301 

NMAP_UDP_SCAN 0.1525 0.3115 0.2047 777 

NMAP_XMAS_T

R EE_SCAN 0 0 0 603 

Thing_Speak 0.0784 0.4529 0.1337 2,433 

Wipro_bulb 0.3333 0.0132 0.0253 76 

 

 
Figure 6: CNN confusion matrix and performance of the dataset 

 

The above Figure 6 was for the confusion matrix of the baseline CNN and now the following 

Figure 7 depicts the confusion matrix of the Conv-GAN: 
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Figure 7: Proposed hybrid model Conv-GAN’s confusion matrix 

 

The following is the line chart graph of the performance of the Conv-GAN’s training and 

validation accuracy and loss shown in Figure 8: 

 
Figure 8: Proposed hybrid model Conv-GAN’s confusion matrix  

The Conv-GAN model’s poor performance can be attributed to several factors: 

• Synthetic Data Quality: The GAN may not have generated high-fidelity synthetic samples 

that accurately represent the minority classes. Poor quality synthetic data can introduce 

noise and misleading patterns. 

• Model Overfitting or Underfitting: The CNN retrained on the augmented dataset may 

have overfit to the synthetic data patterns or failed to generalize to real data. 
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• Training Instability: GANs are challenging to train, often requiring careful tuning of 

hyperparameters and a significant number of epochs to converge. Insufficient training 

could lead to inadequate generator and discriminator performance. 

 

7 Conclusion and Future Work 

This research for the proliferation of the IoT devices considers the necessity for robust and 

efficient intrusion detection systems to identify and counteract adversarial network behaviors. 

The goal of this work was to develop a hybrid Conv-GAN model that combines the 

Convolutional Neural Networks with Generative Adversarial Networks to enhance intrusion 

detection in IoT. Finally, the study finds that the standalone CNN model performed well and 

strongly on most attack types, indicating that the CNN model extracted features that were 

relevant and could detect intrusion in the IoT network traffic. Additionally, GAN generated 

synthetic data integration into the training process was challenging, and it also degraded model 

performance. The results also showed that the Conv-GAN model was not able to use and generate 

the synthetic data as well as the CNN model. 

Further research in this area must investigate how Conditional GANs and Wasserstein GANs 

could improve synthetic data generation quality and model execution. Conditional GANs 

produce structured data synthesis through the integration of class labeling inputs that enables 

improved minority class accuracy. Success rates from training Wasserstein GANs show 

improved stability alongside distribution modeling capabilities that could solve the synthetic data 

quality problems found in the present Conv-GAN model. The implementation of superior GAN 

architectures produces synthetic samples with superior fidelity leading to enhanced intrusion 

detection system reliability. The research outcomes show CNNs demonstrate potential as 

intrusion detection systems in IoT environments but Generative Adversarial Networks need 

careful application. The performance quality of GAN-generated synthetic data directly affects 

the entire system because weak GAN model training creates noisy output which degrades system 

performance. Future research must address these problems through advanced GAN architectures 

including conditional GANs and Wasserstein GANs as well as training stability techniques for 

synthetics quality enhancement. The development of solid assessment techniques for synthetic 

data quality represents a critical need because these methodologies must demonstrate that 

generation methods effectively maintain the underlying data characteristics without creating 

exceptional biases. On the last, I would have to conduct extensive hyper parameter tuning of both 

the GAN and CNN parts to get best results. Applications of such synthetic data in future work 

might use advanced architectures such as Wasserstein GANs or conditional GANs to produce 

higher quality synthetic data and robust methods to evaluate the quality and fidelity of the 

generated data. Moreover, hybrid models are optimized for real time intrusion detection in IoT 

networks that are large, dynamic and require large scale solutions that are scalable and efficient 

in terms of resources. Future research can then address aspects of these properties to build more 

reliable and efficient intrusion detection systems appropriate in the context of the IoT 

environment. 
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