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1 Introduction 

The presented configuration manual showcases the demonstration of the hardware and 

software used with detailed implementation and application for the Liver Tumor 

Segmentation with UNET with Transfer Learning techniques – RESNET. 
 

2 System Configuration 

2.1 Hardware Configuration 

The hardware configuration manual is illustrated by the Table 1 Hardware Config with a 12-core system 

and 12 GB RAM.  

Table 1 Hardware Config 

Component Specification 

Processor Intel Core i7-12700K (12 Cores, 20 
Threads, 3.6 GHz Base, 5.0 GHz Turbo) 

Graphics Card NVIDIA RTX 3080 Ti (12 GB GDDR6X) 
RAM 32 GB DDR5 (3200 MHz) 
Storage 1 TB NVMe SSD, 2 TB HDD 
Operating System Windows 11 Pro  
Motherboard ASUS ROG Strix Z690-E Gaming  

Power Supply Unit 850W Gold Certified PSU 
Cooling System Liquid Cooler  
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2.2 Software Configuration 

The languages employed in this research have been well chosen to provide an enhanced development 

and assessment of the model. Based on the above discussion, this analysis has been performed using 

Jupyter Notebook software. The main programming language has been Python, as it has a lot of support 

from available libraries for machine learning and deep learning. Several core libraries including 

TensorFlow, Keras, and PyTorch have been used for performing the actual implementation of the U-

Net, ResNet and V-Net models. Based on these frameworks, it has been easy to build, train, and assess 

their models due to the many features put in place. In order to manipulate data manipulation, particularly 

data cleaning and preparation, tools like NumPy, Pandas, and OpenCV have been used to process 

medical images. Based on this, libraries such as Matplotlib and Seaborn have been applied for 

visualizing the results of the model performance and the segmentation. These libraries and tools 

facilitated the processing, optimization and analysis of liver tumor segmentation tasks undertaken as 

part of this project. 

The software version is further illustrated in the Table 2 Software Configuration 

Table 2 Software Configuration 

LIBRARY VERSION 

PYTHON 3.9.7 or higher 

NUMPY 1.23.5 
PANDAS 1.4.4 
MATPLOTLIB 3.5.3 

PLOTLY 5.14.0 
OPENCV (CV2) 4.8.0 

TENSORFLOW 2.14.0 

SCIKIT-LEARN 1.3.1 

PILLOW (PIL) 9.3.0 

IMAGEIO 2.31.1 
IMGAUG 0.4.0 
MATPLOTLIB-PYPLOT 3.5.3 

NIBABEL 5.1.0 
TQDM 4.66.0 
PYDICOM 2.4.1 

 

 

 

 

3 Project Development 
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The methods and approach used in this study have been aligned with applying and assessing 

best practice deep learning algorithms for liver tumour segmentation. Three of the most 

successful architectures, namely U-Net, ResNet and V-Net have been selected for this work 

due to their proven performance on the task of medical image segmentation. Based on this edge 

and efficiency in terms of spatial features, a pre-trained encoder-decoder-based U-Net has been 

applied whereas deep residual connections of ResNet enhanced the computational power for 

handling high-dimensioned and complex data (Bezabih et al. 2024). This V-Net has been 

included because it uses 3D convolutional architecture which is effective for volumetric 

medical images. These models have been built, trained and also validated employing the 

Kaggle dataset to gauge their efficiency relative to conventional segmentation metrics like the 

DSC and the IoU. 

 
The code is written in Jupyter and Python primarily as discussed in the previous section. The project 

development section defines the steps of processing.  

 

3.1 Loading Data 

Loading data defines the process and path of the data processing pipeline. It is divided into two sections 

notably 3.1.1 or Loading Single Image and 3.1.2 or Loaded Dataset 

3.1.1 Loading Single Image 

 

The Loading of a single image is a test precheck for loading all the images, thus its very useful to detect 

any path or OS related issues.  

In this step we load the libraries and open the dicom image with the help of pydicom package. 

Figure 1 Loading Dicom File presented shows a piece of Python code and the result that is given. The 

code runs some essential libraries required for image processing the code also displays how to read a 

DICOM image file. The result provides the type of file, the date of creation and other specifications of 

the specific file, for instance DICOM. This means that the code is likely to be used in a medical context 

involving images, maybe in processing or analysing the images. 
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Figure 1 Loading Dicom File 

 

The dicom image is a multitude Json based key value pair data field as the field consists of multiple 

notation units it becomes difficult to capture the actual imagery in question. Thus, its important to glance 

through the dicom key vector as shown by the Figure 1 Loading Dicom File. After analyzing we find 

out that the pixel array key filed hold the data input, thus we extract the image information from the 

pixel_array unit as shown in the Figure 2 Loading image pixel array. 

 

 

Figure 2 Loading image pixel array 

Figure 3 Loaded Image showcases the loaded data point in after the data being captured from the Figure 

1 Loading Dicom File and Figure 2 Loading image pixel array 
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Figure 3 Loaded Image 

3.1.2 Loaded Dataset 

We orchestrate the whole path simulation from the train directory within the dicom images and store 

them as a dataset with Image and Mask attribute. This helps in maintaining the files read and unread 

during actual loading of data. 
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Figure 4 Loaded Dataset Image and Mask 

Figure 4 Loaded Dataset Image and Mask shown is of a bit of a Python programming code followed by 

its result. The keyword arguments specify a directory path and then create a new Data Frame then for 

loop through the images in the directory appends the path to the image itself as well as the mask. The 

output gives the first few rows of the Data Frame to observe the image and the path of mask for each 

of the entries. This can be used for organizing and storing medical images for analysis or for any other 

purposes as the data is prerequisite for such a job. 

 

Finally we load all the images and extract the tumor and liver masks form each of it, this is a time 

consuming and computationally heavy step thus after the step is performed we visualize the images to 

confirm the quality of the samples loaded in there raw format. The Figure 5 Loading Liver and Tumor 

demonstrates the input CT scan, tumor mask and predicted overlap for the same sample. 

 

Figure 5 Loading Liver and Tumor 

3.2 Normalisation of Data 

The normalisation framework enables the picture dataset, to be reduced between pixels of 0 and 1. This 

further highlights the need to minimise overfitting as well as the decrease of data channels to reduce 

processing. The liver CT-Scan however is an artificially made picture but owing to the existence of 

human mistake, mechanical noise and instrumental difference among multiple universities and hospitals 

involved the dataset is catered with the presence of noise uniformly throughout numerous samples. To 

prevent this the study proposes the use of bilateral filtering to avoid noise inside the pictures.  

Figure 6 Data loading and Transformation allows the loading of dicom image, normalises it and 

reshapes as per the effective shape and size.  
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Figure 6 Data loading and Transformation 

3.3 Split train and test 

The code illustrated in Figure 7 Train and Test Split is a methodical way to separating a dataset into 

training, validation, and testing subsets. Initially, the dataset `X` and its related labels `Y_dash` are 

separated into training and testing sets, with 20% of the data kept for testing, ensuring that the model is 

tested on a different set of unseen data. To further optimise the training process, the training set is 

further separated into training and validation subsets, assigning 15% of the training data for validation. 

This guarantees that the model may be tuned on the training set while its performance is evaluated on 

a distinct subset before final testing. The usage of a fixed `random_state=42` assures repeatability of 

the splits. This strategy enables balanced and successful model building by preserving adequate data 

distribution across all subsets. 
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Figure 7 Train and Test Split 

 

 

4 Model Application 

The Figure 8 Model training and validation cycle for 100 epochs shows Python code to call the different 

libraries required for image segmentation. It establishes hyperparameters of an image, including 

dimensions, size of a batch and the rate of learning. The ResNet34 is used as a backbone for the U-Net 

model, and the loss function considered is Dice loss and Focal loss. The model with Adam optimizer 

and the calculated loss function and metrics for training and testing. 

 

Figure 8 Model training and validation cycle for 100 epochs 
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Figure 9 Training and validation plots for the UNET TLT RESNET showcases the python matplotlib 

plot for the training and validation plot across 100 epochs. 

 

 

Figure 9 Training and validation plots for the UNET TLT RESNET 

Figure 10 Performance Metrics for UNET TLT RESNET showcases the results for the training, testing 

and validation plots in a tabular plot across loss, accuracy, binary accuracy, mAP, false negatives, false 

positives, true negatives, true positives, auc, Specificity and Sensitivity. 

 

 

Figure 10 Performance Metrics for UNET TLT RESNET 

The respective Figure 9 Liver Segmentation and Predicted Overlap with UNET TLT RESNET shows 

part Python code and the result of this code fragment. The code reads necessary libraries, changes the 

data set format, divides the data set into a training set, validation set, and a test set and trains a model. 

The output provided utilities the dimension of the split datasets and also the training features such as 

loss of IoU score and F1-score for training and validation dataset. The purpose of such code is perhaps 
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in the case of segmentation where one aims at categorizing all the pixels in an image given some specific 

label. 

 

Figure 11 Liver Segmentation and Predicted Overlap with UNET TLT RESNET 

The following Figure 10 Liver Segmentation, Predicted Overlap and Bounding Box  with UNET TLT 

RESNET represented that fragment of the Python code on the left and the result of its execution on the 

right. The loop goes through the input dataset, it selects several samples at random then plots the 

illustration along with the mask and the predicted overlap. The output displays a few pictures of the 

original images, and their ground truth masks and the model predictions superimposed on the original 

images. They also facilitate an understanding of how well the model is doing and, conversely, where it 

might be having some issues. 

 

Figure 12 Liver Segmentation, Predicted Overlap and Bounding Box  with UNET TLT 

RESNET 

The Figure 10 Liver Segmentation, Predicted Overlap and Bounding Box with UNET TLT RESNET 

shows Python code and its output: It draws a figure, loops through a set, randomly samples items, and 
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plots them with their masks, predicted overlap and bounding boxes. The output presents a number of 

samples of the original images, the ground truth masks, the model predictions on top of the original 

images with the bounding boxes drawn around the predicted areas and their corresponding ground truth 

masks. This visualization we can evaluate the model according to not only the segmentation part but 

also the localization of the box part. 

 

5 Final Results 

Figure 13 Results of Segmentation with UNET TLT RESNET showcases the final results for the model 

allows the segmentation of tumor and liver prediction and overlap. UNET framework, which provides 

increased visibility of segmented sections inside the picture. By using region suggestions, the model 

finds and focuses on particular regions of interest, allowing exact segmentation. The combination of 

UNET for segmentation, TLT for feature refinement, and RESNET as a backbone boosts the network's 

capacity to capture detailed features and boundaries inside the segmented units. This technique 

guarantees improved precision in identifying areas of interest while preserving resilience across varied 

datasets. 
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Figure 13 Results of Segmentation with UNET TLT RESNET 

Figure 14 Region Proposal based UNET TLT RESNET allows the visualisation of for the region 

proposition of the segmented unit. UNET framework, which facilitates enhanced visualization of 

segmented regions within the image. By leveraging region proposals, the model identifies and focuses 

on specific areas of interest, enabling precise segmentation. The combination of UNET for 

segmentation, TLT for feature refinement, and RESNET as a backbone enhances the network's ability 

to capture intricate details and boundaries within the segmented units. This approach ensures higher 

accuracy in delineating regions of interest while maintaining robustness across diverse datasets. 
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Figure 14 Region Proposal based UNET TLT RESNET 
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