

Configuration Manual

Liver Tumor Segmentation

Using Deep Learning

ALBIN BABY

Student ID: x23173742

School of Computing

National College of Ireland

Supervisor: Mr. Hicham Rifai

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 ALBIN BABY

Student ID:

 x23173742

Programme:

 M.sc Data Analytics

Year:

2024

Module:

Research In computing

Lecturer:

Mr. Hicham Rifa

Submission Due
Date:

12-12-2024

Project Title:

Liver Tumour Segmentation Using Deep Learning

Word Count: 2422 Page Count: 15

I hereby certify that the information contained in this (my submission) is information pertaining to research
I conducted for this project. All information other than my own contribution will be fully referenced and

listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work is
illegal (plagiarism) and may result in disciplinary action.

Signature:

 ALBIN BABY

Date:

 12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your

own reference and in case a project is lost or mislaid. It is not sufficient to keep a

copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment

box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

ALBIN BABY

Student ID: x23173742

1 Introduction

The presented configuration manual showcases the demonstration of the hardware and

software used with detailed implementation and application for the Liver Tumor

Segmentation with UNET with Transfer Learning techniques – RESNET.

2 System Configuration

2.1 Hardware Configuration

The hardware configuration manual is illustrated by the Table 1 Hardware Config with a 12-core system

and 12 GB RAM.

Table 1 Hardware Config

Component Specification

Processor Intel Core i7-12700K (12 Cores, 20
Threads, 3.6 GHz Base, 5.0 GHz Turbo)

Graphics Card NVIDIA RTX 3080 Ti (12 GB GDDR6X)
RAM 32 GB DDR5 (3200 MHz)
Storage 1 TB NVMe SSD, 2 TB HDD
Operating System Windows 11 Pro
Motherboard ASUS ROG Strix Z690-E Gaming

Power Supply Unit 850W Gold Certified PSU
Cooling System Liquid Cooler

2

2.2 Software Configuration

The languages employed in this research have been well chosen to provide an enhanced development

and assessment of the model. Based on the above discussion, this analysis has been performed using

Jupyter Notebook software. The main programming language has been Python, as it has a lot of support

from available libraries for machine learning and deep learning. Several core libraries including

TensorFlow, Keras, and PyTorch have been used for performing the actual implementation of the U-

Net, ResNet and V-Net models. Based on these frameworks, it has been easy to build, train, and assess

their models due to the many features put in place. In order to manipulate data manipulation, particularly

data cleaning and preparation, tools like NumPy, Pandas, and OpenCV have been used to process

medical images. Based on this, libraries such as Matplotlib and Seaborn have been applied for

visualizing the results of the model performance and the segmentation. These libraries and tools

facilitated the processing, optimization and analysis of liver tumor segmentation tasks undertaken as

part of this project.

The software version is further illustrated in the Table 2 Software Configuration

Table 2 Software Configuration

LIBRARY VERSION

PYTHON 3.9.7 or higher

NUMPY 1.23.5
PANDAS 1.4.4
MATPLOTLIB 3.5.3

PLOTLY 5.14.0
OPENCV (CV2) 4.8.0

TENSORFLOW 2.14.0

SCIKIT-LEARN 1.3.1

PILLOW (PIL) 9.3.0

IMAGEIO 2.31.1
IMGAUG 0.4.0
MATPLOTLIB-PYPLOT 3.5.3

NIBABEL 5.1.0
TQDM 4.66.0
PYDICOM 2.4.1

3 Project Development

3

The methods and approach used in this study have been aligned with applying and assessing

best practice deep learning algorithms for liver tumour segmentation. Three of the most

successful architectures, namely U-Net, ResNet and V-Net have been selected for this work

due to their proven performance on the task of medical image segmentation. Based on this edge

and efficiency in terms of spatial features, a pre-trained encoder-decoder-based U-Net has been

applied whereas deep residual connections of ResNet enhanced the computational power for

handling high-dimensioned and complex data (Bezabih et al. 2024). This V-Net has been

included because it uses 3D convolutional architecture which is effective for volumetric

medical images. These models have been built, trained and also validated employing the

Kaggle dataset to gauge their efficiency relative to conventional segmentation metrics like the

DSC and the IoU.

The code is written in Jupyter and Python primarily as discussed in the previous section. The project

development section defines the steps of processing.

3.1 Loading Data

Loading data defines the process and path of the data processing pipeline. It is divided into two sections

notably 3.1.1 or Loading Single Image and 3.1.2 or Loaded Dataset

3.1.1 Loading Single Image

The Loading of a single image is a test precheck for loading all the images, thus its very useful to detect

any path or OS related issues.

In this step we load the libraries and open the dicom image with the help of pydicom package.

Figure 1 Loading Dicom File presented shows a piece of Python code and the result that is given. The

code runs some essential libraries required for image processing the code also displays how to read a

DICOM image file. The result provides the type of file, the date of creation and other specifications of

the specific file, for instance DICOM. This means that the code is likely to be used in a medical context

involving images, maybe in processing or analysing the images.

4

Figure 1 Loading Dicom File

The dicom image is a multitude Json based key value pair data field as the field consists of multiple

notation units it becomes difficult to capture the actual imagery in question. Thus, its important to glance

through the dicom key vector as shown by the Figure 1 Loading Dicom File. After analyzing we find

out that the pixel array key filed hold the data input, thus we extract the image information from the

pixel_array unit as shown in the Figure 2 Loading image pixel array.

Figure 2 Loading image pixel array

Figure 3 Loaded Image showcases the loaded data point in after the data being captured from the Figure

1 Loading Dicom File and Figure 2 Loading image pixel array

5

Figure 3 Loaded Image

3.1.2 Loaded Dataset

We orchestrate the whole path simulation from the train directory within the dicom images and store

them as a dataset with Image and Mask attribute. This helps in maintaining the files read and unread

during actual loading of data.

6

Figure 4 Loaded Dataset Image and Mask

Figure 4 Loaded Dataset Image and Mask shown is of a bit of a Python programming code followed by

its result. The keyword arguments specify a directory path and then create a new Data Frame then for

loop through the images in the directory appends the path to the image itself as well as the mask. The

output gives the first few rows of the Data Frame to observe the image and the path of mask for each

of the entries. This can be used for organizing and storing medical images for analysis or for any other

purposes as the data is prerequisite for such a job.

Finally we load all the images and extract the tumor and liver masks form each of it, this is a time

consuming and computationally heavy step thus after the step is performed we visualize the images to

confirm the quality of the samples loaded in there raw format. The Figure 5 Loading Liver and Tumor

demonstrates the input CT scan, tumor mask and predicted overlap for the same sample.

Figure 5 Loading Liver and Tumor

3.2 Normalisation of Data

The normalisation framework enables the picture dataset, to be reduced between pixels of 0 and 1. This

further highlights the need to minimise overfitting as well as the decrease of data channels to reduce

processing. The liver CT-Scan however is an artificially made picture but owing to the existence of

human mistake, mechanical noise and instrumental difference among multiple universities and hospitals

involved the dataset is catered with the presence of noise uniformly throughout numerous samples. To

prevent this the study proposes the use of bilateral filtering to avoid noise inside the pictures.

Figure 6 Data loading and Transformation allows the loading of dicom image, normalises it and

reshapes as per the effective shape and size.

7

Figure 6 Data loading and Transformation

3.3 Split train and test

The code illustrated in Figure 7 Train and Test Split is a methodical way to separating a dataset into

training, validation, and testing subsets. Initially, the dataset `X` and its related labels `Y_dash` are

separated into training and testing sets, with 20% of the data kept for testing, ensuring that the model is

tested on a different set of unseen data. To further optimise the training process, the training set is

further separated into training and validation subsets, assigning 15% of the training data for validation.

This guarantees that the model may be tuned on the training set while its performance is evaluated on

a distinct subset before final testing. The usage of a fixed `random_state=42` assures repeatability of

the splits. This strategy enables balanced and successful model building by preserving adequate data

distribution across all subsets.

8

Figure 7 Train and Test Split

4 Model Application

The Figure 8 Model training and validation cycle for 100 epochs shows Python code to call the different

libraries required for image segmentation. It establishes hyperparameters of an image, including

dimensions, size of a batch and the rate of learning. The ResNet34 is used as a backbone for the U-Net

model, and the loss function considered is Dice loss and Focal loss. The model with Adam optimizer

and the calculated loss function and metrics for training and testing.

Figure 8 Model training and validation cycle for 100 epochs

9

Figure 9 Training and validation plots for the UNET TLT RESNET showcases the python matplotlib

plot for the training and validation plot across 100 epochs.

Figure 9 Training and validation plots for the UNET TLT RESNET

Figure 10 Performance Metrics for UNET TLT RESNET showcases the results for the training, testing

and validation plots in a tabular plot across loss, accuracy, binary accuracy, mAP, false negatives, false

positives, true negatives, true positives, auc, Specificity and Sensitivity.

Figure 10 Performance Metrics for UNET TLT RESNET

The respective Figure 9 Liver Segmentation and Predicted Overlap with UNET TLT RESNET shows

part Python code and the result of this code fragment. The code reads necessary libraries, changes the

data set format, divides the data set into a training set, validation set, and a test set and trains a model.

The output provided utilities the dimension of the split datasets and also the training features such as

loss of IoU score and F1-score for training and validation dataset. The purpose of such code is perhaps

10

in the case of segmentation where one aims at categorizing all the pixels in an image given some specific

label.

Figure 11 Liver Segmentation and Predicted Overlap with UNET TLT RESNET

The following Figure 10 Liver Segmentation, Predicted Overlap and Bounding Box with UNET TLT

RESNET represented that fragment of the Python code on the left and the result of its execution on the

right. The loop goes through the input dataset, it selects several samples at random then plots the

illustration along with the mask and the predicted overlap. The output displays a few pictures of the

original images, and their ground truth masks and the model predictions superimposed on the original

images. They also facilitate an understanding of how well the model is doing and, conversely, where it

might be having some issues.

Figure 12 Liver Segmentation, Predicted Overlap and Bounding Box with UNET TLT

RESNET

The Figure 10 Liver Segmentation, Predicted Overlap and Bounding Box with UNET TLT RESNET

shows Python code and its output: It draws a figure, loops through a set, randomly samples items, and

11

plots them with their masks, predicted overlap and bounding boxes. The output presents a number of

samples of the original images, the ground truth masks, the model predictions on top of the original

images with the bounding boxes drawn around the predicted areas and their corresponding ground truth

masks. This visualization we can evaluate the model according to not only the segmentation part but

also the localization of the box part.

5 Final Results

Figure 13 Results of Segmentation with UNET TLT RESNET showcases the final results for the model

allows the segmentation of tumor and liver prediction and overlap. UNET framework, which provides

increased visibility of segmented sections inside the picture. By using region suggestions, the model

finds and focuses on particular regions of interest, allowing exact segmentation. The combination of

UNET for segmentation, TLT for feature refinement, and RESNET as a backbone boosts the network's

capacity to capture detailed features and boundaries inside the segmented units. This technique

guarantees improved precision in identifying areas of interest while preserving resilience across varied

datasets.

12

Figure 13 Results of Segmentation with UNET TLT RESNET

Figure 14 Region Proposal based UNET TLT RESNET allows the visualisation of for the region

proposition of the segmented unit. UNET framework, which facilitates enhanced visualization of

segmented regions within the image. By leveraging region proposals, the model identifies and focuses

on specific areas of interest, enabling precise segmentation. The combination of UNET for

segmentation, TLT for feature refinement, and RESNET as a backbone enhances the network's ability

to capture intricate details and boundaries within the segmented units. This approach ensures higher

accuracy in delineating regions of interest while maintaining robustness across diverse datasets.

13

Figure 14 Region Proposal based UNET TLT RESNET

References

[1]. Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Valiollah Pour Amiri, V., Hong, J., Wu,

K., Jayasuriya, M., Mehlman, E., Langevin, M. and Liu, Y., 2022. A Python library for

probabilistic analysis of single-cell omics data. Nature biotechnology, 40(2), pp.163-
166.

[2]. Gunawan, T.S., Abdullah, N.A.J., Kartiwi, M. and Ihsanto, E., 2020, October. Social

network analysis using python data mining. In 2020 8th international conference on

cyber and IT service management (CITSM) (pp. 1-6). IEEE.
[3]. Bezabih, T.D., Glaety, M.G., Wako, D.A. and Worku, S.G., 2024. Geospatial Data

Analysis: A Comprehensive Overview of Python Libraries and Implications. Ethics,

Machine Learning, and Python in Geospatial Analysis, pp.72-93.

	1 Introduction
	2 System Configuration
	2.1 Hardware Configuration
	2.2 Software Configuration

	3 Project Development
	3.1 Loading Data
	3.1.1 Loading Single Image
	3.1.2 Loaded Dataset

	3.2 Normalisation of Data
	3.3 Split train and test

	4 Model Application
	5 Final Results
	References

