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Liver Tumour Segmentation Using Deep Learning 

Abstract 

This study focuses on improving the liver tumour segmentation by using state-of-art deep learning 

architectures including U-Net and V-Net integrated with residual networks such as ResNet and 

Inception. The study addresses the challenge of in methods used in medical image analysis particularly 

the detection of tumours is computationally expensive and is inaccurate. Transfer learning and a hybrid 

of loss functions (focal loss, Dice loss) increase computational efficiency to improve segmentation 

time from minutes to milliseconds, the results of empirical testing indicate an improvement of accuracy 

and the decrease of computational time of the model, based on such criteria as precision and recall, as 

well as the F1-score. These attributes have important clinical advantages as they accelerate and 

improve the accuracy of the diagnosis and location of liver tumours. 

Keywords: Liver tumour segmentation, Medical Imaging, TensorFlow, Deep Learning, CNN 

1. Introduction 

1.1 Background 

The need for efficient analysis of medical images has boosted the development of Human-Computer 

Interaction (HCI) technologies and mainly in classifying and segmenting images of the medical variety 

such as MRI and CT scans (Rahman et al. 2022). Both radiologists and oncologists may spend hours 

in doing tumour staging of such diseases as liver cancer, which is one of the most fatal illnesses in the 

world. Conventional approaches to tumour detection are often slow and may also present a high level 

of variability. These inefficiencies can be lowered by using automated segmentation techniques, where 

deep learning is applied. Other CNN-based architectures such as, V-Net and U-Net have been useful 

in handling the 3D medical image data. These models yield improved segmentation accuracy but the 

pronounced problem in terms of computational time efficiency and V-Net is slightly superior 

compared to U-Net but fails to create dense feature maps (Du et al. 2020). The possibility of integrating 

deep Residual networks like ResNet and Inception with segmentation structures can improve the 

recognition of liver tumours.  

The relevance of this work is the expanded potential to improve the techniques of liver tumour 

identification and segmentation, which play a significant role in the care of patients by radiologists and 

oncologists. The present work aims at enhancing the general accuracy of segmentation and overcoming 

the existing challenges of computationally costly models via the use of transfer learning and pretrained 



3 

 

deep learning architectures like U-Net, V-Net, ResNet, and Inception. Fine refining the model using 

transfer learning, together with hybrid loss functions (focal loss function, Dice loss) boosts the capacity 

and lower the detection time from minutes to milliseconds. 

This research proposes to make use of these enhanced models in tumour segmentation while addressing 

the computational challenges. This can be achieved through the use of transfer learning and attempting 

to use the hybrid loss functions (focal loss, Dice loss) that minimizes the time needed for the tumour 

detection enhancing the speed of the prognosis and making it clinically relevant. 

 

 1.2 Research Question 

➢ How the U-Net, ResNet, and V-Net architectures compare in terms of performance for liver 

tumour segmentation in CT images? 

1.3 Research Objectives 

● To develop a precise liver tumour segmentation model using U-Net, ResNet, and V-Net 

architectures for enhanced diagnostic accuracy 

● To evaluate the effectiveness of quantitative methods in improving the accuracy of liver tumour 

segmentation 

● To validate the use of secondary data from Kaggle for liver tumour segmentation analysis in 

medical imaging research 

1.4 Report Structure 

Introduction, section presents the significance of AI in the segmentation of liver tumours and includes 

the research questions and objectives based on secondary data and Python software. Literature Review 

present issues such as the variability of tumour shapes and the limitations that stem from existing 

means of segmentation that this research addresses. Research Methodology explains the quantitative 

approach, in this case, the identified secondary data from Kaggle which will be analysed under Python 

3.11.4. because of the advantage in automating and boosting the accuracy of segmentation. 

Implementation explains the process of applying this AI algorithm with Kaggle datasets entailing 

challenges such as overfitting in building, training, and improving this model. Discussion and 

Conclusion provide a succinct description of the research investigations, limitations applied, and 

references to future research endeavours focused on segmentation improvement and model 

applicability to clinical settings. 
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2. Literature Review 

2.1 Introduction 

These studies have used quantitative techniques to improve the accuracy of the liver tumour boundary 

delineation describing concerns such as model reliability, and segmentation reliability in the context 

of clinical application. 

In this chapter, deficiencies and issues with previous studies are described to justify the requirement 

for improved liver tumour segmentation techniques (Amin et al. 2022). A literature review of the prior 

work and techniques shows the benefits of the project to the improvement of the diagnostic 

performance in liver tumour diagnosis by employing machine learning segmentation. 

2.2 Literature Study 

Conducted at the Post Graduate Institute of Medical Education and Research Hospital in Chandigarh, 

India, and including 120 patients, the study categorises patients in terms of liver function, with 58 

patients in grade A and 62 in grade B (Liu et al. 2021). This paper presents an AI technique using the 

K-means clustering algorithm for liver tumour segmentation and analyses its performance with the 

deep learning approach. The experiment showed that liver tumours in plain CT appear as low density 

and had moderate enhancement in the arterial phase and low-density nodules in blood vessels in PVP.  

 

Figure 2.1: The flow chart of the KMC algorithm (Source: Liu et al. 2021) 

The actual flowchart of the KMC algorithm demonstrates a chronological arrangement of processes 

that help to isolate liver tumour outlines from images. There are five different steps in the TPCPS: 

input of the original image, image pretreatment, determination of initial parameters and objective 

functions, cluster updating and minimization, combination of weights with memory factors and the 

production of the final image outline. The significance of this study was that CT scans proved to have 
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higher sensitivity than specificity in identifying liver metastasis compared to HCC (P <0.05). This has 

also emerged that LCT has a significant deposition impact, La patients with rich blood type yield 

53.14% good deposition while 25.73% of poor blood type patients demonstrated poor deposition (Liu 

et al. 2021). The KMC algorithm is superior to the RG method and provides better treatment for 

segmentation results of liver tumours. These results generalise the applicability of the KMC algorithm 

as a tool for improving liver tumour detection and treatment planning in medical imaging. 

Hu et al (Hu et al., 2023) Provides a new method of liver tumour segmentation based on AI that helps 

avoid the use of manual annotations on CT scans. In order to train the machine to detect and segment 

liver tumours, synthetic tumours are created with an appearance and texture close to that of the actual 

ones. The synthetic tumours look realistic in such a way that they were able to pass what authors called 

the Visual Turing Test with pathologists failing to distinguish the synthetic models from actual ones 

(Hu et al., 2023). This method uses clinical expertise and complex signal processing algorithms to 

encode such critical features as the position, morphology and texture of the tumour into the synthetic 

data. Since this obviates the need for highly accurate manual annotations for guiding the deep learning 

algorithm, it greatly lowers the cost and time required for the development of medical imaging AI 

systems. 

 

Figure 2.2:  The paradigm shift from label-intensive to label-free tumour segmentation (Source: Hu et al. 2023) 

The following image shows two paradigms for liver tumour segmentation. Paradigm I features a small 

set of one hundred examples with high costs inherent in the annotation process, whereas Paradigm II 

includes potentially a vast number of examples limitless in number with a zero cost of annotation. The 

image also illustrates that Paradigm II offers segmentation performance that may be higher than or 

similar to Paradigm I even though the former is based on zero-cost annotation, presenting the case for 

a shift in a medical image analysis paradigm. The results show that the AI models trained on synthetic 

tumours are at least as effective and, in most cases, much better than the models trained on the real 
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tumours with the annotations done manually. This approach also presents a higher sensitivity for 

detecting small tumours, which is critical for cancer diagnosis at the early stage (Hu et al. 2023). The 

synthetic Tumour generation process enables evaluation of the model perturbation with various types 

of Tumours since the variations are generated. This work opens the door to developing more scalable 

approaches to implementing AI for the visualisation of medical images in general as well as for 

detecting liver tumours and segmenting them based on a label-free approach. 

Artificial Intelligence in Medical 

The modern development in artificial intelligence has helped improve medical image, most notably 

ultrasonography or the US. Safely, malignant lesions may be missed by mistake or intentionally in the 

US resulting in dangerous health complications; AI provides a plausible input to this by minimising 

human mistakes. It has been established that utilising AI for medical imaging is reliant on numerous 

factors inclusive of the imaging modality, suitable datasets, relevance of the chosen algorithm, together 

with expected clinical outcomes. Together with the US, AI-powered radiomics is also seen as a 

potential approach to develop HCC outcomes prediction and more tailored interventions as well. 

Liver cancer is a leading global health problem, especially for accurate identification and targeting of 

liver tissue and tumours since the problem of accurate segmentation partly contributes to poor 

diagnosis and treatment. MRI, CT and ultrasound scans are the typical functional imaging approaches 

utilised while diagnosing Liver tumours but these come with challenges of similar signal intensity of 

the tissues and variable shape and position of the organ (Rahman et al. 2022). These challenges make 

conventional segmentation techniques suppressing the possibility of isolating liver tumours in CT 

scans to black and white or based on shape very ineffective. These limitations are mitigated in this 

study by developing a novel ResUNet model that integrates both ResNet and UNet structures to 

improve the precision and speed in the liver and tumour segmentation in CT image volumes. 

2.3 Theoretical Framework 

The foundation of AI-driven analysis for liver tumour segmentation is based in the furtherance of 

medical images and artificial neural networks. The difficulties of liver tumour segmentation stem from 

the internal structure of the liver, overlapping opacities and irregular tumour margins (Qiu et al. 2024). 

Techniques such as MRI, CT and ultrasound scans by themselves fail to offer the desired degree of 

segmentation accuracy and this is why an AI-based solution is the only viable remedy so far as 

detection efficacy is concerned. Segmentation AI frameworks such as K-means clustering ResUNet 

and synthetic tumour generation for dependable segmentation use deep learning.  
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Figure 2.3: Conceptual Model of Liver Tumour Segmentation (Source: Chierici et al. 2020) 

According to the discussion, ResUNet integrates feature extraction from ResNet and segmentation 

from UNet, while data syntheses minimise reliance on annotated tumour replicas. K-means clustering 

and label-free models show that AI can be used to segment liver tumours with little specialist labelling, 

which saves money (Chierici et al. 2020). These frameworks make use of AI in conjunction with 

certain imaging techniques such as CT scans and ultrasound, for early diagnosis, precise tumour 

delineation as well as technological and clinical needs for managing liver cancer. 

2.4 Literature Gap 

There are still some gaps that have been found in the literature concerning the developments in AI for 

liver tumour segmentation. Thus, while multiple works show high accuracy of the segmentation results 

using UNet + ResNet and K-means clustering, most works employ clean artificial datasets with less 

variability in the capturing parameters. This is a limitation that we find in real-world applications since 

AI models may fail to perform well when exposed to highly heterogeneous clinical imaging data, 

especially in ultrasound where the relative variability of image quality due to patient attributes and 

machine settings affects the system quite significantly (Fallahpoor et al. 2024). Limited investigations 

have simultaneously investigated the ability of AI models with different imaging environments, the 

assessment of which is essential for widespread implementation. 

2.6 Critical Assessment 

Despite the proportionate progress in liver tumour segmentation based on AI, some aspects remain 

largely compelling and may affect its real-world applicability. Algorithms such as UNet+ResNet and 

K-means clustering appear to have considerable segmentation precision, but most tests are conducted 

on carefully selected test suits with little variation. This concentrating on the one hand on data 
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incorporating perfect image information disregards the variations most likely to prevail in real clinical 

practice scenarios, especially in ultrasound imaging where due to variability in patient’s anatomy also 

variability in settings of an imaging machine high heterogeneity is most probable (Saha Roy et al. 

2023). Most of the existing AI models do not have the stability that enables them to work well across 

different imaging scenes, hence questioning their applicability. 

Though synthetic data generation provides an innovative way of addressing the expensive venture of 

manual annotation, it is still a relatively young technology. Present synthetic tumour models, while 

performing reasonably well in supervised tests, fail to mimic actual tumour characteristics, fine texture 

and density. This gap raises the understanding of the current literature by stressing the further necessity 

of validation studies to test synthetic data efficiency in training AI models for clinical applications 

(Bakrania et al. 2023). It is rather rare to find research that provides a general overview of synthesised 

data-trained models and benchmarks them against those trained using annotated real datasets. All of 

these limitations with a broad range of data and sophisticated synthetic approaches can make the AI 

segmentation tools more flexible, accurate, and ultimately more useful in the liver cancer field. 

3. Research Methodology 

3.1 Introduction 

This chapter focuses on explaining the strategies used in conducting this research, such as an effective 

and precise liver tumour segmentation model that is achieved using the selected architectures, 

including U-Net, ResNet, and V-Net. The use of those methodologies sought to improve the diagnostic 

outcomes and meet the ethical practice in the processing of medical imaging data. 

3.2 Research philosophy 

The study met a positivist epistemology, doing away with subjectivity, the study embracing empirical 

evidence and scientific validity. Positivism is based on the assumption that knowledge is the function 

of observable and measurable data, and as a result, it is appropriate to use it exclusively in quantitative 

research like the present study. Using this philosophy, the study aimed at trivializing consequences, 

replicating procedures, and showcasing standard methods and statistical reliability. 
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Figure 3.1: Research philosophy (Source: Lewinson, 2020) 

This also helped to prevent a bias in the study because the data collected has been quantifiable and 

obtained from secondary sources. Continuing this approach has been simple, as U-Net, ResNet, and 

V-Net models could be easily quantified and their performance has been empirically measurable.  

3.3 Research Approach 

The study used both an exploratory research approach and a confirmatory research approach as well 

as the positivist research philosophy and quantitative research method. This approach started with 

developing hypotheses grounded on the hypothetical and previous studies on liver tumour 

segmentation and medical image analysis. The study proceeded to validate these hypotheses and 

employed advanced segmentation models of U-Net, ResNet, and V-Net using Kaggle real, reliable, 

and large datasets. The deductive approach provided for a systemized procedure of research as the 

results obtained would be definitively quantifiable and assessed in terms of set benchmarks. 

 

Figure 3.2: Process of Deductive Approach (Source: Nahrstedt et al. 2024)  

This approach had several advantages, such as the clear identification of the structure of the study and 

the use of hypotheses to make specific conclusions. The deductive strategy improved the accuracy and 

credibility of the results due to following pre-existing paradigms and quantitative techniques 

(Nahrstedt et al. 2024).  
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3.5 Data collection method 

The technique of data collection for this particular research has been secondary data, which has been 

obtained from the Kaggle website. This dataset gave a good benchmark to compare different methods 

used in the segmentation of advanced liver tumours, including U-Net, ResNet and V-Net. Secondary 

data has been selected because it has been easily available, pertinent, and collected in a format that 

eliminates nearly all the time and effort in the data accumulation process (Farrens et al. 2020).  

3.6 Data Acquisition 

The dataset is acquired from a secondary data sources listed.  The dataset used in this work was 

obtained from Kaggle.com and includes images of labelled patients who have been imaged at different 

clinical centres across the globe. It has its origin in the LiTS (Liver Tumour Segmentation, sample 

image is showcased in the                                                                       Figure 3.3 LiTS sample images) 

Challenge held during ISBI 2017 and MICCAI 2017 and offers an enhanced dataset to use and improve 

studies in the fields of medical image analysis and segmentation. 

 

                                                                      Figure 3.3 LiTS sample images 

The dataset is collated across various geographical institution to enhance the demographic collection 

detail and the utility of it. The                                               Figure 1 Distribution Sample of the 

Universities towards LiTS dataset showcases the visual representation of the data distribution in the 

Liver Tumour Segmentation dataset.  

 

                                              Figure 1 Distribution Sample of the Universities towards LiTS dataset 
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3.7 Data Preprocessing and Transformation 

3.7.1 Data Loading and Description 

The dataset contains four columns, directory name or the directory name, filename, mask filename and 

mask directory name. The columns are defined on the                                                                          Table 

1 Data Availability 

                                                                         Table 1 Data Availability 

Column Name Description 
dirname Directory path to the folder containing the 

input CT scan volume files. 

filename File name of the CT scan volume. 

mask_dirname Directory path to the folder containing the 
segmentation mask files. 

mask_filename File name of the segmentation mask 
corresponding to the CT scan volume. 

 

3.7.2 Image Preprocessing 

Normalisation 

The normalisation framework allows the image dataset, to be reduced within pixels of 0 and 1. This 

further nuance the need to prevent overfitting as well as the reduction of data channels to reduce 

computation. To achieve normalisation there are multiple techniques and methods, the paper uses 

mean-based normalisation as showcased by the   Equation 1 

𝛿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
(𝛿 −  𝜇 )

𝜎
 

  Equation 1 

Bilateral Filtering 

The liver CT scan although is an artificially created image but due to the presence of human error, 

mechanical noise and instrumental differentiation across various university and hospitals involved the 

dataset is catered with the presence of noise unanimously across many samples. To prevent this the 

paper introduces the use of bilateral filtering to avoid noise within the images. The bilateral filtering 

uses the spatial and radial kernel across each pixel where in 𝑊𝑠 for spatial kernel, 𝑊𝑟  for radial and 

∆𝑎,𝑏 representing all pixels within the range of 0 to 256 noted by a, b.  
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𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 (𝐼)(∆𝑥,𝑦) = (
1

𝑊𝑥𝑦
) ∑ 𝐼(∆𝑎,𝑏) .  𝑊𝑠

𝑁𝑎𝑏

(𝑎,𝑏)∈𝑁𝑎𝑏

(∆𝑎,𝑏, ∆𝑥,𝑦) . 𝑊𝑟(∆𝑎,𝑏, ∆𝑥,𝑦) 

  Equation 2 

  Equation 2 describes the bilateral filtering operation on image I(∆𝑎,𝑏) and     Equation 3 and   Equation 

4 describe the spatial and radial kernels for noise filtration 

𝑊𝑠  (∆𝑎,𝑏 , ∆𝑥,𝑦) 𝑜𝑟 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 =  𝑒
(−|| ∆𝑎,𝑏,∆𝑥,𝑦 ||2 )

2𝜎𝑠   

    Equation 3 

𝑊𝑟  (∆𝑎,𝑏, ∆𝑥,𝑦) 𝑜𝑟 𝑅𝑎𝑑𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 =  𝑒
(−|| ∆𝑎,𝑏,∆𝑥,𝑦 ||2 )

2𝜎𝑟  

  Equation 4 

The sample output of the image as a focus of bilateral filtering and normalisation is showcased by                                          

Figure 2 Liver Tumour Data after Bilateral Filtering and Normalistion. 

 

                                         Figure 2 Liver Tumour Data after Bilateral Filtering and Normalistion 

Encoding 

The mask output is adjusted to either 0 and 1 for categorical cross-entropy calculation, thus encoding 

helps in adjusting the levels of background and adjusting tumour pixels. Its further showcased in the 

Equation 5. 

𝑂𝑃 = {
0, 𝑥 < 0
1, 𝑥 > 0

 

Equation 5 

3.8 Modelling UNET and Transfer Learning techniques (UNET-TLT) 

The study proposed the implementation of UNET with Resent transfer learning approach, Unet 

consists of the encoder, decoder and bottleneck subsections. To have a detailed purview of the model 

the architecture diagram is showcased in                                                            Figure 3 UNET 

Architecture Diagram. 
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                                                           Figure 3 UNET Architecture Diagram 

                                                           Figure 3 UNET Architecture Diagram illustrates the input and 

output shape transitions within the UNET architecture simulation, using convolutional neural network, 

Batch Normalization, Leaky RELU for activation unit, Max Pooling 2D to reduce the feature filtering 

to important pixel within the 2x2 window, Dropout to prevent overfitting, Up Sampling 2D for 

recreation of the mask image, Concatenate, and SoftMax for the final mask prediction. 

Transfer Learning technique Residual neural network 

The residual neural network which is used in simulation to the UNET allows for high level feature 

extraction as well as the reduction of gradients in case of exploding gradient. Also because of vanishing 

gradient the weight upgrade defined by the Equation 6; this happens as ∇𝑤𝐿(𝑤𝑡) which is the loss with 

respect to the 𝑤𝑡  i.e. the weight in time t gets to zero and no further weight changes takes place.  

 

[𝑤𝑡+1 = 𝑤𝑡 − η∇𝑤𝐿(𝑤𝑡)] 

Equation 6 

To prevent this gradient flow stimulus the UNET architecture uses RESNET with the creation of an 

auxiliary layer unit using the concatenation function and to allow more gradients to reach the weights 

without becoming 0.  

Loss Function for UNET-TLT 

The loss function for the UNET-TLT is a joint hybrid weighted function given by the Equation 7 where 

the dice loss is described by Equation 8 and focal loss by Equation 9.  

 

Total Loss = 0.8 ⋅ Dice Loss + 0.2 ⋅ Focal Loss 

Equation 7 

Equation 8 defines Dice Loss which is a metric used to measure the overlap between two samples 
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Dice Loss = 1 −
2 ∑ 𝑦𝑖𝑦𝑖̂𝑖

∑ 𝑦𝑖𝑖 + ∑ 𝑦𝑖̂𝑖
 

Equation 8 

Equation 9 defines the Focal Loss which is designed to address class imbalance by down-weighting 

(with hyperparameter 𝛼𝑐) the loss assigned to well-classified examples 

Categorical Focal Loss = − ∑ α𝑐(1 − 𝑦𝑐̂)γ log(𝑦𝑐̂)

𝐶

𝑐=1

 

Equation 9 

In Equation 8 and Equation 9 𝑦  defines the predicted vectors and y defines the actual ground truth.  

Hyperparameter for UNET-TLT 

 

Table 2 Hyperparameter table for UNET-TLT 

Hyperparameter Description 
Input Image Size 256x256 
Number of Filters 128 and 256 
Kernel Size 5x5 
Stride 2 
Padding SAME 
Activation Function ReLU, LeakyReLU, Softmax 
Batch Normalization YES 
Dropout Rate 0.2 
Optimizer ADAM 
Learning Rate 0.0001 
Loss Function Given by hybrid loss function 

in Equation 7 
Number of Epochs 200 
Batch Size 8 
Number of Classes 2 

3.8 Summary 

In the methodology chapter, a well-coordinated procedure to create and assess state-of-the-art liver 

tumour segmentation models using U-Net, ResNet, and V-Net models has been clearly explained. The 

deductive research approach has been also selected, which is directed to develop hypotheses of 

interactions between several factors. Data collected from Kaggle has been secondary data which has 

been particularly efficient and has been anonymized to meet the strict ethical requirements. The 

quantitative measures allowed for the accurate measurement of the model performances which helped 

in using a differential diagnosis tool.  
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4. Design and Implementation Specifications 

Data Preparation  

The dataset is divided into training (70%), testing (20%), and validation (10%) sets, as showcased by 

Table 3 Dataset training, testing and validation splits,for utility of the segmentation model. The training 

set of 91 images of the liver lesion. The testing set of 26 images of unseen data. The validation set of 

13 images for fine-tuning the model and prevent overfitting. 

Table 3 Dataset training, testing and validation splits 

DATASET SPLIT NUMBER OF CT 
SCANS 

PERCENTAGE 

TRAINING 91 70% 
TESTING 26 20% 
VALIDATION 13 10% 

 

The dataset is loaded with python pandas module and applied with three preprocessing techniques 

namely normalisation, bilateral filtering and adjusted encoding for the mask of the tumor image. The 

normalisation techniques allow the image to be grayscaled and encoding allows 0 and 1 values only to 

be present in the mask. This helps in reducing any noise in the optimisation scale and loss calculation. 

 

UNET-TLT 

The Unet transfer learning techniques as illustrated in the above section also consists of primarily three 

segments of implementation, namely the forward propagation, backward propagation and 

optimisation.   

Forward Propagation 

The forward propagation is an essential aspect of the neural network, the UNET-TLT uses the forward 

propagation to calibrate the randomised weightage matrix for the delineation and creation of the 

features. Generally, in the calibration of forward propagation l defines the current layer wherein ‘i’ 

and ‘j’ is the weight notation. Equation 10 showcases the weighted calculation of the output vector z, 

where in a is the input vector, b is the biases, and w defines the weight matrix for the layer l 

𝑧𝑗
(𝑙+1)

= ∑(𝑤𝑖𝑗
(𝑙)

⋅ 𝑎𝑖
(𝑙)

)

𝑖

+ 𝑏𝑗
(𝑙)

 

Equation 10 

Equation 11 defines the activation unit, the activation unit is responsible for introducing non linearity 

within the neural network. This is essential as it allows the neural network to fire on cases of the 

specific input simulation, allowing for feature selection and feature extraction. f  defines the function 

of activation.  
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𝑎𝑗
(𝑙+1)

= 𝑓(𝑧𝑗
(𝑙+1)

) 

Equation 11 

There are multiple activation function which are used in the UNET-TLT method namely, RELU, 

Sigmoid, SoftMax and LeakyRelu. Equation 12 defines the ReLU activation function which negates 

the negative vectors to 0 and allow only the positive simulation to reach the next neuron. This creates 

an auxiliary neuron firing scenario in case of input variable change as showcased by the Figure 5 

Sigmoid Graph. 

 

ReLU(𝑧) = max(0, 𝑧) 

Equation 12 

 

Figure 4 ReLU activation Unit 

Equation 13 defines the sigmoid function where in z is the input from the weighted equation. The 

showcased by the graph in Figure 5 Sigmoid Graph. 

Sigmoid(𝑧) =
1

1 + 𝑒−𝑧
 

Equation 13 

 

Figure 5 Sigmoid Graph 

Equation 14 defines the SoftMax function which is used in the last layer of the masking unit allowing 

for the probability distribution of each neuron. This firing precision is needed for classification of 

pixels into 0 or 1 meaning background or tumour 
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SoftMax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

 

 

Equation 14 

Backward Propagation 

The backward propagation is responsible for creating a reduction ro increment in the weighted and 

bias vectors which is then used for simulating the feedback loop in the UNET-TLT module. The Unet 

TLT creates loss function from the ground truth and the predicted vector and calculates the gradients 

for each segment. This is postulated by the Equation 15 

∂𝐿

∂𝑎[𝐿]
 

Equation 15 

Equation 16 calculates the error term from the output layer z.  

δ[𝐿] =
∂𝐿

∂𝑎[𝐿]
⋅ 𝑓′(𝑧[𝐿]) 

Equation 16 

Equation 17, propagates the loss calculated wholistically across all the layers by calculating there share 

or coefficient of loss. 

 

δ[𝑙] = (𝑊[𝑙+1])
𝑇

δ[𝑙+1] ⋅ 𝑓′(𝑧[𝑙]) 

Equation 17 

The gradient is scaled by an unit of 𝜂 or the learning rate, and then adjusted to the weight of each layer 

based on the layers effective loss coefficient given by 
𝜕𝐿

𝜕𝑊[𝑙]. This is summarised by the Equation 18.  

𝑊[𝑙] ← 𝑊[𝑙] − 𝜂
𝜕𝐿

𝜕𝑊[𝑙]
 

Equation 18 

 

Equation 19, Computes the weight updates for each layer using the calculated error terms and 

activations. 

∂𝐿

∂𝑊[𝑙]
= δ[𝑙] ⋅ (𝑎[𝑙−1])

𝑇
 

Equation 19 
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Optimisation for Gradient Calculation 

The UNET TLT method uses Adam optimisation, the Adam optimiser is a very strong and state of the 

art optimisation technique, the Equation 20 defines the g_t vector which computes the gradients. 

𝑔_𝑡 =  ∇_θ𝑓_𝑡(θ_{𝑡 − 1})  

Equation 20 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)𝑔𝑡 

Equation 21 

Equation 21 delineates the update base for the First Moment Estimate (Moving Average of Gradients) 

this defines the trajectory of the optimisation and path to the local minima. 

 

𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡
2 

Equation 22 

Equation 22 delineates the update base for the Second Moment Estimate (Moving Average of Squared 

Gradients).  

𝑚𝑡̂ =
𝑚𝑡

1 − β1
𝑡  (Corrected First Moment) 

Equation 23 

𝑣𝑡̂ =
𝑣𝑡

1 − β2
𝑡  (Corrected Second Moment) 

Equation 24 

θ𝑡 = θ𝑡−1 −
α𝑚𝑡̂

√𝑣𝑡̂ + ϵ
 

Equation 25 

Equation 23, Equation 24 and Equation 25 denies the correction coefficient of the moment and velocity 

for the trajectory of gradient motion whereas the Equation 25 adjusts the learning rate. The ADAM 

optimiser provides the learning rate for coefficient growth and moment recalibration to suit the search 

for local or global minima in the fastest computational time. 

5. Results and Critical Analysis 

Results 
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Figure 5.1: Model Loss and IoU Score Plot 

The images present two graphs which show the Training and Validation metrics of a model. The left 

plot represents the IoU score of the subsequent epochs for both the training set and the validation set. 

The right plot presents a number of lost epochs for both sets. The plots show the performance of the 

model over the time, where the IoU score is rising, and the loss is falling. It is observed that there is a 

slight difference in the training and the validation that indicates slight overfitting. 

Table 1: Training and Validation Scores 

 

Epoch Loss IOU 

Score 

F1 Score Validation 

Loss 

Validation 

IOU 

Score 

Validation 

F1 Score 

95 0.348193 0.972246 0.985913 0.33063 0.948692 0.973671 

96 0.340484 0.981226 0.990523 0.326173 0.945972 0.972236 

97 0.351455 0.966669 0.982941 0.324854 0.963769 0.98155 

98 0.336533 0.977239 0.988483 0.316456 0.955143 0.977057 

99 0.329771 0.975546 0.98761 0.309856 0.962635 0.980962 

 

The following table shows the objective function values for liver tumour segmentation using a deep 

learning model in 5 epochs (95–99). It includes training loss, intersection over union (IOU) score and 

f1 score with their validation in the validation set. Epochs over time, inside training loss decreasing to 

0.329771 in epoch 99, the F1 score increases to 0.987610. The same is applied toward the validation 

loss that reduces to 0.309856 which is an improved generalization. The validation IOU score and F1 

score also have their corresponding increases at this time, reaching 0.962635 and 0.980962. These 

results elaborate the efficiencies of the model including the accurate segregation of the images with 

the training and validation metrics also improving throughout the process. 

Table 4 Performance Metrics 

 

Metric Train Test Valid 

Loss 0.34075 0.309281 0.309856 
Accuracy 0.97779 0.996551 0.996517 
Binary 
Accuracy 

0.97779 0.996551 0.996517 

mAP 0.461568 0.455335 0.454917 
False 
Negatives 

2038 2957 1401 

False 
Positives 

35037 14223 9554 

True 
Negatives 

15452622 4521581 2852539 

True 
Positives 

1287519 441975 282234 



20 

 

AUC 0.999931 0.999598 0.99965 
Specificity 0.997738 0.996864 0.996662 
Sensitivity 0.99842 0.993354 0.995061 

 

The Table 4 Performance Metrics shows that the model achieves high accuracy, with values above 

99.6% across all datasets (Train, Test, Valid). Specificity remains consistent at around 99.7% for 

training and validation, while slightly lower for testing. Sensitivity is very high, ranging from 99.3% 

to 99.8%, indicating strong performance in detecting positive instances. The AUC scores are also 

excellent, above 0.999, demonstrating a near-perfect ability to distinguish between classes. 

 

 

Figure 6 Model Performance in training, testing and validation 

The image displays a table summarizing the performance metrics of a model on three different datasets. 

The statistical process control method is categorized into three phases, namely the training, testing, 

and validation. The metrics are loss, accuracy, binary accuracy, mAP, false negatives, false positives, 

true negatives, true positives, AUC, specificity and sensitivity.  
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Figure 5.3: Results of Model 

The evaluation metrics include accuracy, binary accuracy, mAP, the number of false negatives, false 

positives, true negatives, true positives, AUC as well as specificity, sensitivity, iteration related to the 

Monte Carlo methods and Model.  

 

Figure 5.4: Plot of accuracy, binary accuracy, Specificity, Sensitivity 

The plot displays box plots for five different metrics like binary accuracy, Area under curve, 

specificity, and sensitivity. All the boxes and whiskers in each box plot represent the values of that 

metric in multiple iterations or runs. to show better consistency in their findings, Blue and Yellow i.e. 
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Accuracy and Pixel Accuracy with fewer outliers, whereas the purple box i.e. Sensitivity demonstrates 

more fluctuation, suggesting that the measure connected with it has less consistent performance. The 

green marker or AUC can indicate an aggregate or mean value, giving a standard for comparison. 

Critical Analysis 

The critical analysis of the results proves the efficacy of the deep learning models (U-Net, ResNet, and 

V-Net) in segmentation of liver tumours with consistent results in positive accuracy and negative loss 

towards the end of the program (Gayoso et al. 2022). The models seemed to perform well, having 

more IoU values increasing with training epochs, and less losses yielded during the training phase. The 

Monte Carlo method has been also useful in establishing variability within the model and the 

subsequent performances have been largely consistent. The models revealed that each of them serve 

good segmentation purposes to enhance to make the models more rigid and avoid overfitting and are 

the scope for the future studies. 

The exemplary results of the UNET-TLT (RESNET) is showcased by the predicted overlap shown by 

the Figure 7 The Predicted Mask from the UNET-TLT (RESNET). 
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Figure 7 The Predicted Mask from the UNET-TLT (RESNET) 

 

The Table 5 UNET-TLT ( below further illustrates the quantitative measure of the model’s 

performance. 

Table 5 UNET-TLT (RESNET) Performance 

Metric Value 

Loss 0.34075 
Accuracy 0.99779 
Binary Accuracy 0.99779 

mAP 0.461568 
AUC 0.999931 
Specificity 0.997738 

Sensitivity 0.99842 

 

The Figure 8 Confusion matrix for UNET TLT(RESNET) in percentage shows that 92.10% of the 

predictions are True Negatives, 0.21% are False Positives, 0.01% are False Negatives, and 7.67% are 

True Positives. 
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Figure 8 Confusion matrix for UNET TLT(RESNET) in percentage  

For further nuanced spatial region confirmation the bounding box is utilised which elaborates the 

performance of the UNET-TLT (RESNET) as shown in the Figure 9 The Predicted Mask and 

Bounding Box from the UNET-TLT (RESNET). 
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Figure 9 The Predicted Mask and Bounding Box from the UNET-TLT (RESNET) 

Findings 

The results of this study corroborate that the U-Net, ResNet, and V-Net are useful methodologies for 

segmentation of liver tumours. Each model achieved increased accuracy in diagnostics based on IoU 

scores rose and loss values decreased in the course of training, which means successful segmentation 

(Liang et al. 2021). The models have been evaluated to be good and overfitting has been seen but only 

slightly because the training and validation metrics slightly differed from each other. The models have 

been able to get encouraging precision, recall, and accuracy rates in different datasets even with the 

current limitation of the approach (Bezabih et al. 2024).  

Discussion 

The last and final part of this research outlines a discussion part that will involve a summary of 

interaction on deep learning models including U-Net, ResNet and V-Net by indicating successful 

segmentation of liver tumours. These architectures designed to work at medical image analysis 

unveiled satisfactory performance in segmenting liver tumours. As to the models, they proved that 

they were able to learn and generalize the data with the help of constantly increasing IoU scores and 

amicable decrease of the loss (Lewinson, 2020). It was also found that there were several levels of 

overfitting achieved for the models because the performance measured in terms of the training metrics 

were higher than the validation ones in each case. This issue requires further enhancement as per the 

recommendations put forward by the students, but to overcome the problem of better generalization, 

no overfitting is encouraged this could be the next step to be implemented (Nahrstedt et al. 2024). The 

MC simulations supported the constancy of the couplings and their stability was used to verify the 

results of the successive runs of the models. It presents significant information for the medical image 

segmentation and, from which the liver tumour diagnosis and the future treatment plan could be 

improved. 
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6. Discussion and Conclusions 

Conclusion and Discussion 

In particular, the research project addressed the problem of segmenting liver and liver tumours in 

contrast-enhanced abdominal CT scans. The data set obtained from the Kaggle platform and 

originating from the Liver Tumour Segmentation Challenge (LiTS17) provided a rich collection of 

images relevant to analysis and segmentation. The dataset has been used to train a U-Net architecture 

with a ResNet34 encoder backbone to overcome the complexity of liver tumour segmentation. 

The project reveals some important conclusions. First, the Dice Loss and Binary Focal Loss enhanced 

the balance of segmentation of the foreground and background pixels. The combination was effective 

in addressing the typical data discrepancy between the liver and tumour regions, which is characteristic 

of medical image segmentation. It yielded a high IoU of 0.9755 for the training set and 0.9626 for the 

validation set, proving that the proposed model for segmentation was accurate and invariant to training 

and validation. 

In order to further improve the generalizability of the tool needed for detecting various shapes and 

sizes of tumours, the application of sophisticated data preprocessing mechanisms such as DICOM 

loading of images, normalization of pixel intensity, as well as augmentation flipping, rotation, and 

intensity scaling were useful. These steps also made it possible to align CT scan images to the 

corresponding images' segmentation masks for training and testing the model. 

The basic evaluation metrics such as sensitivity, specificity and mean IoU score obtained from the 

model gave confidence in its stability. More specifically, sensitivity values of 0.9984 for training and 

0.9934 separately for testing suggested that the network can locate tumour regions, and a high 

specificity value of 0.9977, and 0.9968 further prove that the model does not wrongly identify non-

tumour areas. An AUC of 0.9999 also supported the ability of the model to predict the occurrence of 

the cardiac event. 

The issues that have been identified, for example, the consultant and were boundary of the tumour, 

and the problem of an imbalanced data set support the proposition that liver tumour segmentation is 

complex. Nevertheless, the inferiority of the obtained model proves its effectiveness for practical 

application in such fields as medical diagnosis and surgical planning systems. The positioning of the 

output of the prediction along with the real masks for ground truth offers distinctive qualitative results 

and real viewpoints into how the ranges delineate the perimeters of tumours successfully and 

professionally. 

The obtained outcomes show that using the presence of a U-Net structure based on the ResNet34 

encoder along with proper preprocessing techniques and proper choice of loss functions can 
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significantly influence the improvement of the liver tumour segmentation. These findings are useful 

for the general topic of medical image segmentation and highlight the need for continuing research 

and development of improved deep-learning algorithms for solving difficult medical problems. The 

results establish the potential for future developments in automated segmentation algorithms that may 

be expanded to other organ systems and imaging modalities. 

Finally, the current study indicates that by applying deep learning techniques such as UNET 

TLT(RESNET), the model provides a viable and efficient strategy to liver tumour segmentation. Thus, 

the attainment of this model opens the potential for the development of medical imaging and boosting 

the efficacy of cancer diagnostic and therapeutic treatment. By reducing these constraints and 

establishing new techniques, the probability of such systems to revolutionise the practice of Health 

care may be improved. The performed study is one of the significant breakthroughs in applying AI in 

medicine providing enormous possibilities for enhancing healthcare and the quality of health services.  

 

Future Work 

The research work on liver tumour segmentation with the help of a U-Net model along with a ResNet34 

encoder has proved effective as it provides high accuracy and measurement of performance quantity. 

Several directions require further elaboration and research to improve the model and overcome the 

existing shortcomings. 

A possible direction for future work is to extend the dataset by incorporating more cases of liver 

tumours. Currently, CT scans contain 130 scans and although this research has provided 

comprehensive scans, there might be variability of scans that are not captured in this study. Future 

works could consider using even bigger and heterogeneous groups of images to try to better 

approximate the population variability about patients’ age, tumour size, type of imaging, and others. 

Greater opportunities to obtain different data in particular clinical institutions may precondition a much 

higher qualitative level of segmentation models. 

Another important direction is the study of complex multicriteria models and model architectures and 

the use of the best properties of second-order models and MH models. Although the suggested U-Net 

with a ResNet 34 backbone has been efficient, new architectures such as transformers and other 

attention-based models may enhance the segmentation results, especially in case of complication and 

diffusiveness of tumour margins. 

Another major area of improvement is towards handling of data imbalance between the liver and the 

tumour areas. Applying other state-of-the-art data augmentation methods including the synthesis of 

synthetic data through the generative adversarial network (GAN) might generate balanced datasets.  
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Also, real-time implementation of the segmentation model and tuning up of the model can be a 

mechanism for further research. It may be possible to develop slim line and effective models to run on 

clinicians’ systems such as edge devices or cloud-based which can analyse the CT scans and provide 

the analysis to the clinicians in real-time.  
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