. N

'\’
National
College

Ireland

A VMD and FAN Based Hybrid Model for
Air Quality Index Forecasting

MSc Research Project
Data Analytics

Ankith Babu Joseph
Student ID: 23185813

School of Computing
National College of Ireland

Supervisor:  Harshani Nagahamulla




National College of Ireland . National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ankith Babu Joseph
Student ID: 23185813
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Harshani Nagahamulla
Submission Due Date: 12/12/2024
Project Title: A VMD and FAN Based Hybrid Model for Air Quality Index
Forecasting
Word Count: 4961
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: a %

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




A VMD and FAN Based Hybrid Model for Air
Quality Index Forecasting

Ankith Babu Joseph
23185813

Abstract

The time series data of Air Quality Index (AQI) is very complex and nonstation-
ary, therefore the forecasting and accurate prediction of AQI is challenging. This
study propose a novel VMD-FAN hybrid model using Variational Mode Decompos-
ition (VMD) for handling noise and Fourier Analysis Networks (FAN) for handling
periodicity, the hybrid model is good at predicting short term time series AQI data
on a air quality dataset of Taiwan. The cleaned AQI timeseries extracted from the
original dataset is decomposed into individual Intrinsic Mode Functions (IMF's) us-
ing VMD and each IMF is predicted using a FAN model subsequently aggregated
to form a final forecast of AQI values. The proposed hybrid model predicts the AQI
of Annan district in Taiwan with a MAE, MSE, RMSE and MAPE as 0.717643,
1.352704, 1.163058, 1.495354% respectively and is better than the compared base
model. The generalizability of the model is further validated with extension analysis
on different cities in Taiwan. The proposed hybrid model showcase high perform-
ance and its ability to predict complex AQI data and contributes to the research
in the domain.

1 Introduction

1.1 Background

Breathing poisonous air is one of the greatest threats to life and the environment, having
an impact on millions of people’s lives. PM2.5, NO2 and O3 are known to cause severe
respiratory and cardiovascular diseases and reduced life span. Air quality forecasting is
relevant to prevent and reduce these impacts and to guide legal actions in order to protect
the population’s health. However, air quality data is highly detailed, and it contains non-
stationary properties such as non-linearity, seasonality and abnormal changes due to
meteorological and anthropogenic variations. Such challenges raise the need of ensuring
the existence of sound forecasting models that can manage high complexity levels.

The air quality index (AQI) is an index used by environmental protection agencies
for indicating the outdoor air quality, this represents various pollutants levels as a indi-
vidual quantitative representation of the quality of air. Even though traditional air qual-
ity forecasting methods like ARIMA and exponential smoothing have created a strong
foundation for advanced air quality prediction and analytics, they are limited by assump-
tions and limitations of linearity and cannot model non-stationary and stochastic features
of air quality data efficiently. Other machine learning approaches mainly using LSTM
networks, which are sorts of deep learning methods, have shown great improvements in



learning complicated temporal structures. However, even these models have issues in
dealing with noise, periodicity and a sudden shift in data behavior.

To address these limitations, This paper uses a hybrid model combining signal decom-
position techniques and advanced forecasting networks. To decompose the original AQI
series we use Variational Mode Decomposition (VMD), introduced by Dragomiretskiy
and Zosso (2014), this is an effective tool for isolating intrinsic mode functions (IMFs),
filtering noise, and capturing significant features from non-stationary time series. If the
decomposed IMF's are predicted individually and the integrated to obtain the final fore-
cast, which improves the efficiency and accuracy of the training algorithm. The neural
networks which are commonly used exhibit problems in the modeling and reasoning of
periodicity and instead of understanding the periodicity they tend to model based on
memorizing periodicity. As a alternative Fourier Analysis Networks (FAN), proposed
by |[Dong et al.| (2024)), leverage Fourier series to model periodic behaviors, making them
particularly suitable for cyclical data like AQI, which exhibits daily and seasonal patterns.

By integrating VMD for data decomposition and FAN for periodicity modeling, this
study aims to create a robust and accurate AQI forecasting system.Through experiments
this study aim to demonstrate the effectiveness of VMD-FAN hybrid model

1.2 Research Questions

The key research questions addressed in this study are as follows:

How effectively does a hybrid model combining Variational Mode Decomposition
(VMD) with Fourier Analysis Network (FAN) enhance the accuracy of time-series fore-
casting for air quality data, compared to traditional methods?

1.3 Research Objectives

The objectives of this study are as follows:

e To design a hybrid forecasting system by integrating VMD and FAN to address the
non-linearity, noise, and periodicity in AQI data.

e To optimize VMD and FAN parameters (e.g., number of modes and penalty para-
meter) for efficient decomposition and forecasting of AQI time series.

e To evaluate the performance of the VMD-FAN model against a baseline forecasting
approach.

1.4 Structure of the Report

The report is structured as follows. Section [2] reviews and summarizes the relevant re-
searches on air quality forecasting. Section |3| discusses the methodology of the research
and implementation of the proposed hybrid VMD-FAN model. Section [4| analyses the
results obtained from the study and evaluates the proposed model performance. Section
summarizes the overall results of the study and discusses the limitations and proposes
the future work.



2 Related Work

Before discussing the methodology of this research, it is important to critically review
existing research related to the domain. This will help understand shortcomings and
improve upon existing methodologies.

Air quality forecasting that include prediction of Air Quality Index (AQI) can help
mitigate impacts of pollution. Traditional methods like ARIMA have already served as
foundation of the time-series forecasting but limited by the non linearity and complexity
of the data. whereas the research and advancement in machine learning methods have
improved in better capture dynamic patterns and data complexity. Also studies have
demonstrated the effectiveness of hybrid models which combine different approaches for
time-series forecasting.This section summarizes recent studies in the domain.

2.1 Traditional Forecasting Approaches

Traditional time-series forecasting (TSF) methods like ARIMA and SARIMA have been
employed since the early stages to predict air quality data. These methods assume lin-
earity and stationarity. This limits their effectiveness and are not suitable in modeling
the non-linear and stochastic nature of air quality data.

Pant et al.| (2023) used SARIMA on AQI data for Dehradun, India and achieved
an RMSE of 15.2 and a MAPE of 8.3%. While SARIMA was able to capture seasonal
patterns effectively, but it has failed in handling with non-linearities and sudden changes
in pollutants. [Marinov et al.| (2022)) used ARIMA for air quality forecasting in Sofia
City, this demonstrated the acceptable performance of ARIMA model for short-term
predictions, however the model showed low flexibility for highly dynamic time series data.
Atoui et al.| (2022)) analyzed exponential smoothing methods for AQI forecasting and this
highlights their inability to model sudden variations in pollutant levels. While these
methods have been the foundation for TSF, their limitations demands the exploration of
non-linear and data-driven approaches.

2.2 Machine Learning Approaches

Machine learning models have improved the air quality forecasting by addressing the
limitations of traditional techniques. These models are good at capturing the non-linear
trends and temporal dependencies in the data. This section discusses some neural network
approaches for forecasting and also the hybrid machine learning models.

2.2.1 Neural Networks

Feed-Forward Neural Networks (FFNNs):

Corani (2005) compared FFNNs with Lazy Learning models for AQI data in Milan.
the study shows the FFNNs superiority over traditional methods, but FFNNs required
extensive tuning and large datasets where required to generalize the trained models.
Long Short-Term Memory Networks (LSTMs):

Du et al. (2021)) applied LSTMs to Beijing AQI data, reducing RMSE by 12% com-
pared to ARIMA. LSTMs are good at capturing long-term temporal dependencies but
they struggle with noise and periodicity. Another study by|Chang et al. (2020)) introduced
aggregated LSTMs to integrate data from multiple stations for improving the forecasting
accuracy for PM2.5 levels.



Convolutional Neural Networks (CNNs):

The study by |Lim et al.|(2019) conducted in South Korea demonstrates CNNs’ ability
to identify spatial-temporal patterns in pollutant concentrations, thus improving predic-
tions across multiple regions.

2.2.2 Hybrid Machine Learning Models

Hybrid models combine different machine learning techniques to utilize their individual
strengths in forecasting. |Yi et al.| (2018) developed DeepAir, a hybrid CNN-LSTM model
for AQI forecasting, this study demonstrate the ability of Hybrid models in achieving
accurate predictions across multiple monitoring stations. The study by Arnaudo et al.
(2020)) used Random Forests (RF) to integrate traffic and meteorological data, achieving
short-term prediction accuracy with an RMSE of 8.7 in Milan. While these models
captured non-linearity and temporal dependencies, they fail to perform well in handling
noise and capturing periodic trends.

2.3 Variational Mode Decomposition (VMD)

VMD is a signal decomposition technique introduced by |Dragomiretskiy and Zosso (2014).
While compared to Empirical Mode Decomposition (EMD), VMD minimizes mode mix-
ing and isolates intrinsic mode functions (IMFs), which can handle high noise and works
better for non- stationary time series data.

Wang et al.| (2024) the authors used VMD to decompose PM2.5 data in Beijing with
BiLSTM for forecasting. The model reduced noise and achieved an RMSE of 10.5 and
a MAPE of 6.1%. In a similar study by |Lv et al. (2022) VMD was used in combination
with LSTM for power grid load forecasting, demonstrating its capability to capture multi-
scale temporal patterns. Showing its adaptability to various non-linear time series Zhou
et al.| (2024) extended VMD with multifractal analysis for rainfall prediction.Chen et al.
(2023) demonstrated the integration of VMD with LSTM for AQI forecasting, achieving
significant accuracy improvements over standalone models. |Lim et al.| (2019) integrated
VMD with optimization algorithms for AQI predictions, highlighting the importance of
decomposition in improving forecasting performance.

VMD is important in preprocessing since it decomposing the AQI data,this enhance
the level of accuracy in the forecast results by better handling noise.

2.4 Fourier Analysis Networks (FAN)

FAN, presented by Dong et al.| (2024)) integrates Fourier series into neural network archi-
tectures to explicitly model periodic components in time-series data. This makes FAN
particularly relevant for forecasting of air quality data which contains daily and seasonal
cyclic patterns.

The authors in [Dong et al.| (2024) showed that FAN can reveal oscillating and repetit-
ive features in synthetic air quality data with an RMSE of 9.1 and better than traditional
neural networks.The study suggest that FAN outperforms LSTMs and CNNs with regard
to generalizing across datasets and overcomes problems related to inherent periodicity.



2.5 Summary

The literature review identifies the shift from statistical models to active machine learn-
ing and hybrid models in air quality prediction. Although traditional methods such as
ARIMA and SARIMA formed the foundation, they struggle with non-linear and non-
stationary behaviors. These approaches are overcome by using other approaches like
LSTMs and CNNs but they don’t perform well when there is a lot of noise or periodicity
and require extensive training and large datasets. Other models which have been used
in combination with VMD include neural networks have exhibited better performance by

providing both noise reduction and feature extraction improving forecasting.
This study builds on these advancements by proposing a VMD-FAN hybrid model,
aiming to improve AQI forecasting accuracy.The Table[I|summarizes the literature review

studies.
Table 1: Summary of Reviewed Studies

Study/Authors Methods Key Findings

Pant et al.| (2023) SARIMA RMSE: 15.2, MAPE: 8.3%. Effective for sea-
sonal trends but limited in handling non-
linearity.

Marinov et al.| (2022) | ARIMA Good for short-term predictions; ineffective
for dynamic, non-stationary time series.

Du et al. (2021) LSTM Reduced RMSE by 12% compared to AR-
IMA; effective for temporal dependencies but
sensitive to noise.

Chang et al.| (2020) Aggregated Improved PM2.5 forecasting by integrating

LSTMs data from multiple sources.
Arnaudo et al.| (2020) | Random  Forest | RMSE: 8.7. Robust short-term predictions
(RF) by incorporating traffic and meteorological
data.

Wang et al.| (2024)) VMD-BiLSTM RMSE: 10.5, MAPE: 6.1%. VMD reduced
noise and improved forecasting accuracy.

Lv et al.| (2022) VMD-LSTM Demonstrated VMD’s capability to capture
multi-scale patterns in time series data.

Zhou et al.| (2024)) VMD with multi- | Extended VMD for non-linear and multi-

fractal analysis frequency behaviors; suitable for complex
datasets.

Dong et al.| (2024)) Fourier Analysis | RMSE: 9.1. Superior in capturing period-

Networks (FAN) | icity compared to MLPs and Transformers.

Chen et al.| (2023) VMD-LSTM Improved AQI forecasting accuracy by isol-
ating periodic components with VMD.

Lim et al. (2019) VMD with optim- | Highlighted the importance of decomposi-

ization tion in improving forecasting performance.




3 Methodology

This section explains the systematic approach employed in this research to address the
forecasting of air quality indices. It begins with data collection and preprocessing steps to
clean and segment the data, followed by the decomposition of time series using Variational
Mode Decomposition (VMD). This is integrated with the Fourier Analysis Network (FAN)
to form a hybrid model, combining their strengths to improve prediction accuracy and
address complexities in AQI data. Figure (1] illustrates the proposed hybrid VMD-FAN
model for AQI time-series forecasting.
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Figure 1: VMD-FAN Framework for AQI Forecasting

3.1 Study Area

The study area for this research focuses on Taiwan, located in East Asia between latitude
21° 53’ N to 25° 18’ N and longitude 119° 18" E to 124° 34’ E. Taiwan has a subtropical
climate characterized by four distinct seasons: It is divided into spring season ranging
from March to May, summer season ranging from June to August, autumn season ranging
from September to November and winter ranging from December to February. Seasons
have a great effect on air quality in Taiwan; the concentration of pollutants is higher
during winter caused by extra stability of the air and pollution transportation from
neighbouring territories. The data set used for this study ranges from the year 2016 to
2024 with air quality parameters like PM2.5, PM 10, NOx, CO levels for different parts
of Taiwan. Hence, this diverse and comprehensive database offers a strong foundation



on which to assess the performance of the proposed hybrid VMD-FAN model relative to
conventional forecasting models.

3.2 Data Collection
3.2.1 Data Source

The data set used in this study is identified as the Taiwan Air Quality Data 2016-2024 as
found in Kaggleﬂ This dataset is composed by daily air quality measurements in various
sites in Taiwan, thus contain both spatial and temporal resolution. The columns of the
dataset used in the study is described in the data dictionary Table

Table 2: Taiwan Air Quality Data 2016-2024 data dictionary.

Column Description Data Type
date Date and time of the reading Text
sitename Station name Text

aqi Air Quality Index Numeric

The dataset includes various additional variables other than those used in this study
which include SO2, CO, O3, PM10, PM2.5, NO2, NOx and NO and measure different
pollutants like sulfur dioxide, carbon monoxide, ozone, and particulate matter in the air,
provided in various units like ppb or ppm. Columns like 03-8hr, co-8hr, pm2.5-avg, pm10-
avg, and so2-avg denote smoothed averages of pollutant concentrations, Also geographic
details like longitude, latitude are included . The dataset contains features like the site
name that permits city level analysis. The hybrid model proposed in this study is both
built and evaluated using this dataset.

3.3 Data Preprocessing

This study focuses on the univariate time series forecasting, although the dataset contains
various factors that contribute to air quality the study is limited to Air Quality Index and
its forecasting using hybrid VMD-FAN model. The dataset was pre-processed following
a structural approach in order to optimize it for time series analysis of the Air Quality
Index (AQI). The main data preprocessing steps focused on cleaning and organizing the
data to ensure it was ready for accurate decomposition and forecasting detailed process
is discussed in the below sections.

3.3.1 Initial Inspection and Column Selection

The first step is to get an initial understanding of the dataset and its structure, more
specifically any missing values and the data type of the columns. The dataset contains
5882208 rows and 25 columns. To simplify the analysis and focus on key variables, only
the ’date’, 'sitename’ and ’aqi’ columns were selected. These columns were chosen to
create time-series data for air quality index while reducing unnecessary complexity.

!Dataset url: https://www.kaggle.com/datasets/taweilo/taiwan-air-quality-data-20162024


https://www.kaggle.com/datasets/taweilo/taiwan-air-quality-data-20162024

3.3.2 Missing and Invalid entries

For missing values, the rows which contain incomplete details in the chosen columns were
dropped. This was important in order to ensure that data is clean to allow for analysis in
further steps. The ’date’ and site’ columns does not contain any missing values whereas
‘aqi’” had 43020 missing values also the values with AQI that were either zero or less
than zero were omitted since the AQI only has positive values.

3.3.3 City-wise Data Segmentation

The dataset was segmented by splitting them based on the location, separate city wise
AQI time series was formed. This enables us to evaluate the performance of the proposed
model in different parts of the study area. This is used for the extension analysis to
understand the generalization ability of the proposed model. For the initial development
and evaluation of the model the time series of site ’Annan’ is used this contains 67144
rows. The district of Annan was selected based on the fact that it represents typical
seasonal and periodic patterns of air quality in Taiwan, also the data was clean and had
complete time series with minimal missing values Figure [2| shows the cleaned time-series
data for ’Annan’ city

Time Series of AQI (city: Annan)
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Figure 2: Time Series of Air Quality Index (AQI) for Annan (2016-2024)

3.3.4 Finalization and Saving

Following preprocessing, cleaned data for each of the cities was output separately to
files for further processing. The grouped data for each city is saved as a separate csv
file. This organization ensure that dataset obtained is clean and organized for further
decomposition by means of the VMD followed by forecasting using the FAN.

These preprocessing steps help in cleaning out the dataset and obtaining the best
format suitable for our analysis that aims to forecast timeseries of AQI.

3.4 Data Decomposition Using VMD

Variational Mode Decomposition (VMD) is used to decompose the Air Quality Index
(AQI) time-series data into a series of intrinsic mode functions (IMFs). This step ensures



the extracting of distinct frequency components from the time-series data, this enables
effective forecasting by isolating underlying patterns.
VMD is a modern signal processing technique that decomposes a time-series signal into
a predefined number of IMFs. Each IMF represents a specific frequency band, capturing
components such as trends, periodic patterns, and noise. By isolating these components,
VMD provides a structured representation of the data, each of these IMF are further
processed using the FAN to obtain the forecasting results. The VMD can be represented
as equation (1| (Dragomiretskiy and Zossoj; 2014])
2
} , 1)
2

K
min
{ur} {wr} { Z

k=1

) Ka@) + %) * (uk<t>e"°’“)]

subject to the constraint:

where:
e uy(t): the k-th mode (sub-signal).

e wy: the center frequency of the k-th mode.

f(t): the original signal.

0, time derivative.
e x: convolution operator.

o (t)+ % the impulse response of the Hilbert transform.

3.4.1 Parameter Tuning of vind

To find the optimal decomposition which will lead to better forecasting, decomposition
with every combination of these parameters in Table |3| where conducted:

Table 3: Parameters for Variational Mode Decomposition (VMD)

Parameter | Description Tested Values
K Number of IMF's 3,5, 7

Alpha Bandwidth Constraint 1000, 3000

Tau Noise-tolerance threshold le-6

Tol Convergence tolerance le-5, le-7

3.4.2 Decomposition of AQI Data

For each city, the cleaned AQI data was subjected to VMD decomposition. The AQI time-
series data was input into the VMD algorithm with the predefined parameter grid. The
data was decomposed into multiple IMFs, each representing a specific frequency range.
The decomposed IMFs were saved in structured files for each city, organized based on



VMD Decomposition for City:'Annan' (AQI) (Parameters: K=7, alpha=1000, tau=1e-06, tol=1e-07)
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Figure 3: VMD Decomposition of AQI Time Series for Annan (Parameters: Number
of Modes K = 7, Bandwidth Constraint o = 1000, Noise-Tolerance 7 = 1 x 107¢,
Convergence Tolerance tol = 1 x 1077)

parameter combinations. Figure [3] illustrates the decomposed 7 IMFs of the AQI Time
Series for Annan.

These IMFs captured the different underlying components of the AQI time series such
as Long-Term Trends which include slow-changing patterns in air quality over time, Sea-
sonal Variations which include periodic patterns due to meteorological and environmental
factors, High-Frequency Noise representing short-term fluctuations. The IMF's generated
for each city were saved as individual files, categorized by their parameter settings. This
structured organization allowed for efficient experimentation with different forecasting
models and parameters.

By applying VMD, the AQI time-series data was transformed into a sub time-series
data, enabling the subsequent Fourier Analysis Network (FAN) on each of the components
to focus on specific patterns and improve forecasting accuracy.

3.5 Model Development

The development of the forecasting model involved integrating the Variational Mode
Decomposition (VMD) outputs with the Fourier Analysis Network (FAN). This hybrid
approach leveraged the strengths of both techniques to enhance the accuracy of AQI
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predictions.

3.5.1 Fourier Analysis Network (FAN)

The Fourier Analysis Network (FAN) is used as the core forecasting model for its ability
to effectively handle periodic and cyclical patterns in time-series data. The FAN model
uses a combination of sinusoidal and linear transformations to capture both linear and
non-linear relationships in the decomposed components of AQI data.

Based on Dong et al.| (2024) FAN is designed with the FAN layer ¢(z) defined as
equation [2}

¢(x) = [cos(Wpz) || sin(Wya) || o(B, + Wpz)], (2)

where W,,, W, and B, are learnable parameters and o denotes the activation function.
The entire FAN is defined as the stacking of the FAN layer ¢(z):

FAN(z) = ¢ro¢r_10---0¢; o,

where

() = [cos(Wpx) || sin(Wyx) ||o(B, + Wpe)], ifl <L,
BY + W, if | =L.

The FAN consists of a custom Fourier layer designed to capture cyclic patterns. This
layer uses sine and cosine transformations to extract features from the IMFs generated
by VMD. An output layer maps these extracted features to AQI predictions. The model
was implemented in a sequence-to-sequence format to predict future AQI values based
on past data.

3.5.2 Sequence Creation

The IMFs generated by VMD were divided into overlapping sequences to create inputs
for the FAN model. This was achieved by defining a window size, which specified the
number of past observations used to predict the next AQI value. Each sequence captures
the temporal dependencies in the IMFs.

3.5.3 Training Process

The FAN model was trained for each IMF separately, allowing it to focus on the spe-
cific frequency components represented by that IMF. The data was divided into training
and testing subsets, with 80% used for training and 20% reserved for testing. The model
optimize the Mean Squared Error (MSE) loss, which minimize the average squared differ-
ence between predicted and actual AQI values. The Adam optimizer is used for its ability
to adapt learning rates during training, improving convergence speed and accuracy.

3.5.4 Aggregating Predictions

The predictions from all IMFs are aggregated to reconstruct the final AQI forecast rep-
resented by equation [3| as presented by |Dragomiretskiy and Zosso| (2014]). This approach
helps in capturing the unique information from each IMF to improve overall prediction
accuracy.

11



k=1

where g (t) are the individual IMF forecasts.

3.5.5 Parameter Tuning of FAN Model

The FAN model for each IMF was tunned to find the best parameters for the model based
on the below parameter search grid Table

Table 4: Parameters for Fourier Analysis Network (FAN)

Parameter Description Tested Values
Window Size Length of the input time-series window for processing. | 12

Learning Rate Step size for the optimizer during training. 0.0001,0.00001
P Ratio Proportion of the series used for periodicity modeling. | 0.15, 0.25

FAN Units Number of units in the FAN. 64

3.5.6 Baseline Model

A simple feedforward neural network model BaseNN is included in the study as baseline
model to benchmark the performance.The BaseNN consists of hidden layers with a ReLLU
activation function, followed by a linear output layer that maps the processed input to
the target AQI prediction.The models architecture is simple thereby making it efficient
computationally while also easy to interpret therefore enabling it to use as a baseline
model. The selection of BaseNN can also be justified by the fact that in the time-series
forecasting literature, a simple neural network is often used as a reference point.

3.5.7 Model Testing and Evaluation

The model is tested with the test data. The aggregated predictions are compared against
actual AQI values using following evaluation metrics
Mean Absolute Error (MAE)

MAE = + I~ i )
i=1
Mean Squared Error (MSE)
1 & .
MSE = — ;(yz — )’ (5)
Root Mean Squared Error (RMSE)
L
RMSE = \| > (1 = 5:)*. (6)

Mean Absolute Percentage Error (MAPE)
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By combining VMD and FAN, the model is able to decompose complex AQI pat-
terns into different components and accurately forecast future values, demonstrating the
effectiveness of the hybrid approach.

3.5.8 Experimental environment and configuration

The experiments in this research were conducted using Google Colab. The models were
implemented using Python (version 3.10.12) and PyTorch (version 2.5.1+cul2l) with
GPU acceleration.

Table 5: Experimental Environment Configuration

Experimental Environment Specific Settings

GPU NVIDIA Tesla T4, Memory: 15,360 MB
CPU Intel(R) Xeon(R) CPU @ 2.00GHz
Default Hard Disk 236 GB, 204 GB available

Additional Hard Disk None

RAM 51 GB

Network Cloud-based, dependent on Colab settings

The GPU used for the experiments was an NVIDIA Tesla T4 with 15,360 MB of
dedicated memory, running CUDA version 12.2.and 51 GB of RAM, ensuring efficient
handling of computational tasks. The specific environment configuration is summarized

in Table [

4 FEvaluation

The detailed evaluation of the proposed VMD-FAN hybrid model and comparison with
the baseline models are explained in this section.The analysis also shows the effect of
the best parameter combinations on the performance metrics and also the importance of
parameters in each model. The evaluation is based on the AQI dataset for Annan city
to show that the model is capable of accurately predicting time series data.

4.1 Best Parameter Selection and Model Performance

To ensure a fair comparison, each model was tested with the best parameters for it, the
best parameters are represented in Table[6] The BaseNN model was found to be optimal
with a window size of 12, hidden dimension of 64, learning rate of 0.0001, and a forecast
horizon of 1. Similarly, the FAN model was found to perform optimally with a window
size of 12, learning rate of 0.0001, and a periodicity ratio (pratio) of 0.25, FAN units of
64, and a forecast horizon of 1. In the case of the hybrid models, VMD parameters were
adjusted to ensure optimal decomposition of the signals. More specifically, the number
of intrinsic mode functions (K') was fixed at 7, the bandwidth constraint («) at 1000, the
noise tolerance (7) to 1 x 1075, and the convergence tolerance (tol) to 1 x 10~7. For
the forecasting, both hybrid models employed a window size of 12. The VMD+BaseNN
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Table 6: Best Parameters for VMD and FAN

Component | Parameter Best Value
VMD K 7

Alpha 1000

Tau 1e-06

DC False

Tol 1le-07
FAN P_Ratio 0.15

Fan Units 64

Window Size | 12

Learning Rate | 0.0001

model had a hidden dimension of 64 and a learning rate of 0.0001, while the VMD+FAN
model used a periodicity ratio (pratio) of 0.15, FAN units of 64, and a learning rate of
0.0001.

The performance of each model is presented in Table [7] below. The BaseNN model,
had higher error metrics, with a Mean Absolute Error (MAE) of 2.59 and a Root Mean
Squared Error (RMSE) of 3.99. Likewise, the FAN model which is good at capturing
periodicity was slightly better than BaseNN with an MAE of 2.53 and an RMSE of 3.86.
However, the hybrid models that include VMD performed much better than the two
baseline models. The VMD+BaseNN model had an MAE of 1.49 and an RMSE of 2.11,
while the VMD+FAN model with the lowest overall MAE of 0.72 and an RMSE of 1.16.
The Figure [4] shows the comparison of the final prediction results of each model

Table 7: Performance Metrics of the models.

Model MAE MSE RMSE MAPE
BaseNN 2.585101 | 15.953592 | 3.994195 | 5.052568%
FAN 2.534186 | 14.861638 | 3.855080 | 5.149411%

VMD+BaseNN | 1.485718 | 4.450701 | 2.109669 | 2.924737%
VMD+FAN 0.717643 | 1.352704 | 1.163058 | 1.495354%

4.2 Analysis of Model Effectiveness

As it can be seen from the above results, the inclusion of VMD in the forecast approach
has an effect on model accuracy. By decomposing the AQI time-series data into intrinsic
mode functions (IMFs), VMD effectively successfully extracts features like long-term
trends, periodicities and high frequency noise. This decomposition allows the models
to focus in different aspects of the data, improving the accuracy. The MAE for the
VMD+BaseNN model was reduced by over 77% compared to the BaseNN model without
VMD. Similarly, the VMD+FAN model showed a 70% reduction in MAE compared to
the FAN model, This highlights the effect of decomposition in addressing non-stationary
and non-linear characteristics of AQI data.

The choice of parameters for VMD played a significant role in these outcomes. A
higher number of IMFs (K) improved the granularity of decomposition but also increased
the computational complexity. The selected value of K = 7 ensure balance by capturing
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Figure 4: Comparison of the final prediction results of each model.

critical patterns without overfitting to noise. Similarly (a) of 1000 helped maintain trend
stability, while the noise tolerance (7) of 1 x 107 ensured the model focused on meaningful
data features. These parameter choices emphasise the need to fine-tune the system to
get the best out of the VMD methodology.

4.3 Comparison and Generalization

The results showcase the efficiency of the VMD+FAN model and proves the relevance
of using the hybrid combination of Fourier Analysis Networks (FAN) with Variational
Mode Decomposition (VMD). VMD is effective in reducing noise and isolating periodic
components, while FAN models these periodicities. The VMD+FAN model has the lowest
Mean Absolute Percentage Error (MAPE) of 1.36%, highlighting the combined strengths
of two methods. The VMD+FAN model shows slightly better performance in terms
of Mean Absolute Error (MAE) at 0.67 compared to 0.70 for VMD~+BaseNN and Root
Mean Squared Error (RMSE) at 1.08 compared to 1.09, also this highlights the precision in
forecasting air quality data. The small differences between these metrics suggest that both
hybrid model and the baseline approaches offers comparable accuracy, and VMD+FAN
is particularly suitable for datasets with strong periodic behaviors.

The baseline models were acceptable but could not solve the issues related to complex
AQI data. For example, the BaseNN model was not able to deal with periodicity which
lead to higher error rate. While the FAN model partially deal with this shortcoming,
but still did not attain the level of precision of the hybrid methods. This highlights the
problem with using one model on its own and the need for efficient methods of combining
decomposition with complex forecasting approaches.
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4.3.1 Extension analysis

A model needs to be generalizable. In order to confirm that the resulting model performs
with different scenarios, a extension analysis is conducted and the results are illustrated
in Figure [5| and Table For extension analysis 5 sites Banqgiao, Cailiao, Dongshan,
Zhongshan and Yilan in Taiwan other than Annan which was used to train and evalu-
ate the method where chosen and the VMD-FAN model is applied. The results show
that the hybrid model performs well with all the different sites confirming the models
generalization.

Table 8: Results of Extension analysis using VMD+FAN.

Site MAE MSE RMSE MAPE

Annan 0.717643 | 1.352704 | 1.163058 | 1.495354%
Bangiao 0.978943 | 2.563178 | 1.600993 | 2.626042%
Cailiao 1.130901 | 3.208828 | 1.791320 | 2.914285%
Dongshan | 0.645761 | 1.120890 | 1.058721 | 2.230362%
Yilan 0.613743 | 0.949443 | 0.974394 | 1.883478%
Zhongshan | 1.001847 | 2.530185 | 1.590655 | 2.671513%

4.4 Summary

In conclusion, the results demonstrate the advantages of the proposed VMD-FAN hybrid
model. By combining the strengths of signal decomposition and periodicity modeling,
the hybrid approach achieved higher accuracy in forecasting AQI data. The analysis also
highlights the importance of parameter optimization in enhancing model performance.
The success of the VMD-+FAN model, in particular, offers a promising direction for future
research and applications in air quality forecasting.

5 Conclusion and Future Work

5.1 Conclusion

This research explored a novel hybrid model that combines Variational Mode Decompos-
ition (VMD) and Fourier Analysis Network (FAN) to effectively forecast air quality index
(AQI).The time series data of Air Quality Index (AQI) is very complex and nonstation-
ary, therefore the forecasting and accurate prediction of AQI was challenging. The AQI
timeseries extracted from the original dataset was decomposed into individual Intrinsic
Mode Functions (IMFs) using VMD and each IMF is predicted using a FAN model sub-
sequently aggregated to form a final forecast of AQI values.The proposed hybrid model
predicts the AQI of Taiwan with a MAE,MSE,RMSE and MAPE as 0.717643, 1.352704,
1.163058, 1.495354% respectively and is better than the compared base model. The gen-
eralizability of the model is further validated with extension analysis on different city in
Taiwan.
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Figure 5: Results of Extension analysis.

5.2 Future Work

The study produced promising results, whereas there are few area which faced difficulties
and there is a further scope for improvement.

This study considered only univariate time series forecasting focusing on AQI data, the
dataset contained various other factors which contribute to air quality forecasting. This
data was not able to be included because of the complexity it creates. Future studies can
extend this aspect and conduct multivariate time series analysis to enhance the forecast
and provide comprehensive insights. Also the parameter tunning done in this study was
based on a grid search this added the computational complexity this can be improved
with a optimization algorithm to find the best parameters. The FAN model used in
this study was a basic implementation of the FAN layers by Dong et al| (2024) but this
can be improved with incorporating FAN with Attention mechanisms or Transformers
architectures.

Based on these aspects, it is possible to continue improving the hybrid VMD-FAN
model to give more detailed and effective solution for the time series forecasting problems
in air quality monitoring domain.
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