\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Yugandhar Reddy Bana
Student ID: x22226991

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Yugandhar Reddy Bana

Student ID: X22226991

Programme: Data Analytics Year: 2024
Module: MSc Research Project

Supervisor: Vladimir Milosavljevic

Submission Due

Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1386

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Yugandhar Reddy Bana
Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assighment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Yugandhar Reddy Bana
X22226991

1 Introduction

This tutorial walks through all the steps involved in initializing and running a machine
learning project on Google Colab, including hardware and software requirements, setting up
the environment, integrating the Mapbox API, and a line-by-line explanation of the code that
covers data preprocessing, model training and evaluation, and a few example predictions.
This is with the view to helping the user successfully reproduce the workflow and obtain
good predictive performance using the provided dataset and models.

2 Hardware Requirement

The project was implemented using a Windows 64 operating system with 16 GB of RAM.
The details of the system specification have been highlighted in Figure 1. For this project,
very high specifications are not necessary. A processor lower than an i7 would also work
pretty much fine.

Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch

Related links Domain or workgroup ~ System protection Advanced system settings

BR Windows specifications

Edition \ ws 11 Home Single Language
Version

Installed on

OS build

Experience Feature Experience Pack
Microsoft Services Agreement

Microsoft Software License Terms

Ce

Figure 1: Hardware Configuration

1

3 Software Requirement

To complete this project, there are certain requirements for software that are needed: First,
the use of a valid Google Account should be available to log into Google Drive and Colab.
Google Colab is to be used as an IDE for the execution of the Jupyter Notebook. All
necessary Python libraries have to be installed - pandas, numpy, scikit-learn, xgboost,
lightgbm, matplotlib, and seaborn at a minimum. These libraries are fundamental to data
manipulation, development of machine learning models, and visualization. Finally, one needs
an updated internet browser recently updated version of Google Chrome or Mozilla Firefox-
to access Google Colab and the interface of the Mapbox API. Ensure that all the software is
updated for better functionality.

4 Environment Setup

The initial step in setting up the environment is to ensure proper organization of your files in
Google Drive. Begin by creating a folder structure as follows:

4.1 Organizing Google Drive

o Navigate to the .

« Sign in with the Google Account.

e Create a folder named Colab Notebooks (if it doesn’t exists already).

« Inside the Colab Notebooks folder, create another folder called Research. This folder
will have all the project related files, including the python code and the datasets
required for the project. Place all the files accordingly into the Research folder.

4.2 Setting Up Google Colab

e Access Google Colab.
e Log in with your Google Account.

e Mount the Google Drive, run the following code at the beginning of the notebook to
authenticate and grant access to the Google Drive.

« Inside the Colab Notebooks folder, create another folder called Research. This folder
will have all the project related files, including the python code and the datasets
required for the project.

e Update file paths in the notebook to point to the files inside to the Research Folder.
For example:

Figure 2: Connecting to Google Drive

https://workspace.google.com/intl/en_ie/products/drive/
https://colab.research.google.com/

(%]

house_sold data = pd.read csv("/content/drive/lly Drive/Colah

Figure 3: File path to access to the dataset files

5 Mapbox API Configuration

The Mapbox API is a powerful tool that could be used to integrate geospatial data into your
project. It offers geocoding, the process of converting addresses into coordinates;
visualization of geographic data; and mapping. This project will use the Mapbox API to
handle geocoding, which is necessary to transform address information into latitude and
longitude coordinates for analysis. To get started with the Mapbox API, follow these steps:

5.1 Creating a Mapbox Account

« Visit Mapbox and click on Get Started For Free to Sign Up and create an account.
e Provide your email and create a password, or sign up using Google.

5.2 Generating an API Access Token

e Log in to your created Mapbox account.

o Navigate to the Token section under the Admin Section as shown in the Figure 4.

e Click “Create a Token” to generate the new token.

o Assign a meaningful name to your token.

o Set appropriate permissions for the token, for geocoding please ensure to select
SCOPES:LIST under the Secret Scopes section.

e Click on Create Token and save the token securely as this token will be used in the

code.
e We will get the free access for 100k records and after that there will be charges
accordingly.

5.2 Integrate the API token into the project

e In the Colab Notebook replace the mapbox_api_token with the actual token that is
being copied and stored while creating the token.

6 Code Walkthrough

The code provided in the project has several key steps that contribute to the overall
functionality. Below is a detailed walkthrough of each major component:

e Importing necessary libraries is the first step to ensure all tools required for data
manipulation, visualization, modelling and evaluation.

https://www.mapbox.com/

(@) researchproject v

Account overview

#A Home
Tokens

Tools

Style editar Default public roken) Refresh

pk.eyl1IjoicmVz ZWFyY2hwemogqZWNeTI iwiYSISImMENDZXY 3B6aTBphTgybHM2NmxyM2dacTYifQ. gloeDNn1C78c...

P Data manager
View all tokens >

Admin

<y Tokens Getting started

B Invoices T L T
e G Lo NG

al Statistics 3 @ P © i E IV

serings | Design a custom map i See how Mapbox is i | Leamn aboutthe 1 Leamnowto add your |
| in Mapbox Studio i | used across different | ! building blocks of i | own data to a map |
i ! industries i | Mapbox . :
— e H -1
Account usage View all statistics >

Current billing period ~

Search
service Usage Usage by pricing tler Change from last
perlod
Temporary Geocoding 57.995 57,995/ 100K free
¥ B requests & 198
API requests
R
(&
Help & resources
Docs
Tutorials
Playgrounds

Troubleshooting
© Mapbox Terms Privacy Security

VW W v v

Blog

Figure 4: Interface of the Mapbox after login

[]

mapbox_api token = 'sk.eyJiIjo

Figure 5: MapBox API Token

e The datasets are loaded using pandas, and initial preprocessing is performed to handle
missing values, outliers, and irrelevant columns. New features are engineered if
necessary and all the three datasets have been merged accordingly.

e The data is divided into training and testing in 80-20 percent where 80% of the data is
used for the testing and 20% of the data is used for the testing. This ensures the model
can be evaluated on unseen data.

e Multiple machine learning models using the RandomizedSearchCV for hyperparamter
optimization for training purpose.

7 Model Preparation and Evaluation

This section describes how machine learning models are prepared, trained, tuned, and
evaluated using the dataset. Each model undergoes hyperparameter tuning, training, and

4

evaluation using key metrics: R? Score, Mean Squared Error (MSE), and Mean Absolute
Error (MAE).

port pandas as pd
T numpy as
1 sklearn.model selection import train test split, RandomizedSearchCV
n sklearn.preprocessing import LabelEncoder, 5
1 sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
1 sklearn.tree import DecisionTreeRegressor
1 sklearn.fe: : rt RFE

tandardScaler

n sklearn. ic: iean_squared_error, r2 score, mean_absolute error

numpy as np
matplotlib.pyplot as plt
seaborn as sns

requests

time

folium

warnings

warnings.filterwarnings(" ignore")

Figure 6: Importing the Required Libraries

<class ‘pandas.core.frame_DataFrame">
RangeIndex: 6701 entries, @ to 6700

Data columns (total 17 columns):

Column Non-Null Count

Date of Sale (dd/mm/yyyy) 6781 non-null

Address 1 non-null

County 1 non-null

Price 1 non-null floated
Not Full Market Price 65781 non-null object
VAT Exclusive 1 non-null object
Description of Property 57681 non-null object
Sale Year 5701 non-null inte4
Sale Month 5701 non-null inte4
Season 1 non-null object
Price Level 1 non-null object
Quarter 1 non-null object
longitude 1 non-null floated
latitude 5701 non-null floated
eircode 5701 non-null object
interest_rate 1 non-null floate64
Seasonal Value non-null floated
dtypes: float64(5), int64(2), object(1@)

memory usage: 890.1+ KB

None

Figure 7: Final Data after Data Preprocessing and Data Cleaning

(%)
1
2
3
4
5
6
7
8
9

5

7.1 Random Forest Regressor

The results of the random forest regressor indicate a suitable model with the best
overparameters determined by overparameterization: n_estimators = 500, min_samples_split
= 2, min_samples_leaf = 1, max_features = 'log2'. and max_ allowance = no model 0.88
scores R?, which means it explains approximately 88% of the target variable's variance. The
MAE (Mean Absolute Error) of 28752 shows the average magnitude of the error. The sample
prediction shows that the model is close to the original value; For example, the actual value
of 426,872 was predicted to be 429,093. These results show that the random forest model
provides accurate predictions with minimal variance. This makes it a reliable choice for
dataset.

random_forest_params = {
. _

rf_random_search = RandomizedSearchCV(
estimator=RandomForestRegressor(random state=42),
param_distributions=random_forest params,
n_iter=50,
cv=5,
verbose=0,
random state=42,
n_jobs=-1
)
rf_random_search.fit(X_train, y_train)
rf_best model = rf_random_search.best_estimator_
rf_preds = rf_best_model.predict(X_test)

rf_r2 = r2_score(y_test, rf _preds)

rf_mse = mean_squared_error(y_test, rf_preds)

rf_mae = mean_absolute_error(y_test

print(f"\nRando t 5 st Pare s: {rf_random_search.bes arams_}")

print(f"R2 S . {rf_r: ¥ S or: {rf mse:_4f} | Mean lute Error: {rf_mae:.4f}")

display_sample predictions(y_test.reset_index(drop=), rf_preds)

Figure 8: Random Forest Implementation
7.2 Gradient Boosting Regressor

Gradient Boosting Regressor performs well with best hyperparameters specified as
n_estimators = 100, min_samples_split = 5, min_samples_leaf = 1, max_ allowance = 7 and
Learning_rate = 0.1. The model received an R? score of 0.87, explaining 87% of the variance.
In the target indicator variables MSE 2.1*10'° and Mean Absolute Error 30644. Reveal the
size of the error Example predictions show that the model effectively captures the true value
trend, such as predicting 440528 from a base value of 446940, although the performance is

strong. But the measurement error is slightly higher compared to other models. Some models
indicate that there may be room for further optimization.

gbr_random_search = RandomizedSearchCV(
estimator=GradientBoostingRegressor{random_state=42),
param_distributions=gbr_params,
n_iter=50,
cv=5,
verbose=0,
random_state=42,
n_jobs=-1
)
gbr_random_search_fit(X_train, y_ train)
gbr_best_model = gbr_random_search._best_estimator_
gbr_preds = gbr_best model.predict(X_test)

gbr_r2 = r2_score(y_test, gbhr_preds)
gbr_mse = mean_squared_error(y_test, gbr_preds)
gbr_mae =

print(f"

print(

display sample predictions(y_test.reset_index(drop=), gbr_preds)

Figure 9: Gradient Boosting Regressor

7.3 XGBoost Regerssor

XGBoost Regressor achieves excellent results with the best hyperparameters set to subsample
= 1.0, n_estimators = 100, max_ledge = 10, Learning_rate = 0.05 and colsample_bytree =
1.0, with a maximum R? score of 0.87, which explains 87% of the variance in the target
variable. The MSE of 2.1*10% is nearly equivalent to the Gradient Boosting regressor and the
MAE of 29,402 reflects the low error rate. An example prediction of 514,449 from the
original value of 567,844 shows the accuracy of the model.

7.4 Decision Tree Regressor

The decision tree regressor achieves moderate performance with the best outlier parameters.
min_samples_split = 10, min_samples_leaf = 4, and max_deep = 20. The model's R? score is
0.83, indicating that the target variable explains 83% of the variance. A sample forecast, such
as 440,528 with the original value of 447,874, represents a reasonable but less accurate
forecast. This model may not be as accurate as other models. But it can also be used as a
basis for comparison.

7.5 LightGBM Regressor

LightGBM Regressor demonstrates excellent performance with appropriate hyperparameters:
num_leaves = 50, n_estimators = 300, min_data_in_leaf = 10, max_ledge = 30, and
learning_rate = 0.05, which explains 87% of the variance of the target variables. At MSE
2.2*10%° and MAE 31176 indicate competitive accuracy. Example predictions such as
514,449 compared to the original value of 574,712 confirm the reliability of the LightGBM
model as an efficient and accurate choice. Ideal for large data sets.

xgb_random_search = RandomizedSearchCV(

estimator=xgbh.XGBRegressor(random_state=42),

param_distributions=xgb params,

n_iter=5@,

cv=5,

verbose=8,

random_state=42,

n_jobs=-1
)
xgb_random_search.fit(X_train, y_train)
xgb_best_model = xgb_random_search.best_estimator_
xgb preds = xgb best model.predict(X test)

xgb r2 = r2_score(y_test, xgb preds)

xgb_mse = mean_squared error(y_test, xgb preds)

xgb mae = mean_: lute error(y_test, xgb preds)

print(f" d ts: {xgb_random_search.best_params_}")

print(f" (xgb r2:.4f} {xgb_mse:.Af} | Mean te Error: {xgb_mae:.4f}")

display_sample predictions(y_test.reset_index(drop=)» xgb_preds)

Figure 10: XGBoost Regressor

dt_random_search = RandomizedSearchCV(
estimator=DecisionTreeRegressor(random_state=42),
param_distributions=dt_params,
n_iter=5@,
cv=5,
verbose=8,
random_state=42,
n_jobs=-1
)
dt_random_search.fit(X_train, y train)
dt_best_model = dt_random_search.best_estimator_
dt_preds = dt_best model.predict(X_test)

dt_r2 = r2_score(y_test, dt preds)

dt_mse = mean_squared error(y_test, dt preds)

dt_mae = mean_absolute_error(y_test, dt preds)

print(f"\nD on Tr t : e aram rs: {dt_random_search.best params| }")
{dt_mse:.Af} | Mean Absolute| Err

display sample predictions(y_test.reset index(drop=)» dt_preds)

lgb random_search = RandomizedSearchCV(
estimator=1gb. LGBMRegressor (random_state=42),
param_distributions=1gb_params,
n_iter=58,
cv=5,
verbose=8,
random_state=42,
n_jobs=-1
)
lgb random_search.fit(X_train, y_train)
lgb best model = lgb random search.best estimator_
lgb_preds = 1gb best model.predict(X_test)

lgb r2 = r2_score(y_test, lgb preds)

1lgb_mse mean_squared_error(y_test, lgb preds)

1lgb_mae mean_absolute_error(y_test, lgb preds)

print(f"\nLi GEM Results:\nBest P : {1gb_random_search.best_params_}"

print(f"R : { r2:.4F} Mea ared Error: {lgb mse:.4f} | Mean A E rror: {lgb mae:.4f}")

display_sample_predictions(y_test.reset_index(drop=)» lgb preds)

Figure 12: LightGBM Regressor

