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1 Experimental Setup and Environment

The research is implemented in python programming language and executed utilizing the
Jupyter Notebook environment, running on an Anaconda framework.

• Download and install anaconda from https://www.anaconda.com/download.

• Open anaconda and click on ‘Environments’ and next click on ’create’ at the bottom
left corner.

• Tick the python packages option and give a name, then click create, as shown in
fig 1.

Figure 1: Anaconda environment creation

• After creating go to home page and launch jupyter notebook and open.

• Navigate to desired location in the system and click ‘New’ at top right, then select
‘python kernel’ and start writing the code.
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2 Data Source

The datasets used for the research are CullPDB6133 filtered and CB513, can be down-
loaded from : https://zenodo.org/records/7764556#ZByi1ezMJvI. The datasets down-
loaded are numpy format, then the amino acid sequence and secondary structure labels
are extracted from the dataset using the algorithm given in the github repository of its
original source, Zhou and Troyanskaya (2014) and saved in text format.

3 Data pre-preprocessing

The data pre-processing steps are implemented using the ‘pandas’ and ‘numpy’ python
libraries. The libraries are imported to support the steps mentioned in the report for
processing the data. For label encoding the ‘LabelEncoder’ package in python ‘scikit
learn’ library. The label encoded target variables are converted to on-hot labels by using
‘to categorical’ package, imported from ‘tensorflow’.
In the data preprocessing phase:

• Analyze the data for null values.

• Check the data for white space and remove the white spaces.

• Label encode the secondary structure labels as shown in fig 2.

Figure 2: Label encoding

• Convert the label encoded variables to one-hot labels as shown fig 3.

Figure 3: Converting to one-hot labels

4 Feature Engineering

Three main NLP (Natural Language Processing) methods are used - Word2vec, Glove,
ESM(Evolutionary Scaling Modeling).

4.1 Word2vec

- For the successful extraction of embeddings from amino acid strings using word2vec,
the ‘gensim’ library from python is installed and imported the ’word2vec’ package from
the library as shown in fig 4.
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Figure 4: Importing word2vec

For the Word2vec embedding extraction:
Install ’gensim’, define parameters a vector size of 50, Minimum Count (min count)
defined to 1, and workers as 4. Then train a word2vec model on the amino acid sequence,
shown in fig 5.

Figure 5: Training word2vec model

Then create a function as given in fig 6, to retrieve the embeddings. Extract the
embeddings by calling the function and save as ‘train embeddings’ and ‘test embeddings’.

Figure 6: Function to extract word2vec embeddings

4.2 Glove

- For the extraction using Glove (Pennington et al. (2014)), the “glove.6B.100d.txt” em-
beddings file is downloaded from its official site: https://nlp.stanford.edu/projects/
glove/.

For embedding extraction using Glove:
Create an embedding matrix to load the Glove embeddings which maps each word to its
pre-trained vector according to the standard vector representation, according to the code
snippet in fig 7. Then generate an embedding matrix which retrieves the vectors for each
amino acid sequence.

Figure 7: Loading Glove vector representation
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4.3 ESM

- The ESM embeddings (Lin et al. (2022)) are utilized by installing the ”fair-esm” library
in python and imported the package ‘pretrained’, shown in fig 8.

Figure 8: Importing ‘pretrained’ package

For embedding extraction using ESM: Load the latest version of pre-Trained
ESM model, ‘ESM2-t6-8M UR50D’, shown in fig 9. Next, create a function which extracts
the embeddings of amino acid according to the latest ESM version, fig 10. Then, pass
the amino acid sequences to the function and save the resultant embeddings.

Figure 9: Loading the latest version of ESM

Figure 10: Function to extract ESM embeddings

5 Model Training

The LSTM model and the BiLSTM models are implemented utilizing the ‘keras’ package
from ’tensorflow’ library, as it is widely used for deep learning (Srushti et al. (2023)).
The packages such as ‘LSTM’, ‘Dense’, ‘Embedding’, ‘Dropout’, ‘TimeDistributed’, ‘Bi-
directional’ etc are imported for the enabling all sufficient layers for the model as shown
in fig 11.

Figure 11: Importing libraries for model training

5.1 LSTM Model:

First, define an embedding layer which inputs the embeddings, which is folliowed by
an LSTM layer of 128 units. Then add a TimeDistributed dense layer with ’ReLU’
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activation, which is followed by another dense layer with ’softmax’ activation. Finally
add the output layer. The complete model definition is shown in 12.

Figure 12: LSTM model

Compile the model using ’Adam’ optimizer, then train each model for 10 epocs and
batch size as 32.

5.2 BiLSTM with attention mechanism

For hyperparametric tuning, first define a model with a BiLSTM layer contains 128 units,
followed by the second BiLSTM layer with 64 units. Then, add a TimeDistributed dense
layer with 64 units with ‘ReLU’ activation function and then add the second TimeDistrib-
uted dense layer with 32 units. Finally, add the output layer with ‘Softmax’ activation
function. The model definition is shown in fig 13.

Figure 13: BiLSTM model

After the model defining, define Early Stopping with a patience level of 3 and the
parameter ‘restore best weights’ is assigned as True. Define the early stopping function
as fig 14.

Figure 14: Early stopping regularization

Then, compile the model using ‘Adam’ optimizer and train each model for 20 epocs.
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6 Evaluation

The models are evaluated by metrics like accuracy, precision , f1-score and recall. These
metrics are utilized by importing packages ‘classification report’, ‘accuracy score’ from
python ‘scikit-learn’ library (Ghosh and Shill (2021)).

• Predict the values for the test using predict() function, refer fig 15.

Figure 15: Prediction of secondary structure

• Calculate the overall accuracy using the evaluate() function as shown in fig 16.

Figure 16: Evaluation of model

• Print the classification report, refer fig 17.

Figure 17: Printing classification report

• Generate accuracy and loss plots for the model before and after tuning, refer 18.

Figure 18: Plotting accuracy and loss plots

• Compare the accuracy, precision and plots of all models.
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