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Eight-state Protein Secondary Structure Prediction
Using NLP and Deep Learning

Anjali Augestin
x23155086

Abstract

The protein secondary structure prediction(PSSP) is a significant task in bioin-
formatics, as it determines the structural arrangement such as -helices, beta-sheets,
and random coils, of amino acids. These structures are used to identify the 3D
structure of protein, which in turn determines the function of each protein. This
research mainly investigates the effects of Natural Language Processing (NLP) tech-
niques in integration with deep learning models to predict the eight-state protein
secondary structure prediction. NLP methods such as Word2Vec, GloVe, and ESM
are used for retrieving embeddings from the amino acid sequences and the study
compares their effectiveness in capturing contextual protein features.The LSTM
and BiLSTM with attention mechanisms used for model training, improve predic-
tion accuracy, while challenges such as class imbalance and the inability to identify
all DSSP8 states remain. The findings highlight the potential of language models
but emphasize the need for incorporating additional features like PSSM and res-
ampling strategies to enhance class prediction. This study lays a foundation for
future work in integrating contextual information for improved PSSP accuracy.

Keywords— Bioinformatics, protein secondary structure prediction, Natural Lan-
guage Processing, Word2vec, glove, ESM, LSTM, BiLSTM.

1 Introduction

Proteins play a vital role in all biological processes, in which the structures of each protein
are related to their functions. The amino acid sequence is the primary structure of protein,
while the protein secondary structure describes the folding patterns of these amino acids, which
contribute to forming the stable tertiary structure. Among these, secondary structure prediction
is particularly important as it serves as a foundation for determining tertiary structures and
advancing fields like drug discovery and protein engineering (Srushti et al., 2023)). Initially,
the protein structures are classified into helix, coil, and strand. Later, the protein is classified
into a more detailed eight states: G (helix), I (7-helix), H (a-helix), B (S-bridge), E (8-sheet),
T (turn), S (bend or high curvature loop) and C (coil), known as DSSP8 labels (Kabsch and
Sander), [1983). The research focuses on the prediction of these eight states, known as the Q8
problem.

Predictive models are commonly utilized for predicting the eight-state classes, but not fo-
cusing on the extraction of contextual meaning from the amino acid sequence itself but not
focusing on the extraction of contextual meaning from the amino acid sequence. Recent pro-
gress in deep learning and NLP has improved protein secondary structure prediction. These
methods treat protein sequences like language, making it easier to analyze their patterns. Each



amino acid can be seen as a word, and a protein sequence can be understood as a sentence,
forming a linguistic representation of the sequence. This perspective allows NLP techniques,
originally developed for text, to model protein sequences effectively (Jha et al.| [2023)). Based on
this, researchers have developed protein-specific Language Models like SeqVec (Heinzinger et al.,
2019)) and ProtTrans (Elnaggar et al., 2020), to extract the vector representations of protein.
While these advancements have had a significant impact on bio-informatics and biotechnology,
they come with challenges such as high computational power and runtime, which limit their
scalability and applicability to large datasets (Hoie et al., [2022).

The success of language models (LMs) in natural language processing (NLP) has inspired
this research to explore the effects of basic embeddings methods, inorder to address the com-
putational expense of the above models. Additionally, the research addresses the gap of an
efficient NLP techniques which requires less resource and runtime for the secondary structure
prediction of protein. Thus, this research mainly utilizes NLP methods - Word2Vec, Glove
and ESM, which are computationally less expensive. By utilizing these less expensive methods,
medical practitioners can achieve faster results for time-sensitive protein-related tasks while
also reducing costs in the medical field. Efficient methods helps in faster analysis of protein
structure which in turn enables quicker diagnosis of genetic disorders, identifying pathogenic
proteins, and developing treatments for diseases. Moreover, computationally expensive models
require costly hardware or cloud services, whereas less resource-intensive methods allow hospit-
als, clinics, and research labs with limited access to high-performance computing resources to
leverage these methods for protein analysis.

Research Question:

“How 1is the prediction of eight-state protein secondary structure influenced by deep learning
models combined with NLP techniques for sequence analysis and feature extraction?”

1.1 Research Objectives

e To explore the improvements of the deep learning models integrated with NLP for the
prediction of secondary structure of protein .

e To explore the efficiency of NLP techniques to extract features from proteins while min-
imizing computational resources and time.

e To extract vector representations of amino acid sequence and analyze amino acid sequence
using NLP embedding extraction techniques.

e To identify the advantages and disadvantages of the NLP integrated system compared to
the deep learning models.

e To compare and assess which NLP embedding extraction technique yields the best results
for protein prediction.

The report comprise comprises following sections: Section 2 discussed the review of related
works, section 3 is research methodology, which includes the methods and frameworks used in
the research. Section 4 describes how the investigation is implemented, which is followed by the
section 5 - evaluation and results. Final section concludes and discusses the future improvements
of the work.



2 Related Work

Protein structure prediction is always been a crucial task in bio-informatics and advancements
are still conducting in this particular area. The section discusses the techniques and limitations
of the related works and indicates how it motivated and assisted in this research. The sections
has four subsections in which first part reviews the datasets used, followed by a comparison
of models utilized. Then third section involves the details about language models on protein,
followed by the gap and the solution. Finally, the section is concluded in the summary.

2.1 A Review on Datasets and Methods Used in Protein Struc-
ture Prediction

The datasets used and methods employed in the prediction can create a great impact on the
accurate prediction. The accuracy and performance of predictions may vary depending on the
datasets, scoring matrices, and structure assignment algorithms utilized. |Lin et al.| (2016),
utilized 4prot and CullPDB, which are large datasets. The 4prot dataset is splitted into train,
validation and test set. The model is trained using the train set, fine-tuned using validation
set performance, and the final results evaluated on the test set. The CullPDB dataset was
selected, ensuring that sequences with over 25% identity to the CB513 dataset were excluded.
The training and validation sets were derived from CullPDB, while the CB513 dataset was used
as the test set to enable comparison with previous studies. The above study implies the effect
of CullPDB and CB513 datasets on the model implementation.

The widely used dataset server for the eight state prediction is CullPDB as highlighted
by |Srushti et al. (2023). For training and testing, the dataset containing 5926 sequneces -
“CullPDB5926” is utilized . The “CullPDB5926filtered” dataset from the CullPDB server is
processed and the result is tested aginst the CB513 dataset. By this approach, the research
acquired a better result and enabled them to support the performance of the model to unseen
data as well. PSSM and one-hot vectors are used as the input features for model. Additionally,
the research enhanced the model performance by using an ensemble model which includes two
different deep learning models. The approach of training on one data and testing on another
unseen data inspired and utilized for this research to analyze the ability of model to predict on
new data.

Sofi and Wani (2022)), utilized publicly accessible datasets, including CB6133, CB513,
CASP10, and CASP11. The CB6133 dataset is a non-redundant collection of 6128 proteins
derived from CullPDB by Wang and Drunbrack (2002). Additionally, the publicly available
benchmark dataset CB513 is used by them exclusively for testing, while CASP10 and CASP11
are employed for model evaluation, containing 123 and 105 protein sequences, respectively. The
input features for this research include protein coding features (21 dimensions), PSSM, conserva-
tion score (1 dimension), and seven physico-chemical properties of amino acids. PSSM profiles
were generated using the PSI-BLAST method, with an e-value threshold of 0.001 and three
iterations, and homologous sequences were retrieved from the UniRef90 database. The eight-
state secondary structures were assigned using the DSSP labels, and the seven physico-chemical
properties of amino acids were obtained from Meiler’s study (2002).

Based on the literature survey, the CullPDB and CB513 datasets are frequently used in
research and have consistently got superior results. Therefore, these datasets have been chosen
for my investigation as well.



2.2 A Comparison of Applied Models on Protein Secondary
Structure Prediction

The comparison of dataset used and algorithm applied for the protein secondary structure
prediction is shown in table Various datasets and deep learning models are widely used
for the prediction of protein secondary structure, which are listed in below table. Among the
deep learning methods, the models trained using LSTM method acquired the highest accuracy
compared to other machine learning methods. Thus, it is evident from the below table that,
LSTM technique is efficient in capturing long-range dependencies and handling variable-length
sequences.

Paper Datasets Applied Technique | Results(accuracy)
Jin et al.| (2021) | CASP10, GCN and BiLSTM CASP10-78.05,
CASP11, CASP11-76.81,
CASP12, CB513 CASP12-72.84,
and TS115 CBb513-74.46, TS115-
76.04
Zeng et al|| CASP14set, BiLSTM with Boot- | CASP14-69.95,
(2022) TEST524 strap Aggregating TEST524 -65.61
Wang et al|| CB513 Ensemble of LSTM | 77.9%
(2019) Neural Networks
'Rahman et all| ccPDB 2.0 LSTM and BiLSTM Lstm-83.24, BiLstm-
(2023) 89.10
| DeepCNF Wang| | CASP14set DeepCNF 63.85
et al.| (2016)

Table 1: comparison of applied models on protein secondary structure prediction

2.3 An Analysis on Language Models on Protein

NLP methods have been widely used in bioinformatics in various fields of protein prediction.
Researchers have conducted experiments in building language models for addressing different
protein tasks. The two significant models are ProtTrans (Elnaggar et all 2020) and Seqvec
(Heinzinger et al., |2019)), developed on computationally huge deep learning models like trans-
formers and trained on billions of protein data. The ProtTrans is trained on more than 300
billion amino acids and developed on Transformer-XL, XLNet, BERT, Albert, Electra and T5.
But the model is not actually used for the Q8 prediction, it is only validated for the three-state
prediction and other tasks. Seqvec (Heinzinger et all [2019)), bidirectional LSTM-based archi-
tecture trained on the large UniRef50 dataset. However, this model finds difficult to achieve
good results(68%) for the Q8 prediction compared to other researchers mentioned in the above
comparison.

The effect of language models on protein are also discussed in research conducted byJha
et al. (2023). They extensively used the NLP embedding technique for feature extraction. The
proposed approach considers two representations of a protein: the amino acid sequence and
the 3D structure. They employ a language model and a vision transformer model, leveraging
transfer learning to extract feature vectors from these respective protein representations. The
SeqVec embedding method is utilized to extract the embedding and contextualized value of the
amino acid sequence.

The vast possibilities of NLP in the protein predictions are discussed by |Ofer et al.| (2021)).
The paper features different types of NLP techniques that can create a great impact for the



predictions. They discuss the concept of language of proteins and, framework of considering
and treating amino acid sequences as a sentence. The paper investigates diverse approaches for
the purpose of protein sequence encoding as text and utilizing Natural Language Processing
(NLP) techniques for analysis. It covers traditional methods like bag-of-words as well as re-
cently developed approaches like word and embeddings, language models on protein sequence.
The possibilities to apply the word embeddings techniques for protein structure prediction is
emphasized and explained the effect of such NLP techniques in the prediction.

2.4 Gap Identified and Investigating Solution

Protein secondary structure prediction is a vital field of research, with eight-state secondary
structure prediction posing significant challenges. (Chen et al.|(2016) emphasized the importance
of feature extraction by employing a support vector machine (SVM) classifier to utilize essential
protein sequence features. Their approach integrated PSSM some specific features of protein
and given as input to the model, which ensured the finding of homologous protein structures.
Additionally, they combined Hydrophobicity Sequence Features (HSF) with sequence to identify
which attributes most accurately predicted protein structures.They used the 12 HSF features
and 10 structural features of protein for model optimization, which assisted them to conclude
that structural features were vital for protein structure prediction, effectively capturing sequence
conformation. In contrast,they also identified that hydrophobic features were less significant in
the prediction process. They focused on predicting the structure using the properties of protein
rather than analyzing and extracting the features from the amino acid strings.

A similar study was conducted by |[Sofi and Wani| (2022)) which utilized the physical properties
of protein as features. Their study utilized diverse protein features, including 21-dimensional
protein coding features and PSSM, and examined the impact of conservation scores on structure
prediction. They aimed to improve prediction accuracy by integrating physical properties into
classification models. The researchers proposed a deep learning approach combining two deep
learning models- CNN and LSTM. Additionally, they included an attention mechanism to cap-
ture features effectively along with the model. Their experiments, conducted on four datasets
-CB6133, CB513, CASP10, and CASP11, involved two setups. The first used PSSM along with
sequence features, and used seven amino acid properties for the second one. Results showed that
the first experiment performed well across datasets, while the second demonstrated improved
accuracy, highlighting the significant role of physical properties in structure prediction. This
study also, lacks the proper feature extraction from the amino acid strings, which is the major
aspect that addressed in my investigation.

But, Zhou and Troyanskaya| (2014)) focused on enhancing prediction accuracy by extracting
prominent features from amino acid sequences and highlights the difficulty of achieving balanced
accuracy across all eight classes. Specifically, predicting S (bend) and G (310-helix) classes
proved challenging due to severe class imbalance and insufficient training data. Additionally, the
rare class I presented significant difficulties, with no predictions made for this category. Rather
than addressing the imbalanced nature of the dataset, their research focused on extracting
significant features from amino acid sequences. A generative stochastic network (GSN) and a
CNN network is proposed, to capture features for the prediction.

Collectively, these studies demonstrate different ways the feature engineering applied in ex-
traction in secondary structure prediction of protein. (Chen et al.| (2016) and Sofi and Wani
(2022)) utilized properties of protein to improve prediction accuracy, while Zhou and Troy-
anskaya| (2014) focused on extracting features from sequences itself using GSN, but faced some
limitations. A detailed review of these studies reveals a gap in proper extraction of features
from amino acid strings itself rather than using physical properties of amino acids. So the re-
search aims to investigate about effective methods for the extraction of features from amino acid
string. Moreover, these findings emphasize that selecting and applying features thoughtfully



can significantly boost model performance and classification accuracy, highlighting the crucial
role of feature extraction techniques in this field.

2.5 Summary

The literature survey primarily highlights two key challenges in protein structure prediction and
emphasizes the need for more efficient and computationally cost effective amino acid feature
extraction techniques that extracts contextual information from the amino acids to enhance
protein structure prediction. First, as discussed in section 2.3, the current language models
(Elnaggar et al., [2020), (Heinzinger et al., |2019) are not only highly computational expensive
but also finds difficult to achieve better results for secondary structure prediction, but works
well for other protein tasks. Also the researches mentioned in section 2.4, indicates the need for
the extraction of contextual information from the amino acid string itself.

Therefore combining these two problems, this research introduces an approach to investigate the
impact of basic NLP techniques on protein structure prediction. The study focuses on utilizing
NLP-based feature engineering methods to extract word embeddings from amino acid sequences
which requires less computational resource and time. The widely used CullPDB and CB513
datasets were selected to ensure robust evaluation of the embedding methods. For modelling, an
LSTM model was chosen due to its superior ability to handle sequence-related tasks effectively.

3 Research Methodology

Data Mining process constitutes of various techniques like CRISP-DM, SEMMA and KDD. The
KDD-Knowledge Discovery in Databases methodology is selected as the research methodology
among the other methodologies, which is shown in Fig The systematic approach in KDD
to extract valuable insights from data is helpful in identifying the protein sequence features
correctly. Moreover, protein structure prediction requires extensive data preprocessing and
correct feature engineering, KDD emphasizes the importance of data cleaning and preparation,
ensuring the input data is consistent and reliable. The investigation is implemented in python
language utilizing many python libraries in each phase of the investigation.

[EE)

Model trainingand ¢, /mm e el

hyperparametric tuning

Feature engineering- ¢

NLP techniques /word embedding

P4
=

target data

Converting numpy
dataset to text format ¢

CullPDB6133 filtered
CB513

npy format

Figure 1: Research methodology for eight-state protein structure prediction

The process of eight secondary structure prediction of protein is an iterative process, which



involves the conversion of raw data into processed data according to the prediction requirements.
The following steps and frameworks are used for the investigation:

3.1 Data collection and Dataset preparation

The selection and preparation of appropriate data are fundamental steps in any research study.
For this investigation on protein secondary structure prediction, two datasets were utilized:
CullPDB6133filtered and CB513, which were originally extracted from [Zhou and Troyanskaya
(2014), which can accessed through the link: https://zenodo.org/records/7764556#ZByilezMJvI.
The model is trained and validated on the CullPDB6133 filtered dataset and tested on the
benchmark dataset CB513. The CB513 dataset is frequently used to evaluate and compare the
effectiveness of protein secondary structure prediction techniques because CullPDB6133filtered
dataset and CB513 are disjoint (Srushti et all 2023]), thus it is used as the test set in this
investigation.

The datasets were downloaded and processed to convert them into a human-readable format
suitable for analysis, using the algorithm given in its original source .After processing, the
datasets were organized into meaningful components for the research. Specifically:

1. pss_train’: Contains the encoded secondary structure labels (DSSP8 categories) from
CullPDB6133filtered, for the training set.

2. ‘pss_test’: Contains the encoded secondary structure labels (DSSP8 categories) from
CB513, for the test set.

3. ‘aminoacid_train’: Consists of amino acid sequences from CullPDB6133 filtered, used
for training the model.

4. ‘aminoacid_test‘: Consists of amino acid sequences from CB513, used for evaluating
the model.

This structured organization of data facilitates efficient training, validation, and testing of the
models used in this study.

3.2 Data analyzing and preprocessing

The extracted data is then analyzed and visualized for understanding the data structure and
data types. The data is analyzed using the powerful and widely-used library in Python -
‘pandas’. Also, the data is visualized for the better understanding of the dataset structure .The
distribution of target variable, distribution of sequence lengths and comparison of sequence
lengths and DSSP8 labels are visualized using the python libraries ‘seaborn’ and ‘matplotlib’.
Afterwards, the data is cleaned to avoid missing data and for removing white spaces from the
data.

The target variables are converted into numerical format using the 'LabelEncoder’ from scikit-
learn python library, which ensures consistent and efficient model training.

3.3 Feature Engineering

This is the most crucial process in this research, where the test and train amino acid data is
transformed into embeddings. The embeddings are extracted from the amino acid strings using
three NLP techniques- Word2Vec, Glove and ESM. Additionally, another significant transform-
ation is done by label encoding the protein secondary structure labels.

NLP TECHNIQUES
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Natural language processing (NLP) is a field of computer science which enables machine to un-
derstand human language. Proteins, which can be represented as strings of amino-acid letters,
are a natural fit to many NLP methods (Ofer et al., 2021). Thus, the NLP feature extraction
techniques are used to extract the embedding from the amino acid string in this investigation.
The emebdding methods presented in [Ofer et al.| (2021) for encoding the information of pro-
teins as text and analyzing it with NLP methods are considered for the investigation. Three
embedding methods are mainly considered:

(a) Word2vec: Word2vec is one of the method in NLP for extracting the vector representa-
tion of word.These vectors carries information about the word based on the surrounding
words on their co-occurrence patterns in the sequences (Ofer et al., 2021)), which is as-
sumed to assist to capture the information of each amino acid according to their position
and surrounding tokens. Therefore, this model is opted as one of the NLP technique to
investigate the effects. In this research, the Word2vec embedding extraction is enabled
by using ‘gensim’ library in python.

(b) GloVe: Glove is another NLP method similar to Word2Vec, but it captures the global
context rather than local contextual information.The method was originally developed by
Pennington et al.| (2014) in Stanford University. The “glove.6B.100d.txt” word vector rep-
resentation is downloaded from its official site https://nlp.stanford.edu/projects/
glove/. The specific embedding file, “glove.6B.100d.txt”, was selected as it represents
each word with a 100-dimensional vector. The dimension is chosen as 100 because, it
maintains a balance between preserving sufficient information and maintaining computa-
tional efficiency, making it particularly suitable for protein related prediction tasks using
GloVe embeddings (Bepler and Berger, [2019). The method is chosen to investigate the
effect of the Glove embeddings for the protein structure prediction task.

(¢c) Evolutionary Scaling Model(ESM): The ESM, specifically designed for protein se-
quences, trained on large-scale biological data. The model was developed by Meta Funda-
mental Al Research Protein Team (FAIR) for the accurate protein structure and alpha-
fold predictions, trained on 250 million sequences of the UniParc database , which has
86 billion amino acids (Ismi et al, [2022). The latest version, ESM2 is used as the third
NLP method in this investigation as it outperforms all tested single-sequence protein lan-
guage models across a range of structure prediction tasks (Lin et al. |2022).This model
was implemented using the ‘fair-esm’ Python library, which provides seamless access to
pretrained ESM models for protein analysis.

3.4 Model Training and Hyperparametric Tuning

In this phase, the extracted embeddings from all the three methods are used to train an LSTM
model. All three models are implemented through ‘tensorflow’ library, as it the most and effi-
cient and widely used for deep learning models for protein structure prediction (Srushti et al.,
2023), (Ghosh and Shill, 2021). Key functionalities from the TensorFlow Keras module, such
as LSTM, Dense, Embedding, TimeDistributed, Bidirectional, and Dropout, are employed to
construct a robust architecture for training.

The model is fine-tuned to evaluate the impact of the applied NLP-based embedding tech-
niques on predicting protein secondary structure. Hyperparameters such as learning rate and
the number of epochs are optimized to ensure improved performance. Additionally, an at-
tention mechanism is incorporated into the model to enhance its ability to focus on critical
aspects of the sequence data. This mechanism effectively addresses the challenges posed by
low-frequency classes within the DSSP8 labels and prioritizes relevant sequence regions, thus
improving prediction accuracy (Sofi and Wani, [2022), (Mohamed Mufassirin et al., 2023)).
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3.5 Evaluation and Knowledge Discovery

Finally, all the three experiments are evaluated using the overall accuracy, and per class pre-
cision, fl-score and recall as evaluation metrics. The modules ‘confusion_matrix’ and ‘clas-
sification_report’ are used for retrieving the confusion matrix and classification report.Then,
the influence of the three applied techniques on the protein secondary structure prediction is
compared.

4 Design Specification

The design process of this investigation includes three layers — data layer, processing layer and
presentation layer. The data extracted was in numpy format and it need to be converted to
human readable text format for the further processing. Hence, 3-tier architecture is followed
for this investigation.

The data layer includes the collection, storage and preparation of the data. The raw data
downloaded is processed and converted into text format. The processing layer handles the core
implementation processes like data preprocessing, feature extraction and model training. In
the presentation layer, the outcomes of the processing layer are showcased in an interpretable
and user-friendly manner. The presentation layer includes the graphs, classification reports and
comparison of different NLP techniques and their performance.

The fig[2] depicts design architecture for the eight-state protein secondary structure prediction.

Data layer Processing layer Presentation layer

E —([I g e e evaluation
84 = %
raw data data analysis

QL—P l [ = oo

\ g data , Word2vec,

preprocessing Glowve, ESM

data conversion

Figure 2: The three-tier architecture for eight-state secondary structure prediction

5 Implementation

5.1 Data Analysis

The data is analysed as part of the initial data exploration. The first few rows of test and train
sets are displayed using ‘head()’ function to understand their structure, content, and format. It
helped to verify that the data was loaded correctly. Then, the shape of the training and testing
sets are retrieved and found that the training set has 5534 and the test set has 514 rows.
Missing values can negatively impact model performance, so the dataset is checked for missing.
The dataset found to be clean without any missing values.



5.2 Exploratory Data Analysis

Various visualizations have been done in order to analyze and explore the dataset. For this
investigation, the visualizations include distribution of DSSP8 labels, the variability in protein
sequence lengths, and the relationship between sequence lengths and their corresponding DSSP8
labels. The potential issues including the class imbalance and inconsistency in datasets can be
identified and addresses by comprehending these visualizations.

The bar plot visualization of the frequency distribution of DSSP8 secondary structure labels
across the dataset is shown in Fig[3] The plot indicates that the DSSP8 labels are imbalanced
and the classes such as H and I are rare compared to other classes. The class B is present in
high frequency in the corresponding secondary structure labels of protein. This imbalance poses
a challenge for the model, as it risks overfitting to the dominant classes and performing poorly
on minority class predictions.

Although common resampling techniques, such as oversampling or undersampling, could help
mitigate this issue, they were not implemented in this investigation due to resource and time
constraints. Instead, to enhance the focus on underrepresented classes, an attention mechanism
was incorporated during hyperparameteric tuning, enables the model to emphasize key sequence
regions.

Distribution of DSSP8 Classes
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Figure 3: Distribution of DSSPS8 labels

The variability in the lengths of protein sequences is observed by plotting a histogram, which
is shown in Fig[4l The histogram reveals a peak within the 500-600 range, indicating that the
most common protein sequence lengths fall within this interval. Furthermore, the broad range
of the plot suggests that the dataset includes a diverse array of sequence lengths, including both
short and long protein sequences. The inclusion of both short and long sequences ensures that
the model is exposed to varied structural contexts, enhancing its ability to generalize across
different protein types and sizes.
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Distribution of Sequence Lengths of Proteins
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Figure 4: Distribution of sequence lengths of protein

Finally, a scatter plot is plotted to compare the lengths of protein sequences and their
corresponding DSSP8 labels to check for consistency. The plot is illustrated in Fig[5] in which the
diagonal line indicates a one-to-one correspondence between sequence length and DSSP8 label
length, signifying that each amino acid in the sequence has a corresponding secondary structure
label. Additionally, the plot confirms the absence of outliers in the dataset. This consistent
alignment between sequence and label lengths ensures data integrity, which is essential for the
effectiveness of supervised learning models.

Comparison of Protein Sequence Length vs DSSP8 Label Length
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Figure 5: Comparison of protein sequence length and DSSPS labels length

5.3 Data Preprocessing

The raw data extracted is converted into a structured format for making the data suitable for
feature engineering and deep learning models. The data processing steps include the sequence
tokenization, white space removal and label encoding.

Sequence Tokenization: In this step, each amino acid sequence is converted into individual
characters using ‘tolist()’ function in python, where token represent an amino acid. The amino
acid sequence is converted into a list of amino acid tokens, preparing the the dataset for em-
bedding extraction and model training.

Data cleaning: When the data is tokenized the white spaces are also considered and tokenized.
Therefore, the white spaces are removed from the list for the proper extraction of embedding
without the whitespace.
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Label encoding The target variables, DSSP8 labels are label encoded using the ‘labelen-
coder()’ function in ‘Scikit-learn’ library. The individual tokens are converted into numerical
format required for model training. The conversion ensures that encoding is consistent across
datasets as well as prevent the model from potential mismatch errors during testing.

One-hot encoding: The ‘to_categorical()’ function from ‘Keras’ on tensorflow is employed for
this conversion. The numeric labels are converted into one-hot encoded vectors, where each
label is represented as a binary vector with a 1 in the index corresponding to its class and 0
elsewhere. The one-hot conversion ensures the consistent input for the deep learning model.

5.4 Embedding Methods - Feature Engineering

This is one of the most significant phase in this research where the embeddings are extracted
from the amino acid strings using three different NLP techniques. These embeddings are then
given as the input to the LSTM model. The investigation is done as three different experiments,
each experiment includes the embedding extraction using the different NLP methods and model
training using LSTM.

5.4.1 Embedding Extraction Using Word2vec

The Word2Vec model was trained on the tokenized amino acid sequences from the training
dataset using the Word2Vec implementation from the gensim library. The parameters defined
for training - A vector size of 50 was selected, as 50-dimensional embeddings are widely used
for compact and effective representations (Sivakumar et al., 2020). This choice ensures efficient
mapping of each amino acid to a meaningful 50-dimensional vector.

Minimum Count (min_count) defined to 1, which ensures that even rare amino acids are
included in the vocabulary.Finally, Workers parameter utilized 4 parallel threads for efficient
training.

Embedding Extraction: A custom-built function named ‘sequence_to_embedding’ was de-
veloped as part of this research to transform each amino acid sequence into a corresponding
series of embeddings The corresponding vector representation for each amino acid was retrieved
from the trained Word2Vec vocabulary.

Padding for Consistency: The sequences of varying length from the embeddings are padded
to ensure uniformity in the input for the LSTM model. The length of the longest sequence
across the training and testing datasets was to set a standard size ‘max_len’. For padding, all
shorter sequences were padded with zero vectors at the end to match the maximum length,
ensured fixed-length sequences for batch processing, which is a requirement for LSTM model.
The resultant dataset is a padded matrix of size (number_of_sequences, max_len, 50) for training
and testing set.

5.4.2 Embedding extraction using GloVe

Pre-trained GloVe embedding ‘glove.6B.100d.txt” was downloaded and used, where each char-
acter or residue was represented by a 100-dimensional vector (embedding dim = 100). The
GloVe embeddings file was read line-by-line for loading the embeddings, each character and its
corresponding vector were stored in a dictionary.

Embedding Matrix: An embedding matrix of size (vocab_size, embedding dim) was cre-

ated to map each amino acid token to its pre-trained vector.The embedding foe each amino
acid was retrieved from the GloVe dictionary.If an amino acid was not present in the GloVe
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embeddings, its row in the matrix was initialized to zeros. Finally, a padding matrix of size
(number_of_sequences, 700) was generated for the training and testing sets.

5.4.3 Embedding extraction using ESM

The latest version of pre-Trained ESM model, ‘ESM2-t6-8M_UR50D’ is loaded and used for
generating embeddings based on evolutionary relationships, learned from a massive protein
database. The ‘batch_converter’ is also used to convert protein sequences into the structure
required by the ESM model. It also comprehends and handles special tokens like start and end
tokens, which are used to indicate the start and end of sequences.

Extracting ESM embeddings A function ‘get_esm_embeddings’ was created particularly
to generate embeddings for a list of sequences. The train and test sets are passed into the
function to retrieve the embeddings. The extracted embeddings capture both local and global
context. The end and tokens are excluded to keep the focus only to amino acid strings. For
obtaining a fixed-length vector representation for each sequence, the embeddings for all residues
in a sequence are averaged.

The processes are repeated as batches for all sequences in the dataset and resultant dataset is
converted into a matrix of shape (number_of _sequences, embedding_dim).

5.5 LSTM model for eight-state protein structure prediction

LSTM model is used for model training for all three experiments. The extracted embeddings
are given to the defined LSTM model. The model is complied using ‘Adam’ optimizer and
accuracy is used as the evaluation metrics during training and testing.

The model architecture includes then following layers:

Embedding Layer: The input to the model is given in the embedding layer, which is a sequence
of protein embeddings with a fixed length (max_len) and dimensionality (embedding dim). This
input layer depicts the the extracted embeddings using methods such as Word2Vec, GloVe, or
ESM.

LSTM Layer: A LSTM layer of 128 units is defined after the embedding layer. This layer
holds the temporal dependencies in the protein sequence data, making it ideal for sequence
prediction tasks. The the output of the LSTM layer should be a sequence that matching the
length of the input, which is ensured by setting the parameter return_sequences=True’.
TimeDistributed Dense Layer 1:To reduce the dimensionality of the LSTM output as well
as to produce linear output, a fully connected layer is applied with 64 hidden units and a ‘ReLU’
activation function at each step, Using the ReLLU activation function, the model achieves faster
training compared to traditional activation functions like Sigmoid and Tanh (Ghosh and Shill,
2021]).

TimeDistributed Dense Layer 2: Another dense layer with ‘softmax’ activation at each
time step enables a valid probability distribution for all target classes. The Softmax function is
usually used for the deep, learning classification models, because it ensures that output probab-
ility of the model Classification represents the probability that the input falls into each of the
classes (Ghosh and Shill, 2021)).

Output Layer: It outputs the sequence of predictions for the secondary structure of the input
data.

Each model is compiled using ‘Adam’ optimizer, which is efficient for handling large data-

sets. The loss function is also defined as categorical crossentropy and accuracy is used as the
evaluation metrics for all three experiments. The models are trained using the processed amino
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acid strings that is the embeddings from Word2vec, GloVe and ESM. Each model was trained
for 10 epochs with a batch size of 32. The same dataset was utilized for both validation and
model evaluation.

5.6 BILSTM with Attention Mechanism

An enhanced model of BiLSTM with attention mechanism, dropout and hyperparametric tun-
ing is implemented to explore the effects as mentioned in research methodology section. This
enhanced model constitutes Bidirectional LSTM(BiLSTM), attention mechanism, dropout reg-
ularization and early stopping. The model architecture includes:

Bidirectional LSTM layers: The first BILSTM layer contains 128 units and the second
BiLSTM layer adds a layer with 64 units which enables the model to capture more dependen-
cies and for deeper representation learning.

Dropout Layers: The dropout layers are added to reduce overfitting. Dropout layers with
a rate of 0.3 are added after each BiLSTM layer. The value of 0.3 keeps a balance between
reducing overfitting and preserving ability to capture information from the sequence. Moreover,
Srushti et al.| (2023) highlights, that 0.3 is typically an effective range for dropout rates, as it
provides a moderate level of regularization.

TimeDistributed Dense Layers:The first dense layer is given with 64 units with ReLU ac-
tivation function which produces linearity. The next dense layer uses 32 units with 'ReLU’
activation, which reduces the dimensionality of sequence representation for attention mechan-
ism.

Output Layer: ‘Softmax’ activation function is applied to the final time dsitributed layer which
produce the distribution of all classes. The target variable classes are given as the number of
units in this output layer.

The model includes the attention mechanism through these layer not only to improve focus
on relevant parts of sequence, but also to have higher priority to less frequent classes in the
target. Additionally, regularization with Early Stopping mechanism with a patience level of 3,
is added to the model for monitoring validation loss. It ensures tarining halts early, if there is
no progress in loss for 3 consecutive epocs. The parameter ‘restore_best_weights’ is assigned as
True ensures the model returns to the best-performing state which avoids overfitting. Then all
three models is tuned for 20 epocs, based on the these enhancements.

6 Evaluation

The research involves three experiments which investigates the effect of three NLP techniques-
Word2vec, Glove and ESM on protein secondary structure prediction.These methods are utilized
to generate embeddings from amino acid sequences, which serve as input features for training the
LSTM model. Each experiment investigates how these distinct embedding strategies influence
the predictive performance of the model.

6.1 Experiment 1 - Word2vec with LSTM

The LSTM model initially achieved an overall accuracy of 89.48%, while the tuned model with
an attention mechanism improved to 91.89%. The classification report of the model before and
after hyper-parametric tuning is shown in Fig[6] It is evident from the report that, the untuned
model performed well on the majority class (B) but showed significant disparities in predictions
for other DSSP8 classes. Also the training and validation accuracy plots shown small spikes in
the accuracy and loss curves, indicating that the model might occasionally overfit to specific
batches or encounter harder to learn patterns within the training data. The enhanced model
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with attention mechanism as mentioned in methodology section is implemented and the model
is tuned in order to address these issues as well as to explore the effect of the enhanced model.

precision recall fi-score precision recall fil-score

B 0.96 0.98 8.97 B 1.00 1.00 1.00

E 0.18 0.00 0.00 E 9.35 0.02 0.03
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H 0.26 9.64 9.37 H 8.32 .96 p.48

I 0.00 0.00 0.00 I 0.00 0.00 0.00
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macro avg 0.24 0.21 0.18 macro a\% 0.28 5.5 5. 20
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& & weighted avg 0.92 0.92 0.90

(a) classification report before tuning (b) Classification report after tuning

Figure 6: The classification reports of the model before and after hyper-parametric tuning

The classification report after hyper-parametric tuning shown in [6b] indicates that the
precision of classes B, E, H and L increased, but the unidentified classes remains same. The
plots in Fig 7| display the training and validation accuracy (left) and loss (right) after hyper-
parametric tuning. The training accuracy starts lower but rises quickly, leveling off around 90%
after a few epochs. This demonstrates that the model learns effectively from the training data.
The validation accuracy remains consistently high, around 92%, with minimal fluctuations
after the initial epochs, which indicates that the model generalizes well to unseen data and
overfitting is minimal, a positive outcome of tuning and techniques like dropout, early stopping,
and attention.

Training and Validation Accuracy Training and Validation Loss

0927 0.50 1 — Train Loss
Validation Loss

0.86 —— Train Accuracy
Validation Accuracy 0.20 4

T T T T T T T T T T T T T T
o 2 4 6 8 10 12 0 2 4 ] 8 10 12
Epochs Epochs

Figure 7: Accuracy and loss plots of Word2vec with LSTM after tuning

6.2 Experiment 2 - Glove with LSTM Model

The Glove embeddings is given as the input to the LSTM model trained for 10 epocs for
the second experiment. The classification report of the model trained before and after hyper-
parametric tuning is illustrated in Fig Initially, the model achieved an overall accuracy of
77.1%, which improved to 83.62% after tuning. This model effectively identified the classes B,
E, H and L similar to the first experiment but with lower precision for all identified classes
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compared to the first experiment.The large gap between the weighted average precision (80%)
and recall (77%) suggests overfitting to majority classes, particularly B.

precision recall fi-score precision recall fi-score
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(a) classification report before tuning (b) Classification report after tuning

Figure 8: The classification reports of the Glove with LSTM model before and after
hyper-parametric tuning

The classification report after tuning is shown in After tuning incorporated with atten-
tion mechanism the he weighted averages improved (precision: 81% and recall: 84%), indicating
the model’s better balance across classes, but still favoring the majority classes. Also, perform-
ance for class B improved significantly, with nearly perfect precision, recall, and F1-scores.Class
H showed increment, with its Fl-score increasing to 47%, indicating better recognition of this
class. But, the class E identified before tuning, no longer identified at all, with zero recall and
Fl-scores due to attention mechanism may have overemphasized the majority classes like B
and H. The the training and validation accuracy (left) and loss (right) after hyper-parametric
tuning is shown in [0} which indicates the model performance without overfitting.

Training and Validation Accuracy Training and Validation Loss
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Figure 9: Accuracy and loss plots of Glove with LSTM after tuning

6.3 Experiment 3 - ESM with LSTM model

For the third experiment the ESM embeddings are given to LSTM model. Before tuning, the
model acquired an accuracy of 53.63%, but only identifying the classes B with a precision of 76%
and H with a lower precision of 24%. After hyper-parameter tuning, the model demonstrated
improved performance by successfully identifying two additional classes, E with a precision
of 21% and L with a precision of 53%. However, the precision for the majority class, B,
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decreased to 71%, while the precision for class H remained nearly unchanged. This shift in
performance suggests that the model, enhanced with an attention mechanism, adjusted its focus
by prioritizing previously unidentified or underrepresented classes, reducing the bias toward the
majority class.The classification report of the model before and after tuning is shown in fig
The validation-training accuracy and loss plots after tuning shown in fig [T} which indicates a
the model performance with lower overfitting while faces challenges in maintaining consistent
performance on the validation data.

Lildbbd>lllidLiul ReEpuiL; LlassiTication Hepor‘t:
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Figure 10: The classification reports of the ESM with LSTM model before and after
hyper-parametric tuning
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Figure 11: Accuracy and loss plots of ESM with LSTM after tuning

6.4 Discussion

The comparison of overall accuracy of three experiments is shown in table 2l The first ex-
periment employed Word2Vec embeddings as input to the LSTM model. The model achieved
89.48% accuracy before hyperparameter tuning and improved to 91.89% after tuning. However,
the issue of class imbalance affected the model evidently, as the model strongly favored the
some classes such as B, E, H and L. In the second experiment with GloVe embeddings the
model achieved 77.1% accuracy before tuning and 83.62% after tuning, showing a significant
drop in accuracy compared to Word2Vec. Precision for all identified classes (B, E, H, and L)
was notably lower. For the third experiment, utilising the ESM embeddings, LSTM model
demonstrated improved focus on minority classes after hyperparameter tuning, particularly for
class E and L.
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Embedding LSTM BiLSTM with at-
method tention

Word2Vec 89.48 91.89

Glove 77.1 83.62

ESM 53.63 56.14

Table 2: Comparison overall accuracy for three models

The comparison of per-class precision for all three models with the dropouts are depicted
in table [3| for better understanding of the effects of both NLP techniques and hyper-parametric
tuning applied. For the word2vec with LSTM model, the model identifies B, E, H and L classes
before tuning, but after tuning the precision improved across all classes. But for the Glove with
LSTM model, the model performance is dropped compared to word2Vec. Finally, for the ESM
embeddings, the model identifies only B and H initially, and identifies two more classes, E and
L after tuning.

Model Dropout | B E G H 1 L S T
LSTM + |- 0.96 [0.18 |0.00 |0.26 |0.00 |[0.49 |0.00 |0.00
Word2vec

BiLSTM + | 0.3 1.00 | 035 |0.00 [032 |0.00 |0.60 |0.00 |0.00
Word2vec

LSTM + |- 0.95 [033 000 |024 |0.00 [0.62 |0.00 |0.00
Glove

BiLSTM + | 0.3 0.99 [0.00 |0.00 |0.31 0.00 [0.55 |0.00 | 0.00
Glove

LSTM + |- 0.76 [ 0.00 |0.00 |0.24 |0.00 [0.00 |0.00 |0.00
ESM

BiLSTM + | 0.3 071 021 000 |0.25 |0.00 |0.53 |0.00 |0.00
ESM

Table 3: Precision of DSSP8 Classes for LSTM Models with Various Embeddings

The overall methods and architecture of the experiments was methodologically efficient,
but the choice of embeddings and model configurations had a significant impact on the results.
Static embeddings such as Word2Vec and GloVe demonstrated limitations capturing the com-
plexity of protein secondary structures. In contrast, the ESM embeddings significantly enhanced
performance, as the attention mechanism effectively shifted focus from the dominant classes to
previously underrepresented or less accurately predicted classes, leading to improved balance
in prediction. The hyperparameter tuning process proved beneficial, but further exploration of
regularization techniques is needed for more robust model. The imbalance in the DSSP8 data-
set continues to pose a significant challenge in protein secondary structure prediction research,
as also highlighted by Zhou and Troyanskayal (2014) and [Ismi et al.| (2022). The resampling
techniques are not employed in this research due to resource and time limitation. Incorporat-
ing class balancing techniques and utilizing transfer learning from larger protein datasets could
further improve model performance.

This research demonstrates the potential of NLP techniques in protein secondary structure
prediction but highlights the need for further improvement. A significant limitation of protein
language models reviewed in the literature survey, is the high computational resource and time.
Even using low resource techniques, this research still faced resource exhaustion during the em-
bedding extraction. Significant improvements can be done by including other protein features
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like PSSM and HMM along with the embeddings to improve the accuracy across all classes
as depicted in papers reviewed in the literature section, |Chen et al.| (2016) and |[Sofi and Wani
(2022).A similar study by [Jin et al. (2021)) successfully combined ProtTrans embeddings with
PSSM and HHM profiles, achieving notable model improvements. Another significant improve-
ment that can be done is the enabling of ensemble model with combination of different deep
learning model and different protein input along with these NLP embeddings can improve the
prediction as highlighted by |Singh et al. (2022) and |Wang et al.| (2019), which is also clearly
stated in section 2. The insights on combining static embeddings with protein-specific features
and ensemble models encourage academic researchers to experiment with hybrid methodologies
for improved accuracy and robustness.

This research demonstrates the feasibility of using computationally less expensive NLP tech-
niques, such as Word2Vec, for protein secondary structure prediction. Additionally, the research
identifies the limitations of static embeddings in extracting protein features while enhancing the
use of attention-based mechanisms along with ESM for improving the predictions. However,
the research shows the persistent challenge of class imbalance in protein datasets, contributing
to the necessity of incorporating class balancing techniques. The research provides potential
impact on both medical practitioners and academia. The computationally less expensive NLP
techniques makes it possible for medical and research practitioners to perform protein structure
predictions faster and cost effectively. Also, it improves the accessibility in resource-constrained
settings like small labs or hospitals. Moreover, the study contributes to the feasibility of NLP
techniques in bio-informatics, for exploring lightweight approaches in protein related tasks.
This research enables interdisciplinary collaboration, allowing computer scientists, bioinform-
aticians, and molecular biologists to work together in advancing protein prediction techniques
by adapting NLP models for protein sequences.

7 Conclusion and Future Work

The research focuses on investigating how is the prediction of eight-state protein secondary
structure influenced by deep learning models combined with NLP techniques for sequence ana-
lysis and feature extraction. The NLP techniques such as - Word2vec, Glove and ESM are
used with LSTM model for investigating the effect. The Word2Vec with LSTM, GloVe with
LSTM, and ESM with LSTM models achieved overall accuracies of 91.89%, 83.62%, and 56.14%,
respectively. However, all three models only identified the classes B, E, H, and L, highlight-
ing that embeddings generated from these techniques alone are insufficient for predicting all
eight classes. Notably, the ESM with LSTM model demonstrated improved performance on
previously unidentified classes when combined with a BILSTM and attention mechanism.

In future, the research can be extended by exploring the embeddings from these models along
with other protein features like PSSM. Moreover, resampling or class-balancing techniques, such
as SMOTE or cost-sensitive learning, can address class imbalance challenges effectively. Ad-
ditionally, experimenting the embeddings with hybrid architectures such as ensemble methods
or transformers, could improve the prediction of underrepresented classes and overall model
performance.
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