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Few-Shot Thoracic Disease Classification Using
Prototypical Networks

Ramsha Amir
X23218215

Abstract

Thoracic diseases are among the most common health challenges worldwide,
requiring accurate diagnostic tools to ensure timely intervention and better treat-
ment outcomes. These diseases encompass a wide range of conditions affecting the
lungs, heart, and other key organs within a thoracic cavity, which poses significant
challenges for early diagnosis and effective treatment. For instance, diseases such
as pneumonia, cardiomegaly, and COVID-19 lead to several complications ranging
from respiratory failure and in some cases even death, hence the need for timely
diagnosis to improve patient outcomes. However, the lack of labeled medical image
datasets for these diseases makes it difficult to create reliable diagnostic models.
This study investigates few-shot learning models, particularly Prototypical Net-
works into practice, for thoracic disease detection using minimal annotated chest
X-ray images. Few-shot learning has proved significant for medical imaging, where
large annotated datasets are not available. The approach proposed makes use of
pre-trained models like VGG19, ResNet50, or DenseNet121 for feature extraction
will subsequently classify diseases well with very few samples per category.

Key Words: X-ray Image, Few-Shot Learning, VGG19, ResNet50, DenseNet121,
Prototypical Networks, Thoracic Disease Detection

1 Introduction

A chest radiograph commonly known as chest X-ray, is the most common imaging dia-
gnostic used in the diagnosis of abnormalities in the airways, blood vessels, bones, heart,
lungs, and other areas within the chest cavity @Çallı, Sogancioglu, van Ginneken, van
Leeuwen and Murphy (2021).

Conditions such as pneumonia, COVID19, cardiomegaly if not detected promptly can lead
to severe complications including respiratory failure and mortality. Early and accurate
diagnosis is important, as the prevalence of these diseases are increasing across the world.
The figure 1 below shows a normal x-ray and x-ray in which pneumonia and covid is
detected.
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Figure 1: Normal Vs Pneumonia and Covid 19 X-ray Images

The greatest challenge in the medical image domain is the diversity of the data set
in terms of the number of samples. While the public data sets have recently tried to
expand, these data sets are still limited and deal with the specific problem space. It is
very expensive to enlarge such data sets, both in terms of increasing their number and
diversifying them to best represent the problem. Moreover, the procedure to label these
data sets is a process that should be worked under the supervision of radiologists and
researchers together Soysal et al. (2023).

To overcome the challenges of limited data researchers have explored techniques such
as artificial dataset augmentation and the application of machine learning algorithms to
address data limitation. Few-shot learning algorithms are really highly effective. Unlike
traditional deep convolutional neural network which require large amount of labelled data
and cause overfitting if trained on small datasets, few-shot learning allows models to learn
efficiently from a small number of labelled samples Cores et al. (2022).

By using few-shot learning techniques, with an emphasis on prototypical networks, this
study seeks to close the diagnostic gap in thoracic diseases. The substantial difficulties in
obtaining extensive, labelled medical datasets make this method necessary. Medical ima-
ging files frequently need to be expertly annotated by radiologists, which is an expensive
and time-consuming procedure. In order to overcome this constraint, few-shot learning
allows models to learn efficiently from a small number of labelled samples.The goal of
few-shot learning is to produce useful learning results using a small amount of labelled
data in the training dataset, which consists of examples of inputs and their matching
results.

1.1 Research Question

”How effectively can Prototypical Networks, combined with pre-trained fea-
ture extractors like VGG19, ResNet50, and DenseNet121, detect thoracic
diseases from chest X-ray images in scenarios with minimal labeled data?”

1.2 Research Aim

This research primarily aims to create a few-shot learning framework that detects and
classifies thoracic pathologies from NIH xrays. This research also aims to address the
problems of limited labeled data using advanced pre-trained feature extraction and few-
shot learning techniques to improve diagnosis and accuracy.

2



1.3 Research Objectives

The objective of this research is to implement few-shot learning using prototypical net-
works for thoracic disease classification and by utilising pretrained feature extractors such
as VGG19, ResNet50 and DenseNet121. The list below highlights the steps carried out
for developing the thoracic disease classification for this research:

• Conduct exploratory data analysis to understand the thoracic disease classes in the
NIH Chest X-ray dataset.

• Preprocessing the images by applying augmentation and clahe and using feature
extraction using pre-trained models such as VGG19, ResNet50, and DenseNet121.

• Developing few-shot learning framework using Prototypical Networks for thoracic
disease classification with limited training samples.

• Applying 3-shot and 5-shot learning techniques are used in this framework to es-
timate its performance with different feature extractors.

• Asses the performance of the model based on the evaluation metrics

2 Related Work

Existing research on thoracic diseases classification reveals the methods, architectures,
and approaches that have shaped the models in this field. By reviewing the previous sys-
tem architectures, techniques, and datasets, this work will bring forward the advantages
and disadvantages of each approach. Such aspects are essential needs in solving challenges
while developing models with a particular emphasis on few-shot learning. This review
is intended to bring forward the limitations of the existing methods and thus provide
a basis for enhancement towards more efficient and accurate thoracic disease detection
models.

2.1 Thoracic Disease Detection with CNNs

Deep learning’s capacity to automate and improve diagnostic accuracy, especially with
chest X-ray images, has led to its increasing use in the diagnosis of thoracic diseases. Most
systems are like each other in that they start with the preprocessing of X-ray images before
applying deep learning model, classifying the disease present in the images. Although
most of the studies developed under this framework show similarities regarding the models
and techniques considered, approaches, and data sets can be significantly different from
one to another. It has worked on different thoracic diseases, though each method has its
strengths and limitations discussed in the following studies.

Although big datasets are a plus for deep learning models, manual annotation poses a sig-
nificant challenge in acquiring this kind of data, especially when it comes to multi-center
or crowd-sourced data, owing to ethical and privacy issues. Some new innovations such
as domain adaptation, generative models-like GANs, and semi-supervised learning seem
very promising solutions for overcoming such limitations, but they are greedy for huge
data and may become very tedious in training models. And active learning, which deals
with uncertain predictions to be manually corrected, has proven beneficial in reducing
burdens of annotation, though expert intervention is not completely offset.
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To summarize, while CNNs have become a dominant technology for segmentation and
classification in medical imaging, their generalization error, variability in data, and the
lack of huge, annotated datasets remain stumbling blocks towards their deployment into
clinical practice.

The development by Pant et al. (2021) is based on research work that focused on creating
a deep learning system with the aim of early detection and diagnosis of thoracic ailments
through chest X-ray images. The model, trained from the NIH Chest X-ray Dataset,
was based on VGG16-based Convolutional Neural Networks (CNNs) that achieved high
accuracies of 99% for training and 96.14% for validation. This was intended to be a
great help to clinicians, especially in emergency settings, by automating the detection.
It was tested by different classes of thoracic diseases, such as normal and pathological
conditions, and had a web-oriented GUI for practical clinical end-use applications.

Although the system performed well, the authors pointed out a number of drawbacks,
such as its reliance on a sizable, carefully selected dataset that might not translate well to
smaller or more diverse datasets. Such limitation arises from applying only the VGG16
architecture within the progress of developing the envisioned deep learning architecture.
the high stability of the model across the classes of diseases and different imaging scen-
arios. Some features such as image segmentation and spatial object detection weren’t
investigated while the system was designed for read posterior-anterior view of chest X-
rays which brings a limitation as to its use in the environment where different imaging
views or type are used. The study also extended the application to a mobile application
to increase accessibility; however, real-time processing and constraint of existing devices
still pose problems.

Abbas et al. (2021) n their research devised DeTraC which is a convolutional neural
network aimed at classifying chest X-rays images of COVID-19 patients. DeTraC fur-
ther segments classes to sub classes in order to induce refined predictions by addressing
inconsistencies across the datasets through decomposing the classes into sub classes and
utilised transfer learning with pre-trained models to achieve great accuracy in detecting
COVID-19 from diverse global datasets. However, the working of its techniques may
encounter hurdles when applied to a small, specialized dataset especially with a broader
collection of thoracic diseases. Besides, the intricate architecture of DeTraC and that it
requires significant computational resources might limit its adaptability to datasets with
lower image count and multiple disease classes. Also, the other constraint in this research
is that it only focuses on a single disease, COVID-19, and therefore, the model may not
be directly applicable to the classification of multiple thoracic diseases with different
characteristics.

The research conducted by Kesim et al. (2019) reviews the utility of small convolutional
neural networks in real-time applications for chest X-ray images instead of using large
pre-trained networks which are inefficient in terms of generalization for various imaging
modalities. The proposed network attained 86% accuracy classification of images into
twelve classes with real-time classification under one second on an embedded system. The
present work evaluated images for data imbalance through augmentation and different
CNN models using the ChestX-ray 14 dataset. The paper presents the necessity of small
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network architecture for efficient functioning at embedded systems while proposing future
work such as mobile application development and dataset enrichment. However, the study
primarily depends on the partial dataset which poses an important limitation with the
trade-offs of smaller networks against classification accuracy in very complex conditions.

2.1.1 Limitations of CNNs in Medical Imaging

CNNs, despite having achieved a lot in the field of medical imaging, have several lim-
itations, one of which is the aspect on the clinical side. Generalization across datasets
has proven to be one of the many hinderances to the feasibility of CNNs in clinical
practice. It is especially problematic when the existence of different kinds of machines,
either by vendor or model, bring training data or differences in acquisition parameters.
These pose differences in aspects such as contrast, resolution, and signal-to-noise ratio,
and consequently lead to a steep fall in model performance because these CNNs have the
tendency to overfit to purely the statistical attributes of the data. The generalization gap
then results because they cannot generalize well to novel or unseen distributionsPerone
and Cohen-Adad (2019).

Although large datasets are advantageous for deep learning models, manual annotation
for this kind of data acquisition has become quite a challenge, especially for multi-center
or crowd sourced data due to ethical and privacy issues. Emerging domain adaptation,
generative models like GANs, and semi-supervised learning appeared to be very prom-
ising solutions to overcome such limitations; however, they are hungry for huge data and
might be complicated in training models. And active learning, which deals with uncer-
tain predictions to be manually corrected, has proven to be useful in easing burdens of
annotation, but does not remove the expert intervention totally Perone and Cohen-Adad
(2019).

In brief, even though CNNs have significant utility in tasks like segmentation and classific-
ation within medical imaging, there are still challenges of generalization, data variability,
and large annotated datasets preventing them from being deployed across the clinical
spectrum. Perone and Cohen-Adad (2019)

2.2 Few-Shot Learning

Deep learning systems have made significant strides in many tasks within the medical
domain, but they suffer from the same training data dependency as above. Few-shot
learning algorithms typically try to deracinate this dependency through exploiting in-
formation available from very small amounts of data. Given that most diseases occur
only very rarely, available data are minimal within the context of medical imaging, thus
making the success of few-shot learning algorithms indeed a very potent advance.

2.2.1 Few-Shot Learning Algorithm

Few shot learning algorithms, as the name suggests, are primarily tasked with providing
accurate results with a limited amount of data. The few shot learning algorithms are
expected to represent small amounts of data in such a way, that it can generalize to
represent a much broader range of data Kotia et al. (2021).
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Figure 2: Few-shot Learning Process

Instead of having enormous training data like traditional supervised learning, few-shot
learning models adapt to novel tasks quickly using prior knowledge and experiential
learning with some extra data. Such models would require only a few cases to be able to
make accurate predictions on something new by finding the important features and basic
structure that make up a concept Shashi Thota (2023). A well known application of this
design is in robotics, where this similarity function manages to allow rapid adaption for
a new task using mappings between classes in the query and support sets with minimal
additional information. The query set, in this case, refers to the examples in both old
and fresh categories on which the model is generalized, while performance is evaluated
based on the support set made up of a few labeled examples for every novel category of
data.

Support Set (S): A small set of labeled example where each example consists of a data
point and its corresponding label.DataCamp (2020)

Query Set (Q): A set of unlabeled data points for which the model needs to predict
labels.DataCamp (2020)

2.2.2 Few-Shot Learning Techniques

Few-Shot Learning has emerged as a critical technique in machine learning. The main
techniques in FSL include Metric Learning, Meta-Learning, and Transfer Learning, each
of which approaches the problem of limited data from different perspectives.

Metric Learning: Metric Learning becomes an important central part in the frame-
work of Few-Shot Learning. Basically, learning should be seen as the ability to estimate
a distance metric or learn an embedment space such that the distance between instances
defines their similarity. For example, now models in few-shot tasks can compare very
few annotated examples with fresh data points based on similarity scores because they
have already learned this. Two among the most frequently studied metric learning meth-
ods include Siamese Networks and Triplet Networks. These are generally policies of the
model that act to minimize or maximize distances in the embedding space. A good
example would be applications in medical imaging-facing verification or signature verific-
ation Shashi Thota (2023).

Meta Learning: Meta-learning helps for quick adaptation of the models with few data
available for the new task. In meta-learning, training is conducted on several tasks that
build strategies to generalize their learning. Such learned strategies can subsequently
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be tuned to perform on a different task with very few examples.Model-Agnostic Meta-
Learning and Prototypical Networks are very well known. For example, MAML can
prepare the model for quick adaptation by training the model on how to effectively learn
a good initial parameter set that will subsequently make it suitable for future data with
minimal adaptivity. Prototypical Networks, in contrast, create a ’prototype’ (aver- age
representation) for each class and then determine to which prototype each unlabeled
observation is closest. Such methods are particularly productive in the diagnostic task of
medical image classifications where fewer labeled data are available Shashi Thota (2023).

Transfer Learning: Transfer learning is one of the most widely used methods in Few-
Shot Learning. This technique takes an already trained model on a big dataset and fine-
tunes it on a small dataset for a specific purpose. Such a method utilizes the knowledge
gained by the model from the larger corpus of data and allows it to realize a new task
on very few labeled data. It is one of the popular applications of such an idea as fine-
tuning and domain adaptation. For instance, in medical image analysis, it might mean
fine-tuning the original model trained on a larger dataset like ImageNet to diagnose
rare diseases from very small datasets, boosting the likelihood of detection substantially
Shashi Thota (2023).

2.2.3 Applications of Few-Shot Learning in Medical Imaging

Few-shot learning applications have shown great promise in dealing with the challenges
posed by sparse medical imaging datasets, especially associated with rare disease Han
et al. (2022), new methodologies have been suggested for screening ophthalmic diseases
based on few-shot-learning and data augmentation techniques, for instance with detection
for early onset of diabetic retinopathy, age related macular degeneration, and glaucoma.
Integration of a combined dataset along with simulating different fundus cameras for data
augmentation by style transfer will enhance the generalization ability of the model.

The approach advanced uses metric-based few-shot learning models such as the siamese
network and it aims to accomplish high precision in disease classification with little data.
With data augmentation, different metrics—accuracy, recall, and F1 scores—improved
in handling the challenge of misclassification. The study presents how few-shot learning
combined with innovative data augmentation techniques may make AI solutions more
productive through easy access to medical imaging-with a focus on ophthalmology Han
et al. (2022). The study also limits the generalization of the findings due to the use of
synthetic data augmentation that does not capture the real world variability completely.
Therefore, it would not generalize on unseen clinical data. Further, it confines its findings
to a specific set of ophthalmic diseases, making them relevant only in this domain of
medical imaging.

Another case study by Prabhu et al. (2019) is on diagnostic dermatology that adopts
clinical image classification mainly under the shadows of long tailed data distribution
and high intra class variability problems. Proposed by the authors of the present paper,
the Prototypical Clustering Networks (PCN) learns a weighted combination of prototypes
for each class, classifying this weighted combination in terms of the similarity between it
and the input sample. The whole PCN idea is framed as a few-shot learning problem,
the aim of which is to generalize a new classifier to understand new diseases given a very
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small number of labeled examples. By using initial prototypes from clustering, which are
refined as training is carried out, PCN improves generalization and performs particularly
well for dermatological diseases.

Metric-learning approaches Hoffer and Ailon (2015) learn the optimal distance metric
by comparing target examples and a small number of labeled samples in an embedding
space. The goal is to create projection function mapping images into this space in such a
way that images from the same class are brought closer together, while different classes
are pushed farther apart. The principal assumption is that the feature representations
learned for the base classes can be transferred to novel classes. Our solution borrows
from the meta-learning paradigm, where a generic chest X-ray classifier is first trained
on base classes and then adapted to novel classes with just a few labeled samples.

In a research study carried out by Anandhi et al. (2024), the author develops a new
framework for diagnosing lung diseases from the image of chest X-rays by utilizing a
combination of several techniques of deep learning and few-shot learning. The frame-
work performs preprocessing using Contrast Limited Adaptive Histogram Equalization
to enhance the quality of the images, followed by the segmentation of lung nodules using
the UNET model. Features are extracted through a pre-trained CheXNet model using the
Chest X-ray14 dataset.The framework was tested on lung diseases such as tuberculosis,
pneumonia, and lung cancer, outperforming the state of the art. The study pointed out
that such strategies for meta-learning could deliver output on the aspects of data scarcity
and improved diagnostic accuracy in medical imaging. This framework pays attention
to lung disease diagnosis, as well as to segmentation through UNET, which isolates lung
nodules ahead of classification.

Soysal et al. (2023) presents research on improving disease detection in medical images
through the integration of zero-shot learning with semantic ontology information, all
under demanding conditions associated with limited data and labeling. The researchers
addressed data scarcity and the inherent subjectivity found in the analysis of medical
images by utilizing the ChestX-ray14 dataset, which is extremely rich in unlabeled chest
X-ray images. With the adoption of a DBpedia ontology semantic class label, ZSL enabled
the detection of unseen classes, and the authors state that such an approach when married
to a ResNet50 neural network proved fruitful even in the gray areas of application where
figures speak the hardest. The highest precision value scored was 29.59 but could not be
far from the assertion of proponents that the paradigm of integrating ZSL and ontology
improves medical image analysis on cases where labeled data could not survive, and
further optimization of the idea would be expected for future work.

Another research conducted by Kshitiz et al. (2023), which evaluates and compares differ-
ent few-shot learning models such as ProtoNet, MatchingNet, MAML, DSN, and a Pro-
posed Model in the case of thoracic disease detection with the chest X-ray dataset with
limited labeled data. The various diseases tested in the models included Fibrosis, Her-
nia, Pneumonia, Mass, Nodule, Pleural Thickening, Cardiomegaly, Edema, Emphysema,
Consolidation, Effusion, Pneumothorax, Atelectasis, Infiltration, and No Finding. Res-
ults showed that DSN generally performs better than other models, achieving maximum
accuracy for diseases like Edema and Pneumothorax where ProtoNet and MatchingNet
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also performed well but had limitations in some diseases like Fibrosis and Pleural Thick-
ening. MAML had a very low success rate for Hernia and Infiltration diseases compared
to all others. The Proposed model was competitive, beating MAML for most diseases,
but it has shown varied performance mainly on No Finding and Pleural Thickening. This
study identifies the need for many strides to make few-shot learning applicable in medical
imaging in order to improve robustness and consistency with the many diseases.

Figure 3: Summary of Literature Review

To conclude, this paper on deep learning for thoracic disease detection states that sub-
stantial advancements have been made, particularly through CNN techniques, in defining
conditions such as pneumonia, pneumothorax, and atelectasis.Few-shot learning is well
positioned to remedy this situation; it allows accurate predictions with minimal labeled
data. Metric learning, meta-learning, and transfer learning techniques are now considered
by many as the forerunners in few-shot learning, offering frameworks that are ideally
placed to handle scarcity in medical imaging data. The success despite these is still
dragging the generalization challenges, variability in data, and computational complex-
ity. Future investigations should therefore aim at improving the adaptability of models
to diverse datasets and also on the performance of those few-shot learning systems in
a clinical environment. More importantly, innovation in the existing methodologies by
addressing limitations will be far reaching in transforming thoracic disease detection into
applicable, accessible, and efficient technologies in the real world.

3 Methodology

This section will outline the methodology for developing few-shot learning using a pro-
totypical network for thoracic disease classification in this research context as an answer
to the research question. The research adopted a variation of the CRISP-DM process, as
depicted in Figure 4 below.
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Figure 4: CRISP-DM Methodology

3.1 Business Understanding

Research for this project is mainly focused to study the health challenges of thoracic
disease detection in the custodian of Prototypical Networks as transfer learning. Early
and precise detection of diseases such as pneumonia, cardiomegaly, or atelectasis is cru-
cial for positive patient outcomes and minimizing health costs. Acquiring large, labeled
datasets for training models is a paramount challenges. The objective of this research
is to implement transfer learning to pre-trained model feature extraction and few-shot
learning by Prototypical Networks to realize a practical and scalable diagnostic solution
for such low resource healthcare settings.

Figure 5: Key Components

3.2 Data Gathering

The NIH Chest X-ray Dataset of Health (2018) is the main dataset that was used in
this study, along with an additional COVID dataset Fusicfenta (2020) that had cases of
COVID-19, which were absent from the NIH dataset. Both of the datasets are available in
Kaggle and the links for these datasets are available in the reference section. The datasets
were explored and prepared in a systematic manner according to the specifications for
few-shot learning.
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3.3 Exploratory Data Analysis

During this initial exploring stage, the collected images were filtered and extracted based
on their extensions such as .png, .jpg and .jpeg.It simplified the operation of identifying
valid image files without involving unsupported formats that may have been introduced
and may cause errors in training the model.

Figure 6: Class distribution of NIH Dataset

The class distribution analysis in figure 5 showed a considerable imbalance in the data-
bases. For instance, common diseases such as No Finding have thousands of pictures, but
quite the opposite is true regarding rare diseases, such as Hernia which is represented by
very few. To address this, and guided by the few-shot learning framework, we selected
30 images per class for six diseases related to the thorax. This decision was made in
reference to:

• Consistency with Few-Shot Learning: Few-shot learning techniques are de-
signed to function effectively on small datasets. Selecting 30 images per class
provides a balance between sufficient representation and maintaining a manage-
able dataset size. This number strikes a compromise between having enough data
for learning and not overloading the system.

• Class Uniformity: Ensuring all classes have the same number of images minimizes
the impact of class imbalance on the training process, thereby promoting fairness
and consistency in model performance.

In this study, we adopted a systematic data balancing strategy using a class imbalance
remedy.The first step of processing data was filtering the PA view X-rays to make them
radiographically conform to the original sample set as uniformity in the X-ray images
was important, as they were collected from different angles, creating different features
and properties that would have potentially interfered with model learning.

Grouping as an important aspect in few-shot learning has a important role as it gives
some organized way to examine the ability of the model to differentiate closely related
classes in the presence of very limited data samples. The unique challenge lies in making
all possible meaningful observations from a few labeled sample and grouping diseases
together makes it possible to accomplish realistic learning tasks that simulate real work.
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In this study, the diseases are grouped into three pairs such as Effusion and COVID-19
(Group 1), Pneumonia and Cardiomegaly (Group 2), and Atelectasis and Fibrosis (Group
3). These groups were built on clinical similarity and radiological overlap, a challenge to
the model for diagnostically relevant tasks related to these two diseases. For instance,
Effusion and COVID-19: both these entities typically display their presence in chest X-
rays with fluid accumulation or diffuse opacities. The model would necessarily need to
discriminate between subtle differences of patterns and distributions between these two
diseases. Pneumonia and Cardiomegaly are two common diseases in clinical practice;
they share an overlap of certain regions on chest X-rays, making it hard to separate
pulmonary infection from cardiac enlargement. Likewise, Atelectasis and Fibrosis make
a certain structural change in the tissues of the lungs, such as collapse or scarring; both
of these would lead the model to pay more attention to texture, density, and certain
radiological markers.

3.4 Modelling

The few-shot learning techniques in the Modeling section of this project are primarily
adapted to the detection of thoracic diseases from X-ray images with a minimum labeled
dataset. Prototypical Networks will be the main model. Feature extraction will be
performed by ResNet50, VGG19, and DenseNet121 for small data by transfer learning.
Cross-validation, data augmentation, and weighted loss functions must be applied during
training to correct the class imbalance for the thoracic diseases and for prevention of
overfitting. The performance was evaluated in terms of several measures like accuracy,
precision, recall and accordingly comparisons were made to find the best-performing
model in the context of limited labeled data.

3.5 Evaluation

To achieve these objectives, it is ineluctably necessary to identify the evaluation meth-
ods that have been used in prior studies. For instance, Kshitiz et al. (2023) proposed a
software solution for evaluating performance scores of X-ray image classification systems
by numerical and visual methods. Their evaluation framework is based on metrics, fur-
ther enhanced by several additional visualization techniques to give more comprehensive
insights into model performances.

4 Design Specification

A system diagram in Figure 7 above elaborately outlines the workflow describing classific-
ation of different thoracic diseases such as Covid-19, Effusion, Cardiomegaly, Pneumonia,
Fibrosis, and Atelectasis.It begins with input x-ray images that are further enhanced by
application of Contrast Limited Adaptive Histogram Equalization. Then, using deep
learning models like VGG19, ResNet50, and DenseNet121, feature extraction processes
applied to the segmented images create a feature vector which will be used to derive a
prototype image depicting the condition and calculate a distance metric to compare the
input image with the prototype for similarity. The process is aimed at classification and
diagnosis of thoracic diseases using few-shot learning particularly prototypical network.
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Figure 7: Design Specification Diagram

5 Implementation

The implementation of this thesis focuses few-shot learning techniques to the problem
of thoracic disease detection from the NIH Chest X-ray dataset. It also involves pre-
processing, feature extraction through ResNet50, and Prototypical Networks to effectively
classify images with little labeled training. This entire process will be done using Google
Colab with a T4 GPU for efficient and scalable computation while training and evaluating
the model.

5.1 Data Preparation

Several pre-processing techniques were applied to ensure compatibility with the Proto-
typical Network model and to improve model performance:

• Resizing: All the images that are adjusted to dimensions of 224×224×3. This
is because resizing the image is very important for meeting the input needs of the
model such as that of a pre-trained deep learning model like ResNet50. Most models
require an image of a specific size as input; for example, 224x224 pixels which is
the size used to train most of them. Apart from that, it also ensures that all the
images are standard and equalized in terms of resolution

• CLAHE : Contrast Limited Adaptive Histogram Equalization (CLAHE) has been
used to render features in the images visible. An advanced image enhancement
technique, CLAHE built an image by enhancing the distribution of pixel intensity
values across every pixel of the whole image. Unlike traditional histogram equal-
ization, CLAHE limited enhancement in regions where excessive contrast occurs,
which preserves the quality of the image. CLAHE is very useful for medical images,
such as those where the small differences in various regions are easier for the model
to identify with diseases like pneumonia and cardiomegaly.
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• Data Augmentation : Different data augmentation techniques have been used
to make the model more robust and generalizable include:

– Horizontal Flipping: Under this condition, images are flipped horizontally,
thus allowing the model to view the different positions of the same object. This
results in enlarging the dataset. The other aspect of the technique, which is
important in the medical image, is that it represents possible angles in which
the disease may be detectable in real-world use, therefore helping the model
generalize better against memorization orientation.

– Zooming: This involves random zoom transformations, giving rise to different
scales and perspectives of the features within the sample images. If the image
zooms in or zooms out, then the model will not be very sensitive to the size
or location changes of the features, as it does occur with real-world images.

Figure 8: X-ray image with clahe and segmentation

5.2 Feature Extraction

The extraction of features in medical imaging is paramount for automated capturing
of complicated features from images for incorporation in training representations. For
this research we employed three pretrained deep learning models: VGG19 , ResNet50 ,
DenseNet121.The models selected for this work were VGG19, ResNet50, and DenseNet121,
each selected for their unique architectural advantages. VGG19 was considered the solid
base model for feature extraction because of its deep layers and simple yet effective con-
volutional structure, rendering it robust for an image classification task. ResNet50, with
its residual connections through which the vanishing gradient is prevented, would allow
for the training of deeper networks, while still holding good performance. DenseNet121
enables richer gradient flow because of dense connections between layers and has been
proven to yield better performance with fewer parameters. Thus, they are selected based
on the successful experimentation for image classification tasks but also for their pre-
dominantly common use in medical imaging tasks, thereby indicating their fitness for the
complex patterns exhibited in chest X-ray data. These feature extractors make it pos-
sible to recover high-level image features critical for disease detection while minimizing
the need for long, labeled data, which is one of the advantages in working with small
datasets.
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5.3 Prototypical Network

The Prototypical Network is used for overcoming the challenge of few-shot learning,
particularly to address issues in medical image classification where labeled data are quite
scarce. The prototypical Network model operates in a metric learning perspective where
the prototype of a class is created based on the mean of the feature embeddings of the
support set images. VGG19,DenseNet, and ResNet have been used as feature extractors
in the network, and they are trained to map an input image to a very high-dimensional
feature space. Euclidean distance,as suggested by Snell et al. (2017), between the query
image embeddings and the class prototypes extracted from the support images once the
feature vectors are obtained. The model assigns the query image to the class whose
prototype is the closest one. In this way, the model learns the data structure so as to
generalize well with a limited training set. The loss function of the network is based on the
negative log of the probability of the true class label using softmax, which encourages the
model to minimize classification errors. During testing, the Prototypical Network predicts
the class of a query image by comparing its feature vector to the precomputed prototypes.
This kind of modeling proves most of benefit for the task of thoracic disease detection,
where one class has very few images versus the other classes, and there are generally few
labeled samples for training. Using Prototypical Network, this work intends to enhance
classification performance with few data, making it a very strong tool for applying few-
shot learning in medical imaging, where collecting too many datasets most often becomes
impractical.

Figure 9: Thoracic Disease Detection Model Architecture

Having employed pre-trained weights of models for the transfer-learning process, certain
layers were frozen to hold on to the learned feature representations from ImageNet without
re-training them from scratch. This makes sure that the models can exploit both low- and
mid-level learned features without overfitting on limited medical dataset. The final layers
of these models were modified to adapt to the use case of thoracic disease classification.
For this, the classifier layers were modified instead of the fully connected layers at the end
to facilitate simple output in such a manner that the model emits a 1D vector of features
for use by the subsequent classification task. The output layers were altered; besides
that, the feature extraction layers were frozen to make the models more effective in the
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identification of diseases in the thoracic cavity, as they will be able to provide a robust
representation of the features needed for the research using this smaller data collection.

5.4 Episodic Learning

Episodic learning is a core concept in few-shot learning, where the model is trained and
tested in a way that mimics the real-world scenarios of classifying unseen classes based on
a limited number of labeled examples. This implementation leverages episodic learning
using Prototypical Networks to test three popular backbone architectures: VGG19, Res-
Net50, and DenseNet121, in the context of medical imaging, specifically thoracic disease
classification.

5.4.1 Classification Tasks in Episodic Learning

In this research, the classification assignments are framed within a few-shot learning
paradigm to thoroughly assess the model’s performance using limited amounts of labeled
data. Each task pertains to a 2-way learning classification between two classes using
support sets, comprising relatively small, labeled data and query sets, which are made
up of unlabeled examples. The tasks are framed in such a way that they can adequately
probe into the model’s ability to generalize across different shot settings and diverse
medical image data

• 2 Way Learning : In this study we will be using 2-Way Learning, each task im-
plies distinguishing between two distinct classes, chosen at each episode from the
database for support and query sets.This two-way approach simplifies the learning
problem so that evaluation of the learning and generalization capacity of the model
is more targeted within a low-data environment. These experiments were then car-
ried out across three divisions, with every division measuring performance under the
varied architectures used in the experiment: VGG19, ResNet50, and DenseNet121
functionalities so as to make common comparisons.

Groups Classes
Group 1 Effusion , Covid19
Group 2 Pneumonia , Cardiomegaly
Group 3 Atelectasis , Fibrosis

Table 1: Groups with their respective classes

• Shot Settings : Shot Settings are the numbers of labeled examples per class
in the support set. This plays an important role in the model’s ability to learn
and generalize with few samples. In this research I will be doing 3-shot setting, the
support set comprises only 3 labeled examples per class. Thus, a total of 6 examples
for both classes combined. This setting forces the model to generalize from a very
limited amount of labeled examples, which simulates the real-world medical imaging
situation in which such labeled data is very scarce. Also we will implement a 5-shot
setting, there are 5 labeled examples per class, making 10 examples from the two
classes total. This increases the amount of class-specific knowledge learned in the
model, allowing it to be understood with the additional labeled data and remake
the outputs better. Furthermore, a 5-shot analysis would provide insight into how
the accuracy of the model changes when learning has more label data to train on.
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• Query Settings : Unlabeled examples from both classes in the support set com-
pose the Query Set. These examples helps evaluating the model’s proficiency in
classifying fresh observations from properties learned from the support set. The
support set helps the model discover its distinguishing traits for each class. Thus,
the query set examples are classified. The query set is also defined in terms of
the ability to generalize of the model because it brings data not in the training
(support set) to bear on the judgment of model performance. This is like the com-
mon real-world diagnostic task problem, where one expects models to predict fresh
unseen instances based on fresh knowledge learned from a limited set of labeled
experiences.For 3 shot setting we have configured 10 query set x-ray images and for
the 5 shot setting we have configured 15 query set x-ray images.

5.4.2 Testing setup

The underlying premise of the experiment is the application of episodic testing as a
process. 5000 episodes are conducted for this experiment, and it is enough statistically
reliable. Running 5000 episodes minimizes variance to most performance metrics and
guarantees that the assessment of the generalization ability of this model toward hetero-
geneous tasks is quite accurate. This is because the class combination can vary depending
on the tasks in real world, requiring an adaptive model. The classes have not been picked
randomly, but pre-defined in terms of groups. In this way, diversity in the model testing
is achieved with respect to sets of combinations of classes.

Metrics such as loss and accuracy are evaluated across these episodes to see how well the
model performs. Overall, the loss is the difference between the output prediction and and
the true labels assigned, while accuracy is the percentage of query set examples identified
correctly in terms of classifications. Hence, these two fair metrics will be averaged over
5000 such episodes for a solid and trusted assessment of the model under consideration
towards its performance evaluation.

Figure 10: Workflow of Episodic Learning in ProtoNet

The experimental use of the models includes the Prototypical Network, which operates on
generating prototypes for each support-set class. Simply put, a prototype is an average
feature embedding for each class. To classify the query set, the model calculates the
Euclidean distance between the feature of the query examples and the class prototypes
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then it assigns to the examples the label of the nearest prototype. In other words,
the distance is minimized in this process so that the model can accurately classify query
images.The figure 10 above shows the workflow of episode learning in prototypical network

6 Evaluation

In this section different experiments are carried out for thoracic disease classification to
get the best performing configurations. For the Evaluation we will use f1-score, precision
and recall metrics. Tools like confusion matrices and ROC curves will also be used.

6.1 Experiment 1: Effusion and Covid19 Classification

In this experiment we will use the 3 selected feature extractors which are VGG19,ResNet50
and DenseNet121 with prototypical network for the diseases in group 1 which are COVID19
and Effusion.

6.1.1 VGG19 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 1: VGG19 was trained in a 2-Way 3 shot
setting (figure 11) to classify between two class only with 3 examples per class. The
confusion matrix shows that the model performed such that precision, recall and F1
score values are above 0.80 both for classes, indicating very high classification accuracies.
Additional evidence for strong performance on the part of the model is through the ROC
curve, which demonstrates that the area under curve (AUC) value approaches 1.

Figure 11: VGG19 Results 2 Way 3 Shot Group 1

2-Way 5-Shot Learning Results Group 1: VGG19 was trained in a 2-Way 5 shot
setting in figure 12 below the confusion matrix shows that the model performed such that
precision, recall and F1 score values are above 0.85 both for classes, indicating very high
classification accuracies. Additional evidence for strong performance on the part of the
model is through the ROC curve, which demonstrates that the area under curve (AUC)
value approaches 1.

6.1.2 ResNet50 with Prototypical Network Analysis

In this experiment we will use ResNet50 feature extractor with prototypical network for
the disease Covid19 and Effusion
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Figure 12: VGG19 Results 2 Way 5 Shot Group 1

2-Way 3-Shot Learning Results Group 1: ResNet50 was trained in a 2-Way 3
shot setting (figure 13) to classify between two class only with 3 examples per class. The
confusion matrix shows that the model performed such that precision, recall and F1 score
values are 0.85 both for classes, indicating very high classification accuracies. Additional
evidence for strong performance on the part of the model is through the ROC curve,
which demonstrates that the area under curve (AUC) value approaches 1.

Figure 13: ResNet50 Results 2 Way 3 Shot Group 1

2-Way 5-Shot Learning Results Group 1: ResNet50 was trained in a 2-Way 5
shot setting (figure 14) to classify between two class only with 5 examples per class.
The confusion matrix shows that the model performed such that precision, recall and
F1 score values above 0.85 both for classes, indicating very high classification accuracies.
Additional evidence for strong performance on the part of the model is through the ROC
curve and it is performing better than 2 way 3 shot configurations.

Figure 14: ResNet50 Results 2 Way 3 Shot Group 1
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6.1.3 DenseNet121 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 1: DenseNet121 was trained in a 2-Way
3 shot setting (figure 15) to classify between two class only with 3 examples per class.
The confusion matrix shows that the model performed such that precision, recall and F1
score values is 80 both for classes, indicating good accuracies. Additional evidence for
strong performance on the part of the model is through the ROC curve can be seen.

Figure 15: DenseNet121 Results 2 Way 3 Shot

2-Way 5-Shot Learning Results Group 1: DenseNet121 was trained in a 2-Way
5 shot setting (figure 16) to classify between two class only with 3 examples per class.
The confusion matrix shows that the model performed such that precision, recall and F1
score values is 80 both for classes, indicating good accuracies and same as the previous
densenet configurations.

Figure 16: DenseNet121 Results 2 Way 5 Shot

6.2 Experiment 2: Pneumonia and Cardiomegaly Classification

In this experiment we will use the 3 selected feature extractors which are VGG19,ResNet50
and DenseNet121 with prototypical network for the diseases in group 1 which are Pneu-
monia and Cardiomegaly.

6.2.1 VGG19 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 2: With respect to the 2-way 3-shot res-
ults in figure 17, they are significantly modest because of very low performance under the
condition where Cardiomegaly achieved a 0.38 precision and a 0.30 recall, whereas Pneu-
monia’s scores achieved 0.42 precision and 0.50 recall. The accuracy overall was 40%,
and the F1-scores (0.33 for Cardiomegaly and 0.45 for Pneumonia) suggest struggles to
balance precision and recall.
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Figure 17: VGG19 Results 2 Way 3 Shot Group 2

2-Way 5-Shot Learning Results Group 2: 2-way 5-shot results in figure 18 are little
better, it is because in the latter condition they used more support for the bigger support
set. The precision for Cardiomegaly increased to 0.60, but the recall remained the same
at 0.40. Pneumonia, on the other hand, had better metrics, such as 0.55 precision and
0.73 recall. The overall accuracy increased and reached 57%, with much higher F1 scores
showing better generalization, especially for Pneumonia.

Figure 18: VGG19 Results 2 Way 5 Shot Group 2

6.2.2 ResNet50 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 2

Figure 19: ResNet50 Results 2 Way 3 Shot Group 2

The 2-way 3-shot findings in figure 19 using ResNet50 tag strong performance for Car-
diomegaly, citing a rather high recall of 0.90 and an associated F1-score of 0.72, which
indicates that positive true detection is a good feature. Pneumonia managed to get pre-
cision at 0.80 but had much lower recall (0.40), leading to a middle-level F1-score of 0.53.
Overall accuracy was 65% with a significant contribution from the Cardiomegaly result.
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2-Way 5-Shot Learning Results Group 2: For the 2-way 5-shot results in figure
20, both classes gave much more balanced metrics because of the larger support set.
Pneumonia precision was found to be 0.69 and its recall stood at 0.73, whereas the
performance for Cardiomegaly was found to be slightly better at 0.71 for precision and
0.67 for recall. Both classes pushed close to F1 score of about 0.70, resulting in a final
accuracy of 70%. These results indicate the ability of ResNet50 to improve this class
balance and accuracy with greater support samples.

Figure 20: ResNet50 Results 2 Way 5 Shot Group 2

6.2.3 DenseNet121 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 2 In the case of the 2-way 3-shot experiment
results in figure 21, DenseNet yielded just a moderate 55% accuracy performance. Thus,
it was posted at 0.57 for precision in Cardiomegaly, but low recall (0.40) yielded an
F1-score of only 0.47. In the condition of Pneumonia, although precision of 0.54 was
determined, the high recall (0.70) allowed improvement of the F1-score to 0.61.

Figure 21: DenseNet121 Results 2 Way 3 Shot Group 2

2-Way 5-Shot Learning Results Group 2 In 2-way 5-shot experiment results in
figure 22 improvements in performance were observed as much as 63 %. For Pneumonia,
precision is 0.60, and recall increases to 0.80, yielding a strong F1-score of 0.69. Cardio-
megaly, too, showed a precision level of 0.70, but the lower recall (0.47) gave an F1-score
of 0.56.

6.3 Experiment 3: Atelectasis and Fibrosis Classification

In this experiment we will use the 3 selected feature extractors which are VGG19,ResNet50and
DenseNet121 with prototypical network for the diseases in group 3 which are telectasis
and Fibrosis
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Figure 22: DenseNet121 Results 2 Way 3 Shot Group 2

6.3.1 VGG19 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 3: In two-way three-shot VGG 19 results
in figure 23, model performance can be rated as 40%, and there exists a performance gap
between different classes. For Fibrosis, there is a precision of 0.33 and a recall of 0.20,
leading down to an F1 score of approximately 0.25, denoting a very poor detection ability

Figure 23: VGG19 Results 2 Way 3 Shot Group 3

2-Way 5-Shot Learning Results In two-way five-shot VGG 19 results figure 24, the
accuracy of the model improves up to 60%, surpassing the previous score and showing
a drastic enhancement in model performance. For Fibrosis, precision rises to 0.59 while
recall improves to 0.67, summing with an F1 score of 0.62, indicating that performance
had improved. The same pattern is seen with Atelectasis where 0.62 precision and 0.53
recall resulted in an F1 score of 0.57, showing detection better than the 3 shots. The
macro average f1 scores increase to 0.60.The weighted average also rises to 0.60, showing
a much better overall performance with the 5-shot setup.

Figure 24: VGG19 Results 2 Way 5 Shot Group 3
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6.3.2 ResNet50 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 3: The model achieves 55% accuracy from
the results of 2-way 3-shot ResNet. Recall is good for Atelectasis, at 0.70, while Fibrosis
lags with a recall of 0.40; hence the average F1 is at 0.54.

Figure 25: ResNet50 Results 2 Way 3 Shot Group 3

2-Way 5-Shot Learning Results Group 3: For the 2-way 5-shot ResNet results,
accuracy is slightly down at 53%, with Atelectasis doing better than Fibrosis according
to their respective F1-scores (0.59 and 0.46). Essentially, this does not change the overall
observation: a macro average F1-score of 0.52.

Figure 26: ResNet50 Results 2 way 5 shot Group 3 :

6.3.3 DenseNet121 with Prototypical Network Analysis

2-Way 3-Shot Learning Results Group 3: With the 2-way 3-shot results from
DenseNet figure 27, a 55% accuracy is obtained. Atelectasis achieves a higher recall of
0.70, which results in a better F1-score of 0.61. However, Fibrosis has a low recall of 0.40,
which gives an F1 score of 0.47. The overall performance is well balanced with both the
macro and weighted averages being at 0.54.

2-Way 5-Shot Learning Results Group 3: For example, in the 2-way 5-shot DenseNet
results in figure 28, they again fall flat at 50% accuracy, where both classes have very
similar precisions and recalls. Fibrosis has a recall of 0.53 and an F1 score of 0.52, while
Atelectasis appears a bit weaker with a recall of 0.47 and an F1 score of 0.48. But overall
performance seems to show a consistent average of 0.50, both macro and weighted.
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Figure 27: DenseNet121 Results 2 way 3 shot Group 3

Figure 28: DenseNet121 Results 2 way 5 shot Group 3

6.4 Discussion

Various feature extractors, including VGG19, ResNet50, and DenseNet121, were put
under the test with prototypical networks against each other in experiments detecting
thoracic disease and results can be seen in the figure 29 below. Their purpose was to
determine how well they performed in classifying diseases such as Effusion, COVID19,
Pneumonia, Cardiomegaly, Atelectasis, and Fibrosis. The results indicated that VGG19
and ResNet50 performed well regardless of whether the materials used had greater or
lower shot configurations such as with 5-shot input where even precision, recall, and F1-
scores typically surpassed the threshold of 0.80. The analysis conducted showed that the
curves for the area under the curve (AUC) were close to 1, demonstrating good accuracy.
While DenseNet121 performed at a fair average precision and recall, it did not perform
very well under the 3-shot cases, yet delivered respectable F1-scores, ranging between
0.50 to 0.69 across various conditions for the diseases under study. The performance
for diseases such as Atelectasis and Fibrosis differed largely from the rest, with VGG19
considerably more accurate as the shot count increased, while DenseNet121 showed slight
improvements with a 5-shot approach. Overall, experiments here call for larger support
sets (5-shot) in few-shot learning tasks as they would necessarily be expected to show
better class balance and improved performance, particularly on diseases that are often
more difficult to detect such as Atelectasis and Fibrosis.

Based on the results, it can be deduced that ResNet50 serves as a more efficient feature
extractor for all disease categories as it outperformed all others, including VGG19 and
DenseNet121 in terms of metrics like recall and precision at varying shot configurations.
The relatively balanced 3-shot and 5-shot performances thus proved robustness in disease
classification among various other diseases such as Effusion, Pneumonia, and Cardiomeg-
aly. Differing from VGG19, which varies on the basis of shot conditions in most instances,
DenseNet121 disappoints in working with relatively smaller datasets. Hence, ResNet50
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Figure 29: Results Summary

becomes more reliable and accurate in all the categories tested, making it most suitable
for this analysis.

7 Conclusion and Future Work

Deep learning techniques through prototypical networks along with feature extractors
such as VGG19, ResNet50 and DenseNet121 can be successfully applied for classification
of thoracic diseases classification using few-shot learning. Among the three feature ex-
tractors, ResNet50 consistently outperformed the other two in all recall, precision, and
f1 score across diseases which makes it the most suitable model for disease classification
in this context. However, there was still much room for improvement in ResNet50 itself
and such a robust feature extractor posed strong constraints in identifying more difficult
diseases like Fibrosis. This means that further fine-tuning and even architectural or
feature-extraction adjustments would be necessary in order to deliver more reliable results
for such difficult to diagnose conditions. The results show that even with very limited
training samples, deep learning models can compete, with ResNet50 striking a good
balance between class precision and recall. Overall, the findings highlight how few- shot
learning brings promise for medical image classification, even in some of the hardest
situations with limited extractable data.

Future work could include fine-tuning the pre-trained models like ResNet50, VGG19
and DenseNet121, especially for difficult diseases like Fibrosis, using layer-wise fine-tuning
or selective retraining methods. Besides, data augmentation and semi-supervised learning
techniques can also be studied to improve performance at reduced labeling. Moreover,
others of few-shot learning paradigms like Matching Networks or Model-Agnostic Meta-
Learning may also lead to improvements. Ensemble methods may combine different mod-
els strengths; cross-disease generalization could be realized through multi-task learning or
domain adaptation for enhancing detection in multiple thoracic diseases. Deeper insights
into the clinical context, for example, patient history and demographics, can further
improve model performance and real-world interpretability.
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