Configuration Manual

MSc Research Project
Data Analytics

Bruna Rafaela Alves Garcia
Student ID: x21245835

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

~

National
Collegeof
[reland

National College of Y National

IrelandProject Submission College of
Sheet School of
Computing [reland

Student Name:

Bruna Rafaela Alves Garcia

Student 1D: X21245835
Programme: Data Analytics
Year: 2025

Module: MSc. Research Project
Supervisor: Arjun Chikkankod

Submission Due Date: 03/01/2025

Project Title:

Configuration Manual

Word Count:

1050

Page Count:

8

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

AL L internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Bruna Garcia
Date: 39 January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND

CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to| o
each project (including multiple copies).

for

copy on computer.

You must ensure that you retain a HARD COPY of the project, both | g

your own reference and in case a project is lost or mislaid. It is not sufficient to keepa

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Bruna Rafaela Alves Garcia
x21245835

1 Introduction

This document provides a comprehensive overview of the hardware and software
configurations essential for the successful implementation of this research project. It
encompasses details on the computational environment setup, the dataset used, the libraries and
tools required, and the step-by-step process of model preparation and analysis.
The dataset, sourced from the MetroPT3 system, contains time-series sensor readings
critical for identifying machine failures. To prepare the data for analysis, preprocessing steps
include cleaning, feature engineering with rolling statistics and handling class imbalance while
maintaining the temporal integrity of the data. The project employs Random Forest as the
predictive model. SHAP is integrated to enhance interpretability, providing both global and
local insights into the model’s decision-making process. This comprehensive configuration
ensures that the research achieves its dual objectives of delivering actionable insights for
predictive maintenance and demonstrating the practical value of Explainable Al techniques.

2 System Configurations

The project was implemented under the following configurations:

MacBook Pro

2.1 Local Machine

Chip Apple M1 Pro
Memory 16 GB
Startup disk Macintosh HD
Serial number
macOS Sonoma 14.4.1

More Info...

Figure 1: System Configuration on Local Machine.

2.2 GPU Configuration

In this research project, all code development is conducted using Google Colab Pro+, Google's
computing platform.

—

Colab Pro+

|
Current plan |
|

All of the benefits of Pro, plus:

+ An additional 400 compute units for a
total of 500 per month. I

Compute units expire after 90 days.
Purchase more as you need them.

v Faster GPUs

Priority access to upgrade to more
powerful premium GPUs.

 Background execution
With compute units, your actively running
notebook will continue running for up to
24hrs, even if you close your browser.

-

Figure 2: Google Colab Pro+ Specifications.

3 Project Implementation

The project was implemented under the following configurations:

3.1 Data Collection

The dataset, MetroPT3, which is available at UC Irvine Machine Learning Repository, is a time-series
dataset collected from the air compressors of Metro do Porto trains. It comprises 15,169,480 data
points recorded at a 1Hz frequency from February to August 2020, characterized by 15 features
derived from 7 analog and 8 digital sensors. The analog sensors monitor critical metrics such as
compressor pressure (TP2), pneumatic panel pressure (TP3), pressure drop during cyclonic separator
discharge (H1), and motor current, among others, providing detailed insights into the system's physical
operations. The digital sensors capture key operational signals, such as the air intake valve state
(COMP), compressor outlet valve status (DV electric), and tower operations for air drying
(TOWERS). These combined features comprehensively represent the compressor's functional state
and operational environment, enabling effective predictive maintenance analysis.

4 Package Requirements

The following Python libraries were used in the implementation:
o Pandas: For data manipulation and preprocessing.
e NumPy: For numerical computations.

o Matplotlib: For data visualisation.

o Scikit-learn: For Random Forest implementation and evaluation.
e SHAP: For explainability analysis of the Random Forest model.

e Google Colab Environment: For GPU-accelerated model training and SHAP
computations.

5 Model Preparation

This section explains the detailed steps involved in preparing the dataset for modelling. The
objective is to clean and transform the data to improve the performance of the Random Forest
model for predictive maintenance. Each step corresponds to a specific purpose in the pipeline.

Basic data inspection was done as can be seen in Fig. 3.

Dataset Information:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1516948 entries, @ to 1516947
Data columns (total 17 columns):

Column Non-Null Count Dtype

® Unnamed: @ 1516948 non-null int64

1 timestamp 1516948 non-null object

2 TP2 1516948 non-null float64
3 TP3 1516948 non-null float64
4 H1 1516948 non-null float64
5 DV_pressure 1516948 non-null float64
6 Reservoirs 1516948 non-null float64
7 0il_temperature 1516948 non-null float64
8 Motor_current 1516948 non-null float64
9 COMP 1516948 non-null float64
10 DV_eletric 1516948 non-null float64
11 Towers 1516948 non-null float64
12 MPG 1516948 non-null float64
13 LPS 1516948 non-null float64
14 Pressure_switch 1516948 non-null float64
15 0il_level 1516948 non-null float64

16 Caudal_impulses 1516948 non-null float64
dtypes: float64(15), int64(1), object(1)
memory usage: 196.7+ MB
None

Figure 3: Dataset information.

The dataset was checked for missing values (Fig. 4) and irrelevant columns were dropped
(Unnamed) to ensure relevance.

Missing Values Count:
timestamp

TP2

TP3

H1

DV_pressure
Reservoirs
0il_temperature
Motor_current
comp

DV_eletric
Towers

MPG

LPS
Pressure_switch
0il_level
Caudal_impulses
dtype: int64

Figure 4: Missing values count.

D00 ®

Based on the failure report provided by the company, four distinct failure events were identified
and incorporated into the dataset. A new target feature, labelled as “status,” was introduced to
indicate the operational state of the system. For each data point, the "status™ was assigned a
value of 1 if it corresponded to a failure event, and 0 otherwise, representing normal operation.
This binary classification enabled the dataset to be structured for supervised learning,
facilitating the prediction of failure events and enhancing the accuracy of the predictive
maintenance model. The process ensured that the labelling accurately reflected the real-world
scenarios described in the failure report, making the dataset a robust foundation for modeling

(Fig. 5).

[44] # Defining failure periods according to failure report provided in the dataset documentation file
failure_periods = [
{"start": "2020-04-18 00:00:00", "end": "2020-04-18 23:59:59"},
{"start": "2020-05-29 23:30:00", "end": "2020-05-30 06:00:00"},
{"start": "2020-06-05 10:00:00", "end": '"2020-06-07 14:30:00"},
{"start": "2020-07-15 14:30:00", "end": "2020-07-15 19:00:00"},
]

Adding the target variable 'status' column initialized to @
datal['status'] = @

Marking the rows within failure periods as 1
for period in failure_periods:
start_time = pd.to_datetime(period[“start"])
end_time = pd.to_datetime(period["end"])
data.loc[(datal['timestamp'] >= start_time) & (datal'timestamp'] <= end_time), ‘'status'] =1

Verifying the results
print(datal['timestamp', 'status']l.head(10))
print(datal'status'].value_counts())

Figure 5: Labelling the dataset.

The class distribution was analysed (Fig. 6) to assess the degree of imbalance in the dataset,
highlighting potential challenges in achieving a clean and balanced representation of the target
variable.

Class Distribution:
status

0 1486988

1 29960

Name: count, dtype: int64

Class Distribution

Failure

No Failure

Figure 6: Class Imbalance.

Subsequently, a detailed correlation analysis was conducted to identify features with the
strongest relationship to the target feature "status™ (Fig. 7).

Separating analog and digital sensors
analog_features = ['TP2', 'TP3', 'H1', 'DV_pressure', 'Reservoirs', 'Oil_temperature', 'Motor_current']
digital_features = ['COMP', 'DV_eletric', 'Towers', 'MPG', 'LPS', 'Pressure_switch', '0il_level', 'Caudal_impulses']

Calculating correlations for analog features
analog_corr = datalanalog_features + ['status']].corr()
print(“\nAnalog Features Correlation Matrix with Target:")
print(analog_corr['status'])

Checking correlation among digital sensors

digital_corr = dataldigital_features + ['status']].corr()
print("\nDigital Features Correlation Matrix with Target:")
print(digital_corr['status'])

Combining digital and analog correlations for inspection
combined_features = analog_features + digital_features
combined_corr = datalcombined_features + ['status']].corr()
print("\nCombined Features Correlation Matrix with Target:")
print(combined_corr['status'])

Figure 7: Calculating correlations.

Features with weak or negligible correlations were removed to reduce noise and improve model
efficiency (Fig. 8).

° # Dropping features with very weak correlations
irrelevant_features = ['Pressure_switch', '0il_level', 'Caudal_impulses']
data = data.drop(columns=irrelevant_features)

Verifying the remaining features
print("Remaining Features after Dropping Irrelevant Ones:")
print(data.columns)

)

Remaining Features after Dropping Irrelevant Ones:
Index(['timestamp', 'TP2', 'TP3', 'H1', 'DV_pressure', 'Reservoirs’,
'0il_temperature', 'Motor_current', 'COMP', 'DV_eletric', 'Towers',
'MPG', 'LPS', 'status'l,
dtype='object"')

Figure 8: Dropping features.
5

To enhance the dataset further, rolling mean and standard deviation values were computed and
added for key analog and digital sensor features (Fig. 9), capturing temporal trends and
fluctuations critical for time-series analysis. Any missing values introduced during this process
were systematically handled using forward and backward fill methods to ensure data integrity.

Define rolling window size
rolling_window = 180

Adding rolling mean and standard deviation for key analog features

for feature in ['DV_pressure', 'Motor_current', '0Oil_temperature', 'TP2', 'H1']:
data[f'{feature}_rolling_mean'] = datal[feature].rolling(window=rolling_window, min_periods=1).mean()
data[f'{feature}_rolling_std'] = data[feature].rolling(window=rolling_window, min_periods=1).std()

Adding rolling mean for key digital features
for feature in ['DV_eletric', 'COMP', 'MPG']:
data[f'{feature}_rolling_mean'] = data[feature].rolling(window=rolling_window, min_periods=1).mean()

Verifying the new features
print(data.head())
Figure 9: Rolling mean and standard deviation.

The dataset was then split into training and testing subsets, maintaining the sequential nature
of the time-series data to preserve temporal dependencies (Fig. 10).

Define a timestamp-based split point
split_timestamp = '2020-06-07 00:00:00" # Adjust based on the failure report

Split the dataset into training and testing sets
train = dataldatal'timestamp'] < split_timestamp]
test = dataldatal'timestamp'] >= split_timestamp]

Verify the split

print("Training Set Class Distribution:")
print(train('status'].value_counts())
print("\nTesting Set Class Distribution:")
print(test['status'].value_counts())

Output dataset shapes
print(f"Training set size: {train.shape}")
print(f"Testing set size: {test.shapel}")

Training Set Class Distribution:

status
0 879787
1 23450

Name: count, dtype: int64

Testing Set Class Distribution:

status
0 607201
1 6510

Name: count, dtype: int64
Training set size: (903237, 27)
Testing set size: (613711, 27)

Figure 10: Splitting the dataset.

To address the significant class imbalance, a weighted approach using class weights was
implemented during model training (Fig. 11), ensuring the model could effectively learn from
the underrepresented class while maintaining overall prediction reliability.

from sklearn.utils.class_weight import compute_class_weight
import numpy as np

Convert classes to a NumPy array
classes = np.array([@0, 1])

Calculate class weights based on the “status”™ column
class_weights = compute_class_weight(
class_weight="'balanced"',
classes=classes,
y=datal'status']
)

Create a dictionary for the weights
class_weights_dict = {cls: weight for cls, weight in zip(classes, class_weights)}

Display the computed class weights
print("Computed Class Weights:")
print(class_weights_dict)

Computed Class Weights:
{0: 9.5100740557422118, 1: 25.316221628838452}

Figure 11: Class Weights.

5.1 Regression Model

The Random Forest model was employed (Fig. 12) to classify failure events based on the
engineered dataset. The model was configured with 100 estimators, a maximum tree depth of
10 to prevent overfitting, and parallel processing to optimize computation. The dataset was split
into training and testing subsets, excluding non-informative columns like timestamps. After
training, the model’s performance was evaluated using precision, recall, and F1-score, which
were calculated based on the predictions against the testing set. The model underwent extensive
evaluation, including threshold optimisation for improved F1-scores and a grid search for
hyperparameter tuning, to handle the challenges of the imbalanced dataset.

Random Forest Model Training Completed.

Testing Classification Report:

precision recall fl-score support
No Failure 1.00 1.00 1.00 607201
Failure 8.95 0.73 0.83 6510
accuracy 1.00 613711
macro avg 8.98 0.86 0.91 613711
weighted avg 1.00 1.00 1.00 613711

Top 1@ Features by Importance:
Feature Importance

3 DV_pressure 0.256445
12 DV_pressure_rolling_mean @9.213807
18 TP2_rolling_mean 9.135276
23 COMP_rolling_mean ©9.095199
14 Motor_current_rolling_mean 9.075563
24 MPG_rolling_mean 8.057954
16 0il_temperature_rolling_mean 8.046475
20 H1_ralling_mean 9.028450
22 DV_eletric_rolling_mean ®.027783
6 Motor_current 9.016363

Top 10 Features by Importance

DV_pressure

DV _pressure_rolling_mean
TP2_rolling_mean
COMP_rolling_mean

Motor_current_rolling_mean

Feature

MPG_rolling_mean
Oil_temperature_rolling_mean
H1_rolling_mean
DV_eletric_rolling_mean

Motor_current

Figure 12: First Random Forest model.

5.2 SHAP

To interpret the predictions made by the Random Forest model, SHAP (SHapley Additive
exPlanations) was utilized (fig. 13). SHAP values provided insights into how individual
features contributed to specific predictions, enabling a transparent understanding of the model's
behavior. The analysis focused on true positive failure cases, where borderline predictions
(close to the decision threshold) were selected for detailed examination. The SHAP explainer
was applied to these samples, and visualizations such as waterfall plots highlighted the
contributions of key features to the predicted outcomes. Furthermore, high-impact features,
including sensor readings like TP2, TP3, and DV_pressure, were analysed through density
plots and correlation studies to understand their distribution in failure and non-failure scenarios.
This interpretability framework ensured the model’s decisions were explainable and aligned
with domain expectations, enhancing its credibility for deployment in predictive maintenance.

Calculating SHAP values for the selected sample at index 904119,..
Visualizing SHAP values for index 9@4119...

ﬂlx}
| 005 |
DV_pressure
Motor_current
MPG
DV_eletric
COMP
6 other features . +0.01

0575 0600 0625 0650 0.675 0700 0725 0.750 0.775
E[fiX)]

Oil_temperature

Figure 13: SHAP analysis.

	Configuration Manual
	Bruna Rafaela Alves Garcia
	National College of Ireland Project Submission Sheet School of Computing
	PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
	2 System Configurations
	2.1 Local Machine
	2.2 GPU Configuration

	3 Project Implementation
	3.1 Data Collection

	4 Package Requirements
	5 Model Preparation

