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Combining Random Forest and SHAP for 

Interpretability and Insights in Predictive 

Maintenance 

Bruna Rafaela Alves Garcia 

x21245835 

 
Abstract 

This study investigates the integration of Random Forest models with SHAP 

(SHapley Additive exPlanations) to address key challenges in Predictive 

Maintenance (PdM), particularly within resource-constrained environments. The 

study employs the MetroPT3 dataset, comprising time-series sensor data from 

metro air compressor unit, to identify machine failure patterns and potentially 

inform maintenance decisions. Given the dataset’s highly imbalanced nature and the 

challenges associated with preserving temporal dependencies, the methodology employs 

data preprocessing techniques, such as rolling statistical, feature engineering, class 

weighting and correlation-based feature selection, were employed to prepare the dataset 

for analysis. The initial Random Forest model demonstrated a good predictive 

capability, but the integration of SHAP provided feature-level insights that 

enhanced transparency and informed further refinements. Threshold tuning further 

optimised the model’s performance, achieving a precision of 0.94, recall of 0.74, and 

F1-score of 0.83 for the minority class. SHAP analysis highlighted key 

predictors, such as pressure-related and motor current features, offering 

actionable insights for maintenance decisions. This work underscores the 

importance of balancing predictive accuracy with interpretability, addressing 

both technical and practical challenges in Predictive Maintenance. The findings 

demonstrate the potential of combining machine learning with Explainable AI to 

deliver transparent and actionable insights. Limitations related to class imbalance 

and dataset specificity are discussed, along with proposals for future research. 

 

1 Introduction 

The increasingly dependence on Machine Learning (ML) models in industrial settings 
needs strategies for making these models more interpretable, particularly in applications like 

Predictive Maintenance (PdM). Which has considerable benefits in terms of minimising 
unplanned downtime and lowering operating costs. However, the complexity of ML models 

can sometimes limit transparency, posing challenges to trust and adoption. 

Unlike traditional maintenance strategies, such as reactive or preventive maintenance, 

Predictive Maintenance leverages advanced data-driven methodologies, to anticipate issues 
before they arise. Integrating explainable AI (XAI) techniques into Predictive 

Maintenance systems further addresses critical concerns such as transparency, 
accountability and trustworthiness. These enhancements give maintenance teams important 

insights that help them to understand the rationale behind AI-driven decisions, fostering 
collaboration and improving decision-making in industrial environments (Gawde et al., 

2024). 
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Furthermore, XAI not only supports the practical application of Predictive 
Maintenance but also offers opportunities to refine and improve the underlying predictive 

models. This study explores the potential of SHAP in tackling these challenges, delivering 
action- able insights and improving the effectiveness of these models. 

 

1.1 Background and Motivation 

Many Predictive Maintenance models operate as so called “black boxes”, providing limited 

visibility into their decision-making processes. This opacity is particularly problematic 
in critical applications, where understanding why a prediction is made is as important as 

the prediction itself. 
By combining real-time data and ML algorithms, Predictive Maintenance 

significantly reduces operational disruptions and maintenance costs while improving 
equipment reliability. According to Madhu and Nagaraju (2024), AI-driven Predictive 

Maintenance solutions implemented in industries like wind energy and aviation have 
achieved up to a 30% reduction in maintenance costs and a 40% decrease in unplanned 

downtimes. The ability to predict equipment failures enables industries to optimise 
resource allocation, extend machinery lifespan and ensure operational safety. 

Furthermore, the authors highlight that flexibility and interpretability of ML models, such 
as Random Forests, make them ideal for processing high-dimensional sensor data typical 

in industrial settings. These models provide frameworks for anomaly detection and 
lifecycle predictions. 

The MetroPT3 dataset, used in this study, presents additional challenges as it is both 
highly imbalanced and structured as a time-series. Traditional class imbalance solutions, 

such as SMOTE, cannot be applied without disrupting temporal dependencies, 
necessitating alternative approaches like class weighting. In this context, Random Forest 

models were selected for their robustness and interpretability, while SHAP was employed 
to provide detailed feature-level insights into model predictions. This research aims to 

balance the dual objectives of achieving actionable predictive insights and maintaining 
model transparency, even in resource-constrained environments. 

 

1.2 Research Question 

This study focuses on investigating the following research questions: 

Question 1: What are the practical challenges and potential benefits of applying 
SHAP for interpreting Random Forest models in Predictive Maintenance? 

Question 2: How effectively can Random Forest and SHAP be utilised to deliver 
actionable maintenance insights in environments with computational and resource 

constraints? 
The study is organised into sections as follows: Part 2, “Related Work”, reviews 

previous research in the fields of Predictive Maintenance, time-series analysis and 
Explainable AI (XAI). Highlighting the research gap this thesis addresses and the 

contributions it makes. Part 3, “Methodology”, explains the dataset used, the 
preprocessing techniques applied and the modelling approach chosen for this study. Part 

4, “Design Specification”, details the framework and techniques employed in the 
implementation, alongside the requirements for achieving the research objectives. Part 

5, “Implementation”, describes the final preparation of the dataset, the training of the 
Random Forest model, and the application of SHAP for interpretability. Part 6, “Evaluation”, 

assesses the effectiveness of the methodology and interpretability techniques, presenting 
results and their implications.  Finally, Part 7, “Conclusion and Future Work”, summarises 



3  

the key findings and research questions addressed, and outlines potential directions for 
further exploration in Predictive Maintenance and XAI. 

 

2 Related Work 

This section presents a comprehensive review of the existing literature on data-driven 

Predictive Maintenance, with an emphasis on the application of Machine Learning techniques 
to real-world systems and Explainable AI. The aim is to establish a foundation for the 

subsequent discussions in this thesis. The review examines the strengths and limitations of 
various methodologies employed to predict and prevent system failures, detect anomalies, 

and evaluate their potential for practical implementation in operational settings. 

 

2.1 Machine Learning 

Machine learning (ML) has emerged as a groundbreaking force, redefining how 

computers process data and solve complex problems. As summarised by Rai et al. 
(2024), ML replaces manually coded rules with algorithms capable of learning from data and 

adapting over time. This paradigm enables systems to extract insights, recognise patterns 
and improve their performance independently, shaping industries and everyday life 

profoundly. Its success relies on leveraging diverse datasets, from structured numerical data 
to unstructured formats like images and text, underscoring the importance of data quality and 

volume in building robust models. ML has two primary paradigms, which are: 
supervised and unsupervised learning. Supervised learning uses labelled datasets to train 

algorithms, enabling accurate predictions and classifications for new data points. On the 
other hand, unsupervised learning handles unlabelled datasets, uncovering hidden patterns 

and relationships, proving particularly valuable for clustering and segmentation tasks. 
The large availability of data produced every day is what makes ML evolve so 

rapidly. As it focusses on creating algorithms based on the machine’s prior 
experiences. The purpose of ML is to detect patterns/trends in data and then use those to 

make meaningful inferences. Delivering more assertive outcomes through increasingly 
precise predictions. Machine learning approaches rely largely on computational resources 

(Jabbar et al., 2018) In simple terms: ML demonstrates the ability to deliver 
consistently accurate pre- dictions by learning from training data. Its primary goal 

is to automate knowledge engineering, reducing manual effort through techniques that 
enhance efficiency by uncovering patterns in data. The effectiveness of machine learning is 

evaluated experimentally, focusing on its capacity to outperform traditional methods in 
real-world scenarios (Singh et al., 2006). 

Ratha et al. (2020) provided a comprehensive overview of ML applications, emphasising 
the use of supervised algorithms for analysing trends and autonomous decision-making in 

domains such as: Healthcare and smart cities. Ra and Souza (2019) discussed the 
evolution of ML, highlighting supervised, unsupervised, and reinforcement learning 

algorithms, and illustrating their applications in predictive modelling and decision-
making tasks. A work by Singh et al. (2016), explored the comparative performance of 

supervised learning techniques, such as Decision Trees, Random Forests and Support Vector 
Machines, demonstrating their adaptability in solving classification and regression problems 

across diverse domains. More recently, Yu et al. (2023) investigated advancements in ML, 
presenting neural networks and boosting algorithms as key contributors to break-throughs in 

areas like defect detection and earthquake prediction. Whereas Gupta et al. (2022) focused on 
supervised learning’s applicability, showcasing regression and classification models in use 

cases ranging from stock price prediction to academic performance analysis.
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2.1.1 Random Forest 

Random Forest algorithm has demonstrated great performance in Predictive Maintenance 

applications across different domains. Aji et al. (2020) implemented Random Forest to 
develop a Predictive Maintenance model for magnetic sensors. The model achieved a 

high RF score of 0.98 and a Mean Absolute Error (MAE) of 0.83, demonstrating its 
effectiveness in predicting maintenance time. The study emphasised the algorithm’s 

ability to aggregate predictions from multiple decision trees, enhancing accuracy and 
robustness in scenarios requiring continuous real-time monitoring. 

Maashi et al. (2020) proposed a Predictive Maintenance framework using Random 
Forest for industrial duct fans. Their model was able to perform binary classification 

to identify equipment abnormalities and regression to estimate Remaining Useful Life 
(RUL). With an impressive accuracy of 99% and a regression Root Mean Squared Error 

(RMSE) of 80, the study underscored the model’s ability to handle complex datasets 
efficiently. The authors highlighted Random Forest’s ensemble learning approach, which 

combines low bias and high variance decision trees to deliver superior performance in 
both predictive and regression tasks. Similarly, Vinh et al. (2022) also employed Random 

Forest to estimate RUL, but their approach was different. Their system integrated data 
from diverse sensors through LoRa nodes, enabling real-time monitoring and prediction. 

The Random Forest model demonstrated robust performance in this case, achieving a 
normalised Root Mean Square Error (NRMSE) of 0.1427, highlighting its capability to 

predict RUL accurately in varied machine environments. The authors emphasized the 
model’s utility in improving operational efficiency and proactively preventing equipment 

failures. 
Random Forest was also explored for predicting relative humidity in a smart factory 

environment. By using an Industrial Internet of Things (IIoT) platform, real-time data on 
temperature, particulate concentration and relative humidity were collected to train their 

model. The study achieved really good accuracy of 82.49%, showing RF’s ability to 
handle high-dimensional data with reliable performance. This Predictive Maintenance 

approach not only reduced maintenance costs but also mitigated risks associated with 
static charge and photolithographic degradation, which are critical for cleanroom 

operations (Prihatno et al. (2021). 
These studies illustrate the flexibility and efficacy of Random Forest in Predictive 

Maintenance applications. Its strengths in handling imbalanced data, generating reliable 
predictions and providing interpretability make it an ideal choice for scenarios involving 

critical industrial systems and sensor-based monitoring. 
 

2.1.2 Class Imbalance 

Class imbalance occurs in many real-world applications, it is when the distribution of 
classes in a dataset is uneven. Where one or more classes are significantly 

underrepresented compared to others. This imbalance can severely affect the 
performance of ML models. 

The classification of imbalanced datasets is a well-known challenge when it comes to 
handling data. A key issue is the high misclassification rate of the minority class, as 

classifiers tend to prioritise the majority class. To address this, proposed solutions in the 
literature can be broadly categorised into approaches such as: Data Sampling: This 

involves adjusting the sampling of training instances to create a more balanced dataset. 
Cost-Sensitive Learning: This approach assigns higher misclassification costs to 

minority class instances (e.g., false positives) and lower costs to the majority class (e.g., 
false negatives), encouraging the model to treat both classes more equally (Katrakazas et 

al., 2019). 
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The former, cannot be used in time-series data due to the temporal dependency, so 
different solutions need to be addressed. 

According to Ahmadzadeh et al. (2019), class imbalance is a prevalent issue with 
potential solutions, many of which are widely recognised but still prone to misuse. This 

is especially evident when the primary goal is not centred on Machine Learning itself but 
on evaluating and examining domain-specific theories. The complexity of the problem, 

coupled with a lack of expertise in data handling, often leads to an underestimation of the 
required level of precision. This can result in analyses that are impractical, unreliable, 

and of limited real-world applicability. 
Various studies have been proposed to address this issue. Johnson and Khoshgoftaar 

(2019) conducted an extensive review of deep learning techniques for imbalanced data, 
categorising solutions into data-level, algorithm-level, and hybrid methods. They high- 

lighted the effectiveness of traditional resampling techniques, such as SMOTE, and 
algorithmic adjustments, such as cost-sensitive learning, to improve performance in skewed 

datasets. Chen et al. (2024) further explored ensemble learning methods, including bagging 
and boosting, which enhance the robustness of classifiers against imbalanced data 

distributions by reweighing or resampling techniques. A work by Niaz et al. (2022) dis- 
cussed hybrid techniques combining data balancing with model-specific enhancements, 

identifying Easy Ensemble and Balance Cascade as effective solutions for binary and 
multi-class imbalance problems. These methods integrate the benefits of both resampling and 

algorithmic tuning, achieving improved predictive accuracy. Finally, Jafarigola and Trafalis 
(2023) reviewed emerging trends in imbalanced learning, such as long-tail learning and 

imbalance regression, noting their application in real-world problems like fraud detection and 
medical diagnosis, where skewed datasets are prevalent. 

2.1.3 Time-series Classification 

Time-series classification is a challenging ML domain that aims to predict class labels 

for temporally ordered data. Several approaches have been developed to deal with this 
complexity. Geurts (2001) suggested a pattern extraction approach that identifies and 

combines local features in time-series. This approach uses decision trees to generate 
interpretable classification rules, producing competitive results in artificial and real-world 

datasets by focusing on the identification of discriminatory temporal patterns.  

Batal et al. (2009) developed the STF-Mine method, which produces temporal 

abstraction patterns for multivariate time-series classification. This technique divides 
raw time-series into qualitative states, extracts common patterns with an expanded A- 

priori algorithm, and chooses discriminatory features using statistical metrics.  Their 
experimental results revealed the effectiveness of STF-Mine in enhancing classifier 

accuracy, particularly in medical datasets where temporal patterns are crucial.  
These developments highlight continuing attempts to increase the accuracy and 

interpretability of TSC approaches by emphasising temporal feature extraction and 
pattern identification. 

 

2.1.4 Performance Metrics 

The assessment of predictive models in scenarios with class imbalance often calls for metrics 
that are used to skewed distributions of data. The F1-score, recognised as the harmonic mean 

of precision and recall, is particularly effective when true negatives are not as critical as 
true positives and false positives (Puthiya Parambath et al., 2014). This metric is 

preferred in binary classification tasks involving imbalanced data, where it provides a 
balanced perspective on precision and recall. Unlike traditional accuracy measures, the F1-

score does not overemphasise majority class performance, making it suitable for applications 
like Predictive Maintenance where failure events are rare but consequential.
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Flach and Kull (2015) further emphasised the advantages of precision-recall curves 
over receiver operating characteristic (ROC) curves in imbalanced datasets.  They high- 

lighted that precision-recall curves focus solely on positive class performance, a critical 
consideration for Predictive Maintenance. They proposed Precision-Recall-Gain curves 

as a refinement, which calibrate precision and recall metrics to address incoherencies in 
scale and better align them with real-world decision thresholds. These refinements 

underscore the importance of precision-recall metrics in scenarios like this research, 
where understanding model trade-offs is critical. 

Lipton et al. (2014) explored the optimisation of the F1 score in binary and 
multilabeled classification tasks. The study also discussed the challenges associated with 

determining optimal decision-making thresholds to maximize the F1 score, especially in 
the presence of unbalanced datasets. It was noted that while F1 provides an effective 

measure for balancing precision and recall, its nonlinear properties and asymmetric 
treatment of positive and negative classes can introduce complexities in optimization, 

particularly for rare labels (Lipton et al., 2014). 
By adopting the F1-score and related metrics, this research aligns with the best practices 

for evaluating predictive models in imbalanced datasets. The focus on precision and recall 
ensures a targeted assessment of the model’s ability to predict failure events accurately, 

avoiding metrics that prioritise majority class performance. This methodological choice 
supports the study’s objectives of ensuring reliable and interpretable predictions in 

Predictive Maintenance contexts. 

 

2.2 Predictive Maintenance 

 

Predictive Maintenance (PdM) is an important method for reducing unexpected downtime 
and operating expenses by predicting equipment problems. It employs Machine Learning 

(ML) to assess sensor and operational data, allowing for prompt actions.  Amer et al. 
(2023) investigated the performance of various supervised machine learning algorithms, 

including Random Forest, XGBoost and Support Vector Machines. They discovered 
that XGBoost was especially successful for big datasets. Their findings highlight the 

relevance of algorithm selection based on data characteristics and indicate that Predictive 
Maintenance systems can dramatically minimise production stoppages.  

Paolanti et al. (2018) developed a Predictive Maintenance architecture targeting Industry 
4.0 contexts, using Random Forests to categorise machine states with excellent accuracy 

(95%). This strategy used real-time data collected by IoT sensors and analysed using a cloud-
based system, emphasising the importance of data-driven approaches in supporting 

maintenance decisions and improving operational efficiency. 
In an earlier study, Susto et al. (2015) proposed a Multiple Classifier Predictive 

Maintenance (PdM) approach for dealing with imbalanced datasets, which are typical in 
maintenance tasks. The strategy avoided unexpected failures and optimised maintenance 

schedules by using classifiers with different prediction horizons. Their work in 
semiconductor production demonstrated the efficiency of this strategy in balancing 

operational costs with performance. 

 

2.2.1 Maintenance Costs 

Maintenance costs represent a significant aspect of industrial operations, and it would not be 
different for the metro train industries. Maintenance costs can reach as high as 70% of 

production expenses. This high proportion is driven by automation, the integration of 
Industry 4.0 technologies, and the complexity of systems, which increases labour and repair 

expenses (Lemes and Hvam, 2019). The authors state that proper maintenance cost 
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categorisation, such as: downtime, wages, spare parts and degradation, helps industries 
improve cost visibility and decision-making. However, lack of standardisation and detailed 

quantification, with Predictive Maintenance offering a promising alternative for cost 
reduction, since it generally cost less than corrective or preventive actions. Models that 

integrate predictive strategies with traditional maintenance frameworks enhance the 
operational and financial efficiency of industries. 

According to He et al. (2022), in the metro train sector, maintenance represents 40% 
of total costs, directly influencing operational efficiency, energy savings and system 

reliability. The research highlights that a reliability-centered maintenance (RCM) 
approach, combined with strategies like “opportunistic maintenance”, allows for 

simultaneous optimisation of costs and train availability. The study demonstrates that 
arranging maintenance tasks based on component reliability thresholds significantly 

reduces shut- down frequency, leading to cost savings and increased operational active 
time. The use of mathematical optimisation models to schedule maintenance tasks under 

constraints like failure probability and cost provides a structured methodology for 
managing these complex systems. By reducing downtime and aligning maintenance 

schedules with operational needs, such frameworks are pivotal in achieving economic and 
technical feasibility in metro systems. 

ML-based approaches can further reduce costs by improving the precision of failure 
predictions, allowing for just-in-time interventions. However, as noted by Leukel et al. 

(2021), the selection of appropriate ML algorithms and features is crucial, as imbalanced data 
can skew predictions and lead to inefficient maintenance scheduling. 

 

2.3 Explainable AI 

Explainable Artificial Intelligence (XAI) is becoming more important for improving 
the transparency and trustworthiness of machine learning (ML) models, especially in 

sensitive areas such as healthcare, criminal justice and Predictive Maintenance. Karlsson and 
Bengtsson (2022) evaluated Integrated Gradients (IG), a prominent XAI method, across 

sequential and non-sequential datasets. Their results revealed that IG effectively interprets 
deep learning models such as RNN, LSTM, and GRU but is influenced by baseline 

selection, particularly for non-sequential data. On a different study, Samek et al. (2017) 
discussed the challenges of interpreting the decisions of complex deep learning models, often 

regarded as “black boxes” due to their non-linear structures. The study introduced methods 
like Sensitivity Analysis (SA) and Layer-wise Relevance Propagation (LRP) to 

explain predictions, highlighting their effectiveness in visualising model decisions in tasks 
such as image classification, text analysis and human action recognition. LRP, in 

particular, demonstrated superior performance over SA by assigning relevance scores to input 
features, enabling a more accurate decomposition of predictions. Additionally, they also 

highlighted the role of XAI in identifying biases in datasets and improving model 
performance through a better understanding of decision-making processes. These advances 

underscore the potential of XAI to bridge the gap between complex ML models and 
actionable insights in various real-world scenarios. 

Cummins et al. (2024) categorised XAI methods for Predictive Maintenance, high- 

lighting challenges in achieving interpretability while preserving performance. They 
emphasised the importance of local explanations for actionable insights and proposed 

systematic evaluation frameworks to enhance user trust in Predictive Maintenance 
systems (Cummins et al., 2024). Rudin (2019) argued for prioritising inherently 

interpretable models over post-hoc explanations, criticising the reliability of black-box 
models in critical decision-making contexts. The study advocates for model simplicity to 

achieve transparent predictions without compromising accuracy. 
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2.3.1 SHAP 

SHapley Additive exPlanations (SHAP) is a XAI approach based on game theory 

that aims to explain the predictions of any machine learning model. It uses Shapley 

values, which is a concept from game theory, by computing the contribution of each feature 
to the prediction. In a recent work (Van den Broeck et al., 2020) the computational 

complexity of SHAP explanations was analysed. They demonstrated that while 
SHAP ensures desirable properties such as local accuracy and consistency, its 

computational tractability is limited, especially for models like logistic regression and 
neural networks. The study emphasised that fully-factorised distributions simplify 

computations but remain computationally intensive in certain cases. 
Kedar and Mhatre (2024) compared SHAP with other XAI methods, including 

LIME, Anchors and Permutation Importance. According to their findings, SHAP 
demonstrated certain superiority in providing detailed feature-level insights, crucial for 

building trust in AI systems. In addition, they noted that while SHAP excels in global 
interpretability, challenges remain in computational efficiency and feature dependency, 

particularly for high-dimensional datasets. 
 

3 Methodology 

3.1 Research Methodology 

This study adopts a mixed-methods approach, combining quantitative analysis with 

interpretive techniques, to examine the potential of Machine Learning for Predictive 

Maintenance in a time-series dataset. The primary objective is to investigate how SHAP 

(SHapley Additive exPlanations) improves interpretability and supports maintenance 

decision-making with a particular focus on applying Random Forest models to the MetroPT3 

dataset. 

The research phases were as it follows: 1. Problem Definition: Identify the challenges in 

Predictive Maintenance, particularly in imbalanced a time-series dataset. And formulate 

research questions aiming to explore SHAP’s applicability to this domain. 2. Data 

Understanding and Preparation: Investigate the characteristics of the MetroPT3 dataset 

followed by data preprocessing and class imbalance handling. 3. Model Development: 

Implement and train Random Forest models, chosen for its interpretability and computational 

constraints. 4. Interpretability: Integrating SHAP to the analysis to elucidate the global 

contributions of features to model predictions. 5. Validation and Insights: Evaluate the 

model’s performance and interpret the implications of its predictions for the MetroPT3 

dataset. 

3.2 Data Analytics Methodology 

The CRISP-DM, which stands for Cross-Industry Standard Process for Data Mining, 
methodology was created by a consortium of companies including Daimler AG, Integral 

Solutions Ltd (ISL), NCR Corporation and OHRA, an insurance company in 1996. 
The 1.0 version of CRISP-DM was released and fully documented, providing data 

miners with a standardized framework and guidelines. The process comprises six well-
defined and structured stages or phases and it provides a simple and clear model for data 

analysis (Shafique & Qaiser, 2014). The standard six-step CRISP-DM model, as shown 
in Figure 1, was slightly adapted to meet the specifications of this project. A short 

summary of what will be done is also shown in Figure 1. 
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Figure 1: CRISP-DM Process Model (Source: Adapted from Shafique & Qaiser 2014, p.3 and 

Vijaywargiya 2019, p.8) 

3.3 Data Description 

 
The dataset, named MetroPT3, which is available at UC Irvine Machine Learning 

Repository1, was collected from the air production unit (APU) of “Metro do Porto” trains in 

an operational context. It spans February to August 2020 and consists of 15,169,480 data 

points logged at a frequency of 1 Hz. This multivariate time-series dataset contains readings 

from 15 sensors, including seven analogue sensors measuring variables such as pressure 

motor current and oil temperature. Plus, eight digital sensors monitoring electrical 

signals like air intake valve activity and compressor outlet valve status. The dataset was 

designed to support Predictive Maintenance tasks, anomaly detection and remaining useful 

life (RUL) prediction (Davari et al., 2021).  

 

3.4 Data Preprocessing 

Data preprocessing is a crucial foundation for conducting credible data analyses. It 

encompasses a variety of techniques designed to improve the integrity of raw data. These 
methods include checking for outliers and deciding what to do with them, which may skew 

the results, and the imputation of missing values (if needed) to ensure completeness. This 
stage is vital for preparing data for meaningful analysis by ensuring accuracy, consistency, 

and reliability in the dataset. Expanding on these techniques, preprocessing also often 
involves normalising data to a common scale and encoding categorical variables to better fit 

analytical models. By addressing these preliminary needs, data preprocessing enhances the 
overall effectiveness of data analysis insights (Fan et al., 2021). 

Time-series data plays a crucial role in various application scenarios, leading to 

the development of diverse approaches for its preprocessing. These approaches include 
strategies for cleaning, segmenting, representing, normalising, comparing and aggregating 

time-series data. Combining these operations creates a preprocessing workflow with 

significant flexibility. Designing an effective preprocessing pipeline requires incorporating 

 
1 https://archive.ics.uci.edu/dataset/791/metropt+3+dataset 
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domain knowledge (Bernard et al., 2012). 
 

3.5 Handling Class Imbalance 

The methodology employed in this research involved the use of “class weights” to address 
the unique characteristics of time-series data. This approach was chosen as there is no 

clear consensus on the applicability or effectiveness of techniques such as 
over/undersampling for certain types of data (Yang et al., 2024). 

According to Moniz et al. (2016), time-series forecasting presents significant challenges 
due to the non-stationary nature of the data, which creates a complex environment for 

predictive tasks. One common issue is the imbalanced distribution of the target variable, 
where certain intervals, though critical to the user, are underrepresented. Traditional 

regression methods often focus on the average behaviour of the data, which contrasts 
with the goal in many time-series forecasting tasks that aim to predict rare events. To address 

this, resampling strategies are frequently employed, modifying the learning data distribution 
to favour a specific bias. 

 

3.6 Model Development 

 
The model selected for this analysis is Random Forest, chosen for its versatility and 

effectiveness in handling structured datasets. While the primary objective is not solely to 

achieve high predictive accuracy, the focus is on leveraging Random Forest as a baseline to 

explore the interpretative capabilities of SHAP in the context of maintenance prediction. The 

study aims to examine how SHAP can uncover the key factors influencing model predictions, 

providing insights for improving the model’s performance and also maintenance decision-

making. Furthermore, the study seeks to evaluate the feasibility of using a method like SHAP 

in environments with constrained computational resources and time-sensitive requirements. 

 

3.7 Limitations in Transferability and Generalisability 

The findings are specific to the MetroPT3 dataset and may not generalise directly to 

other industries settings. Future research should explore the applicability of this 
methodology to diverse equipment and operational contexts. 

 

4 Design Specification 

This section outlines the framework, techniques and methodologies employed in this 

research to explore the interpretability of Random Forest models in Predictive 

Maintenance (PdM) using SHAP. The focus is on identifying the key features influencing 
failure predictions and evaluating how effectively actionable insights can be delivered in 

resource-constrained environments. This study aims to propose a straightforward approach 
that balances predictive accuracy and transparency while addressing the challenges posed 

by highly imbalanced time-series datasets. 
The project is structured into several key stages in order to meet the research 

objectives. First, the dataset is selected, the MetroPT3 dataset, a time-series 
collection of machine sensor readings. Understanding the dataset and its context is 

crucial, as it reflects real-world Predictive Maintenance scenarios. The dataset includes 
sensor readings related to air compressors, which are critical for ensuring the 

functionality of metro systems. 
Data preprocessing constitutes the next stage, addressing binary target creation (status), 

irrelevant features, rolling statistical feature generation (mean and standard deviation), 
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forward and backward filling and class imbalance are applied to maintain data 
integrity while preserving the sequential nature of the dataset. Feature selection 

leverages correlation analysis to identify and retain relevant predictors for modelling. 
The modelling phase utilises Random Forest and to address the dataset’s severe im- 

balance, class weights are applied during training, ensuring fair representation of the minority 
class (status=1). Model evaluation is conducted using metrics such as precision, recall, and 

F1-score to assess the effectiveness of failure predictions. Hyperparameter optimisation and 
threshold tuning are also performed to enhance the model’s performance under. 

Finally, SHAP is integrated to interpret model predictions, providing insights into 
feature contributions, highlighting the contributions of specific predictors in individual 

failure cases. By integrating Random Forest and SHAP, this research demonstrates a 
transparent approach to Predictive Maintenance that aligns with computational and 

operational constraints. 

 

5 Implementation 

The implementation focuses on developing and executing a pipeline to analyse and 

interpret machine failure predictions using Random Forest and SHAP to elevate the 
model’s interpretability. The pipeline is designed to process time-series data and produce 

outputs that help to understand which features play an important role in the model. The 
final implementation integrates data preprocessing, model training, evaluation and 

explainability. 

 

5.1 Data Preprocessing and Transformation 

The raw dataset was transformed to prepare it for modelling. Key preprocessing steps 

included: creating a binary target variable (’status’) to mark failure events. As The purpose of 

Predictive Maintenance is to identify and prevent failures proactively. Creating a binary 
target variable (status) to mark failure events (failure = 1, no failure = 0) was essential for 

framing the problem as a classification task. This simplified the model’s objective to predict 

failure events based on sensor readings. 

In addition to that, a correlation matrix was computed, showing the pairwise Pearson 
correlation coefficients between all features and the target variable. This matrix provided a 

visual and numerical representation of the relationships in the data. Features with weak or 

negligible correlations to the target variable were identified and excluded.  
Rolling statistical features, such as mean and standard deviation, were engineered for key 

analog and digital sensors to capture temporal patterns and trends over time. These features 

enhanced the model's ability to detect patterns leading to failures by leveraging both short-

term and long-term sensor behaviours. engineering rolling statistical features (mean and 
standard deviation) for selected analog and digital sensor readings.   

These steps were taken in order to maintain the temporal integrity of the dataset. 

Additionally, the dataset was thoroughly examined for class imbalance (Fig.2), this 

imbalance can lead to biased models that overly focus on the majority class while neglecting 
the minority class as discussed in the Related Work section. 
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Figure 2: Class Imbalance. 

 

Traditional methods for handling class imbalance, such as oversampling or 

undersampling, were not suitable for this dataset due to its time-series nature. These methods 

disrupt the temporal order, which is critical for maintaining the integrity of time-series data. 

Instead of modifying the data distribution, class weights were used to adjust the model's loss 

function. The way it works is: Higher weights are assigned to the minority class (failures), 

encouraging the model to pay more attention to these underrepresented points during training. 

Using class weights did not alter the sequential structure of the data, ensuring the time-series 

integrity was intact. In Predictive Maintenance, missing a failure (false negatives) can have 

severe consequences, such as unplanned downtime or equipment damage. Class weights help 

mitigate this risk by ensuring that the minority class is not overlooked, improving the model's 

ability to predict failures accurately. 

 

5.2 Model Development 

A Random Forest model was trained (Fig. 3) on the preprocessed dataset to predict 
failure events. The implementation included a k-fold cross-validation approach. Model 

performance was evaluated using metrics such as precision, recall and F1-score. Outputs 
included confusion matrices and feature importance rankings for each fold. 
 

 
Figure 3: First Random Forest Model. 
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5.3 Explainability with SHAP 
 

The initial SHAP implementation (Fig.  4) focused on interpreting the predictions of 

the Random Forest model for a specific test sample, particularly one with borderline 
classification probabilities. By isolating a borderline test sample (one with classification 

probabilities close to the decision threshold), the goal was to explore the underlying 
decision-making process of the model in a scenario where its predictions were less 

certain. This approach allowed for a focused examination of how the model evaluated 
key features to determine a prediction. The sample to be explained was isolated and 

formatted as a DataFrame (to ensure compatibility with SHAP). A TreeExplainer was 
initialised using the best-performing Random Forest model from the training process 

(After Hyperpara- meter tuning and threshold tuning). SHAP values were then calculated 
for the selected sample, specifically targeting class 1 (“Failure”). These values quantified 

the contribution of each feature to the prediction outcome. Then, a SHAP waterfall plot 
was generated to visually illustrate how individual feature values influenced the model’s 

prediction for the failure class, incorporating the base prediction value to contextualise 
the result. 

Figure 4: SHAP waterfall plot. 

The SHAP waterfall plot (Fig. 4) illustrates the feature contributions for a failure prediction at 
test sample index 903626. The base model prediction (E[f(X)]) is 0.569, while the final 

prediction (f(x)) is 0.411. Positive contributions, such as “DV_pressure” and 
“Motor_current_rolling_mean”, push the prediction toward failure, whereas negative 

contributions, including “Reservoirs” and “TP3”, mitigate the failure likelihood. This initial 
breakdown supports the interpretability of the Random Forest model, enabling maintenance 

teams to identify and monitor critical features driving predictions. 

 

5.4 Tools 

The implementation was carried out in Python, and Google Colab was utilised.  The 
libraries used were: Pandas (for data manipulation and preprocessing), Matplotlib (for 

visualising data distributions and model evaluation metrics), Scikit-learn (for Random 

Forest modelling and performance evaluation) and SHAP (for explainability analysis and 
feature contribution visualisations). 

This implementation produced transformed datasets, trained Random Forest models, 
performance metrics and SHAP visualisations. These outputs provide interpretive insights, 

supporting the research objectives of enhancing model transparency. 
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6 Evaluation 

The evaluation phase of this study focused on integrating SHAP results to the regression 

model pipeline in order to have some insights and refine the Predictive Maintenance 

framework. After interpreting SHAP values, the analysis was extended to investigate the 
distribution and statistical properties of high-impact features identified by SHAP, namely: 

Reservoirs (measurement of the pressure downstream from the reservoirs), TP3 (pressure 
produced at the pneumatic panel), DV pressure (measurement of pressure drop during the 

discharge of air dryers in the towers), TP2(pressure on the compressor) rolling  mean, 

DV pressure rolling std, Motor current rolling std, COMP rolling mean, DV pressure 

rolling mean, and Motor current rolling mean. These features were deemed most 
influential in the prediction of machine failures, and their patterns were thoroughly 

explored (Fig. 5).  

Figure 5: High importance features after SHAP. 

 

A statistical summary of the high-impact features was conducted, providing insights 

into their central tendencies and variability. Additionally, the correlation of these features 
with the target variable (status) was analysed to quantify their predictive strength. This 

analysis revealed significant trends and highlighted key predictors that were strongly 
associated with failure events. 

Based on the SHAP, a list of High-Impact feature was created and its distribution 

was analysed as can be seen in Figures 6, 7 and 8. 

Figure 6: Class distribution of High-Impact features (Part 1). 
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Figure 7: Class distribution of High-Impact features (Part 2). 

Figure 8: Class distribution of High-Impact features (Part 3). 

 
Taking into account the insights provided by both SHAP and statistical findings, 

transformations and aggregations were applied to enhance the dataset further. New Feature 
Creation: Categorical bins were defined for DV pressure and Motor current to 

capture operational thresholds that could indicate impending failures. This was 
particularly useful for interpreting and acting upon sensor data effectively. Thresholds 

for Early Warning: Specific thresholds were established for features in order to try to 
implement an early warning system. Rolling statistical measures were monitored to flag 

abnormal trends indicative of failure risks. 
Existing features were refined to align with the SHAP-detected importance, focusing 

on improving their predictive utility. A new Random Forest model was trained using 
the updated dataset that included the newly engineered features and refined data. Class 

weights were recalculated to address any remaining imbalance in the dataset, ensuring 
fair representation of failure cases. 

After training, threshold tuning (Fig. 9) was performed once again in order to optimise 
model performance, targeting the best trade-off between precision, recall and F1-score. This 

step aimed to enhance the reliability of the failure predictions while maintaining a practical 
focus on actionable insights for early interventions (Fig. 10). 
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Figure 9: Optimal threshold tuning after SHAP analysis. 

 
Figure 10: Random Forest after feature selection with SHAP analysis. 

 

The integration of SHAP facilitated understanding of feature importance, enabling 
targeted transformations and strategic feature engineering. Refining high-impact features and 

incorporating thresholds led to a model that was more interpretable. 
After integrating SHAP for feature-level analysis and using the optimised threshold, the 

Random Forest model’s performance metrics showed a slight improvement.  At an 
optimal threshold of 0.40, the model achieved a precision of 0.94, recall of 0.74 and F1- 

score of 0.83 for the Failure class. These minor improvements reflect the model’s ability 
to reduce false positives while maintaining reasonable recall levels for failure predictions. 

The confusion matrix highlights the classification results: for the No Failure class, the 
model achieved perfect precision and recall (1.00), with 606,908 true positives and only 

293 false negatives. For the Failure class, the model identified 4,822 true positives and 1,688 
false negatives, achieving a precision of 0.94 and a recall of 0.74. The weighted averages for 

accuracy, precision, recall, and F1-score were all 1.00, showing a good overall performance. 
However, macro averages (Precision: 0.97, Recall: 0.87, F1-score: 0.91) provide a more 

balanced view, highlighting the disparity between the dominant No Failure class and the 
minority Failure class, underscoring the potential for further refinement in handling 

imbalanced datasets. In the context of Predictive Maintenance (PdM), these values are 
considered acceptable, as prioritizing inspections over unexpected machinery downtime due 

to failures is preferable. This approach allows for the reporting of subtle warning signals to 
prevent potential issues. 
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It is worth addressing several important considerations and limitations. Threshold 
tuning involved a trade-off between precision and recall, which could impact the model’s 

effectiveness in scenarios where identifying all failures is critical. Additionally, the 
decision to avoid oversampling or undersampling techniques limited the exploration of 

alternative strategies for addressing class imbalance, potentially constraining the model’s 
performance. Several adjustments were made to enhance the integration of SHAP into 

the analysis process, although some configurations could not be fully implemented due to 
technical limitations. For instance, the SHAP configuration was adjusted to use feature 

perturbation=“interventional”, providing greater flexibility in handling the dataset. 
Additionally, additivity checks were disabled to prevent errors arising from discrepancies 

in the sums of SHAP values, ensuring smoother calculations. To address memory and 
performance constraints, a manageable subset of data, such as 1,000 rows, was selected 

for SHAP calculations, to no avail. Although the errors limited the scope of the 
dependence plots, the SHAP summary plots still provided information about the most 

impactful features. 
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7 Conclusion and Future Work 

This research set out to address the identification of influential features for predicting 

failures in time-series data using SHAP and exploring the effectiveness of Random Forest 

models in generating actionable predictive insights in resource-constrained environments. By 
leveraging SHAP for interpretability and Random Forest for predictive capabilities, the 

study sought to balance predictive accuracy with model transparency, a critical 
requirement for real-world Predictive Maintenance (PdM) applications. 

Key findings of this study include the identification of high-impact features such as 
’Reservoirs,’ ’TP3,’ and ’DV pressure’ that significantly influence failure predictions. The 

integration of SHAP provided important insights that not only enhanced model transparency 
but also guided the refinement of data preprocessing and feature engineering steps, such as 

creating rolling statistical features and categorical bins. These insights allowed for more 
meaningful interpretations of model predictions and a better understanding of failure patterns. 

The results revealed that while the initial Random Forest model achieved good precision 
and recall, SHAP analysis and threshold optimisation improved the model’s ability to 

identify failures. At an optimised threshold, the model achieved a precision of 0.94 and a 
recall of 0.74 for the Failure class, meaning that the model was able to capture critical failure 

events with fewer false positives. Despite these advances, challenges such as the imbalanced 
distribution of failure events and the limitations of time-series stratification presented 

obstacles that required workarounds, such as using class weights and preserving the 
sequential integrity of the data during splits. 

This study demonstrated the combination of Random Forest and SHAP in predictive 
maintenance, providing insights while addressing transparency concerns. However, 

limitations remain. The lack of advanced time-series stratification techniques and the 
decision not to employ oversampling or undersampling approaches may have influenced the 

model’s ability to fully address class imbalance. Additionally, the focus on a single dataset 
limits the generalisation of the findings to other Predictive Maintenance scenarios. 

The potential of integrating interpretable AI techniques like SHAP into Predictive 
Maintenance workflows to bridge the gap between complex machine learning models and 

practical applications should be highlighted. From an industrial perspective, the findings 
underscore the importance of leveraging data-driven methodologies to enhance 

maintenance planning and reduce downtime, especially in resource-constrained settings. 
Future research could focus on addressing the limitations identified in this study. For 

instance, implementing stratified time-series cross-validation techniques could better evaluate 
the model’s performance in imbalanced datasets while preserving temporal dependencies. 

Additionally, exploring alternative models, such as Gradient Boosting Machines or deep 
learning approaches like LSTMs, could further enhance prediction accuracy, especially 

for datasets with complex temporal patterns. Another possibility could be the integration 
of real-time monitoring systems with predictive models, enabling dynamic updates to 

feature importance and thresholds based on live data streams.  
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