ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSCDAD

Adeola Deborah Adeniji
Student ID: X23104201

School of Computing
National College of Ireland

Supervisor: Mr. David Hamill

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Adeola Deborah Adeniji

Student ID: X23104201

Programme: MSc. Data Analytics Year: 2024
Module: MSc. Research Project

Supervisor: Mr. David Hamill

Submission Due

Date: 12/12/2024

Project Title: Groundwater Level Forecasting: USA

Word Count: 446

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Adeola Deborah Adeniji

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Adeola Deborah Adeniji
X23104201

1 Introduction

This configuration manual provides a guide to the environment setup used for this project. It
outlines a step-by-step preparation process necessary for similar implementation of the
project titled “Groundwater Level Forecasting”.

2 System Configuration Requirements

This project executed on Jupyter notebook, under the Anaconda package management was
compatible with Python programming language. The platform provided details about the
operating system, such as the operating system name, release number, machine type, python
version and the RAM. In Figure 1, the system information is shown.

Figure 1: System Information

stem:", platform.system(

platform.ve
» platform
» platform.
platform.machi
/ersion:™, platform.python

psutil
print("Total RAM:", round(psutil.virtual memory().total (1824

Operating System: Windows

0S Version: 18.8.19845

0S5 Release: 18

Processor: Intel6d4 Family 6 Model 42 Stepping 7, GenuinelIntel
Machine: AMD64

Python Version: 3.12.1

Total RAM: 7.88 GB

3 Environment Setup

The process of setting up of the environment involves launching the Anaconda Prompt to
open the Jupyter Notebook for the project. Figure 2 shows the dictionary of the server.

1

Figure 2: Anacona Prompt

B8 Anaconda Prompt - jupyter notebook

[
[
[
[
[
[

4 Installation of Python Packages and Libraries

The installation of necessary packages used for a smooth workflow in the statistical analysis
and time series modelling, are listed follows. The important packages installed are shown in
Figure 3, while Figure 4 shows a snippet the important libraries used.

e Platform

e OS

e warnings
e Pmdarima
e Statsmodels
e Pandas

e Seaborn

e NumPy
e Matplotlib

Figure 3: Packages Installed

Ipip install gputil

Ipip install statsmodels
Ipip install pmdarima

Figure 4: Libraires Installation

platform

o0s
GPUtil
warnings
warnings. {"ignore™)
pandas pd
numpy np
sklearn.preprocessing StandardScaler
seaborn SNS
matplotlib.pyplot plt
statsmodels.api sm
datetime datetime
statsmodels.tsa.seasonal seasonal_decompose
pmdarima auto_arima
sklearn.metrics mean_squared_error, mean_absolute_error, r2_score
statsmodels.tsa.holtwinters SimpleExpSmoothing
statsmodels.tsa.holtwinters ExponentialSmoothing
statsmodels.tsa.arima.model ARIMA

5 Implementation Stage Explained

The code snippet in Figure 4 shows the successful collection of the groundwater level
dataset® from Kaggle repository, and license for usage by the California Department of Water
Resources.

Figure 4: Data collection
(file_path="gwl-daily.cs

GWL - pd. (file_path)
primt{"Groundwater level data has
GWL
FileNotFoundError:
primt{"File not
GWlL = collect_data()

Groundwater lewvel data has been collected successfully.

1 https://www.kagqgle.com/datasets/alifarahmandfar/continuous-groundwater-level-measurements-
2023/data

https://www.kaggle.com/datasets/alifarahmandfar/continuous-groundwater-level-measurements-2023/data
https://www.kaggle.com/datasets/alifarahmandfar/continuous-groundwater-level-measurements-2023/data

The code snippet in Figure 5 explores the characteristics of the groundwater level dataset.

14AND1ESSPODTM

14MND1EISPO04M

16MO3IW14AHOO04M

14ANO1E3SPODTM

14ND1E3SPODLM

STATION MSMT DATE WLM_RPE WLM RPEQC WLM GSE WLM_GSE QC

Figure 5: Data Understanding.

4688

46.88

30.016

30.016

RPE_WSE_QC GSEWSE GSEWSEQC WSE

6.208

20.039

RPE_WSE RPEWSEQC GSEWSE GSEWSEQC
22 165

0263

WSE_QC

WSE

30.016
1048573 00N 30.016 2 16.100

1048574 ODIMNOIEDE 30.016 2 20141

The code snippet in Figure 6 show part of the pre-processing and transformation steps
involved.

Figure 6: Data Pre-Processing and Transformation.

Stations Selection

(df, station_list):

station_dfs

station

station_dfs[station]
station df

station_list:

df[df['STATION'] == statdion]

station_list = [o P E+

station_dfs - get_individual_station_dfs(GWL, station_list

station_a - station_dfs

station_b
station_c
station_d
station_e

station df
station_dfs
station_dfs
station_dfs[

The code snippet in Figure 7 shows an important step, where the column features are
normalized, while Figure 8 provides the information about each station.

4

Figure 7: Data Pre-Processing and Transformation Code.

Standardization

(df}):
scaler = StandardScaler()

station_a - standardize df{station_a)
station_b = standardize df{station_b)
station_c - standardize df(station_c)
station_d - standardize df{station_d)
station_e = standardize df{station_e)

Figure 8: Code Information about each Station A — E

print(station a.
print(station b.
print(station e.
print(station d.
print(station e.

(18358,

print{station a. b,
print(station b. 1
print({station c. b,
print(station d. 1
print(station e. 3

Index([‘MSMT_DATE', *WLM RPE', 'WLM GSE', 'RPE_WSE', 'GSE_MSE', 'WSE'], dtype='object'})
TIndex([‘MSMT_DATE®, “WLM_RPE', ‘WLM ‘RPE_WSE®, 'GSE_MSE', 'WSE'], dtype=" g
Index([‘MSMT_DATE®, “WLM_RPE®, ‘WLM_ ‘RPE_WSE®, ‘GSE_WSE', 'WSE‘], dtype="* 3
Index([‘MSMT_DATE®, “WLM_RPE', ‘WLM ‘RPE_WSE®, 'GSE_WSE', 'WSE'], dtype=‘sbject'})
Index([‘HSMT_DATE®, *WLM RPE', 'WiM GSE', 'RPE_WSE', ‘GSE_MSE', 'WSE'], diype='object')

stations ion_c, i d, station

titles
features

plt.figure{figsize=(10, 18))
i, station enumerate(stations):
plt.s § i+ 1)
plt. .index, station[’
plt.
plt.

Figure 10: Code for Seasonal Decomposition for all Stations
(figsize=({15, 18})
i, station enumerate(stations):
decomposition - seasonal decompose({station["WSE"]

plt. (3, 2, i + 1)

component, color zip([decomposition. » decomposition.

deccmpusitiﬂn decomposition.

"red']):

plt. (component, label compﬂnent

titles[i]]

Figure 11: Result for Seasonal Decomposition in all Stations

Seasonal Decomposition - Station A Seasonal Decompasition - Station B
!' — | i —
| A R I AL AA s pand g~
S8 HLEN | LT , 4 [1 s = ERALOND
ﬁ — e 1 ° . L 1 (i — pesid
—104] |
T 2t [
4 a0
- L]
=92 1950 2000 004 008 2012 2018 20en 2024 1582 183 2000 2004 208 2012 2018 20en 2024
Seasonal Decomposition - Station C Seasonal Decomposition - Station D
L] 2 — Wl
0 - A J\‘/\d" A trena
ey | \hlﬁlﬂ"\! WA v\.'\.'l "“'W i} [‘,‘ .
o - ! b 1 ul T — mad
W | - 1
= YT N
-1
b0

M“W”W‘“WWVWW

T ik 2000 iioE JohE 3 2016 0 1992 g 2000 Jon4 3 6 Lokl i} MiZ4

Seasonal Decompasition - Station F

JMM b !
- ""“'*’WW

l‘l‘_!l’: JDRC 24

The code snippet in Figure 12 shows how the data was spitted, while Figure 13 code snippet
ensures checking the vital signs of Time Series Data

Figure 12: Data Splitting

station stations:
station. (by="MSMT_DATE", inplace

(stations, train_ratio-2.8):
{chr{es + i}

[int{len{df) * train_ratio}].
[int(1len(df) * train_ratio):].

i, df enumerate(stations)

gplits - train_test split all(stations)

station, split splits. {):

split['train'] = split['train'].
split['test"] = split['test

print{f"{station}:"}

print(
print(

station_a : L 5 {station_a
station_b 5 L 5 {station_b
station_c 5 » 5 {station_c
station_d 5 » 5 {station_d
station_e 5 » 5 {station_e

start_date

station_a_ts station_al station_a = » start_date].
station_b_ts station b[station_b i L start_date].
station_c_ts station_c[station_c = » start_date].
station_d t= station_d[station_d s L start_date].
station_e_ts station_e[station_e = » start_date].

primt{~“Station = type(station_a ts))
primt{ " =ta n B Type: type{station_b_ts))
primt{“sta n C Type: type(station_c_ts))
primt{ " =ta n O ype: type({station_d_ts))
primt{~Station E Vpe type(station_e_ts))

Station : <class "pandas.core.series.Series'>
Station : <class "pamndas.core.series.Series’>
Station : «class "pandas.core.series.Series">»
Station : «class "pandas.core.series.Series"»
Station : «class "pandas.core.series.Series'»

primt{~“Station Index Type: station_a_ts.
primt{“Station B Index Type: station_b_ts.
primt{“=ta n C Index Type: station_c_ts.
primt{ " =ta n D Index Type: station_d_ts.
primt{“Station E Index ype : station_e_ts.

Development of the Time Series Models, consisted of Naive Base shoown in Figure 14, the
Drift Method in Figure 15, the Simple Exponential Smoothing Method in Figure 16, the Holt-
Winter Method shown in Figure 17 and the proposed Arima Method shown in Figure 18

Figure 14: Naive Base Method Code

(train, test, horizom-2928):

last_obs train.il 1
forecast np. (last_obs, len({test))
future_forecast np. {last_obs, horizon)
metrics

="1 mp. t{mean_squared_error(test, forecast)),

: mean_absolute_error(test, forecast),

ri": rd_score(test, forecast),
": np. {np. {({test forecast) test))
': test. (lag-1),

: len(test) np.log{mean_squared_error(test, forecast))

forecast, future_forecast, metrics

results
name: naive_forecast(split['train
name, split splits. ()]

name, (forecast, future_forecast, metrics) results.

primt(name metrics| ‘rmse’]z metrics| 'mae”]z metrics| "r2
metrics ape']: metrics["acfl']: metrics["aic

primt(future_forecast b1

Figure 15: Drift Method Code

(train, test, horizon-=2928):
n len({train)
drift ({train.il train.i a1l {n 1) n
forecast train.il 1 drift np. =1, len(test) 1)
future_forecast train.il 1 drift np. e(1, horizon 1)
metrics
I mp. t{mean_squared_error(test, forecast)),
: mean_absolute_error{test, forecast),
ri": r2_score(test, forecast),
2" np. {np. {(test forecast) / test)) 1648,
1": test. (lag-1),
c": len{test) np.log{mean_squared_error(test, forecast))

forecast, future_forecast, metrics

results_drift
name: drift_forecast(split["train
name, split splits.)

name, (forecast, futwre_forecast, metrics) results_drift.i {):

print(name metrics| "‘rmse’]z metrics['mas"]2 metrics| 'r2

metrics ape"]: metrics["acfl']: metrics| "aic
print(future_forecast 1

Figure 16: Simple Exponential Smoothing Method Code

{train, test, horizon-:
model SimpleExpSmoocthing(train}. ()
forecast model . (len{test))
future_forecast model. (horizon)

metrics

I np. (mean_squared_error(test, forecast)),
: mean_absolute_error(test, forecast),
: ri_score(test, forecast),
I onp. {np. {{test forecast) / test))
1": test. (lag=1}),
aic”: model.

forecast, futwre_forecast. » metrics

results_exp smoothing
name: simple_exp_smoothing forecast(split] 'train
name, split splits. ()

name, (forecast, futwure_forecast, metrics) results_exp smoothing. ():
print(name metrics| 'rmse’]: metrics['mae’]: metrics

metrics ape"]: metrics["acfl metrics["aic
print(future_forecast

Figure 17: Holt-Winter Method Code

(train, test, horizom-:

model ExponentialSmoothing(train, trend-'add’, seasonal-"zdd’, seasonal_periods-132)
forecast model. {len(test))
future_forecast model. (horizon)

metrics
I np. {mean_squared_error(test, forecast)),
: mean_absolute error(test, forecast),
2": r2_score(test, forecast),
I np. {np. {(test forecast) / test))
test. {lag=1),
: model.

forecast, future_forecast. y metrics

results_holt_winters
name: holt_winters_forecast{split['tr:
name, split splits. {)

name, (forecast, future_forecast, metrics) results_holt_winters. ():

rint(name metrics| ‘rmze’]: metrics| ‘mae” |z metrics
it (t t t

metrics ape’]: metrics["acfl']: metrics
prind(future_forecast

Figure 18: Arima Method Code

(train, test, horizon-2526, order=(2,1,2)):

model - ARIMA(train, order-order)
model_fit - model.fit(}

forecast - model_fit. {len{test))

future_forecast - model fit. (horizon)

HY - (mean_squared_error(test, forecast)),
: mean_absolute error(test, forecast),
: p2_score(test, forecast),
pe”: ng. (np.zbs((test - forecast) / test))
cfl”: test. r({lag-1),
: model_fit.

forecest, future forecast, metries

results_srima
name: arima_forecast(split
name, split in splits. ()

name, (forecast, future forecast, results_arima. :
print(" {name metrics : metrics| ‘mas” |2 metries| ' r2
metrics| ‘mape’ | metrics| ‘acfl” |: metrics

Ffuture_forecast. & = pd. r {
start - splits|mame| 'L: . i[-1],
periods-len(future forecast), freq

print(future forecast

10

