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Groundwater Level Forecasting: USA 
 

Adeola Deborah Adeniji  

X23104201  
 

 

Abstract 

 

Beneath the earth’s surface lies a natural reserve, groundwater, a vital source for 

drinking water, agriculture, and ecosystem sustainability in arid areas like California, 

USA. Groundwater management is of utmost importance but faces challenges due to its 

fluctuation levels and uncertain supplies. With the urgent need to ensure the rational use 

of this reserve, the Department of Water Resource (DWR), needs to provide a reliable and 

accurate forecast for groundwater levels, to support California water resource management 

(CDWR). This research leverages historical data of over 30 years to evaluate the 

effectiveness of time series models – Simple Time Series, Exponential Smoothing and 

ARIMA Models, to forecast groundwater levels for the next 8 years. Multiple performance 

metrics were used to find the best model for long-term water management, including 

coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Akaike's Information Criterion (AIC), and Mean Absolute Percentage Error 

(MAPE). The results indicated that ARIMA model outperformed the others, achieving the 

lowest RMSE of 2.31 and the highest R2 of -0.04. However, due to the complex dynamics 

of groundwater fluctuations, all models including Arima, struggled and were unable to 

provide satisfactory accuracy for the forecast. These findings underline the need to adopt 

more advanced methods since current models did not achieve good accuracy that can 

provide decision-makers useful information, to support sustainable groundwater 

management. This research contributes to the knowledge base, by identifying the models’ 

limitations while suggesting alternative ways of improving groundwater level forecasting. 

Keywords: Groundwater levels forecasting, time series models, department of water 

resources (USA), ARIMA prediction, sustainability groundwater use.  

 
 

1 Introduction of Groundwater Level Forecasting  
 

Groundwater (GW), a life vital natural reserve found beneath the Earth's surface, is stored 

within spaces between soil particles and rocks (Lall et al., 2020). It accounts for greater than 

30% of the world’s freshwater supply and is a vital source for drinking water, agriculture, and 

sustainability within ecosystems. GW is stored and filtered by soil, sand, and rock as it surfaces 

from underground springs or wells, this makes it less vulnerable to contamination, more 

sustainable and a reliable resource, unlike surface water which is directly exposed to pollution. 

In California, for instance, during dry years, up to 60% of their water supplies comes from GW, 

as this reveals its importance, especially in the arid regions (California DWR, 2024). While 

GW management is of utmost necessity, it faces challenges due to the uncertainties in water 

supply, low annual rainfall and fluctuations of aquifers levels. This complexity makes planning 

for effective resource management difficult. To better understand these challenges, continuous 
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monitoring of groundwater levels (GWL) is needed to make informed decisions for sustainable 

water use. 

     This study is motivated by an urgent need that has become completely unavoidable to 

develop an efficient model that can accurately predict GWL. The capability of these predictions 

is important for tracking and balancing the supply and demand, as well as creating sustainable 

water resource management practices. This research leverages the use of data mining methods 

for time series extraction from GW measurement data, with the aim of addressing the current 

challenges in the water supply. By integrating a well-fitted predictive model into a monitoring 

system, this approach will provide predictions that facilitate timely decision-making. 

       Furthermore, section 2 reviews numerous studies that have predicted groundwater levels 

using various data-driven approaches. These include deep learning models like Artificial 

Neural Network (ANN), machine learning models like Support Vector Machine (SVM), and 

time series models like ARIMA. While ANN and SVM are effective models, their “black box” 

nature makes the interpretation of their results difficult for decision-makers (Rajaee et al. 2019; 

Boo et al., 2024). On the other hand, the ARIMA model has shown better interpretability in 

GWL predictions, which makes it easy for decision-makers (Sarma et al., 2022; Takafuji et al., 

2019). While indicating the need to investigate a more effective model for reliable forecasting, 

most existing studies focus on short-term data range and predictions, which limits their 

applicability for long-term resource management. This study proposes addressing these 

limitations, with a model that can forecast GWL for up to eight years, using over 30 years of 

historical data. This has led to the research question below of this study. 

1.1  Research Question 
 

To what extent can time series models forecast groundwater levels to support sustainable water 

resource management in the United States? 

1.2     Research Objectives for Groundwater Level Forecasting  
 

To address the research question, key objectives were accomplished. The first objective 

conducted extensive literature reviews, second objective collected, analyzed and prepared 

GWL data. The third objective implemented statistical tests to validate parameters. The fourth 

objective developed time series models including Simple Time Series, Exponential Smoothing 

and ARIMA models with descriptive visualizations. The fifth objectives evaluated the 

performance of all models using metrics like R2, RMSE, MAE, AIC, and MAPE. Finally, the 

study compared models based on R2 and RMSE performance.  

1.3  Structure of Research  
 

This paper is organized as follows: Section 1 provides introductory information on the research 

study. Section 2 investigates previous related work on GWL forecasting. Section 3 presents 

methods specifically to achieve the objective. Section 4 presents the implementation and 

experimental setup of the research. Section 5 evaluates and compares the results of the models. 

Finally, Section 6 concludes by discussing the results and future work that are applicable in 

answering the research question in section 1.1. 
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2 Related Work on Groundwater Forecasting 
 

In this section, related works conducted over the last five years on GW forecasting will be 

discussed, as it highlights an overview of its key challenges, different data-driven approaches, 

their comparisons, gaps identified in the literature and how this study addresses them. It finally 

concludes on how these insights answer the question in the previous subsection 1.1.   

2.1 Overview of Groundwater Management Challenges 
 

The importance of forecasting groundwater has long been investigated. A recent review paper 

analysed over 168 articles that was published on GWL forecasting between 2000 to 2023 (José 

Luis Uc-Castillo et al., 2023). The study reveals that most research was done in semi-arid or 

arid regions like the United States where surface water is scarce and unreliable. Another 

systematic review with over 109 research articles from 2008 to 2002 further supported these 

views, where surface water is both limited and highly valuable (Khan et al., 2023). These 

reviews underlined the importance of the role GW plays in the area for sustainable water 

resource management, particularly in ensuring drought resilience, meeting in the increased 

demand of water supply, supporting ecosystem health, and maintaining water quality and 

economic stability. These studies further emphasise the growing need as to why enhanced 

accuracy is important in predicting GWL (Paul et al., 2024).  

However, GW management sustainability and effectiveness are threatened by several 

challenges stemming from data scarcity, model complexity, variability in results, and the need 

for accurate predictions. The lack of sufficient hydroclimate or GWL measurement data 

remains a barrier to integrating remote sensing and machine learning models (Abdellatif Rafik 

et al., 2023). The use of machine learning provides promising solutions as local models may 

achieve high accuracy, but this introduces another set of related challenges to the 

interpretability of the models (Shaikh et al., 2024). Aside from the technological challenges 

that groundwater management faces, some environmental factors are very vital to note, such 

as climate change, aquifer level fluctuation, and seasonal droughts (Aranguren-Díaz et al., 

2024). Despite these challenges, the advancement in artificial intelligence and machine 

learning offers potential ways for improved groundwater management (Boo et al., 2024).  

2.2 Data-Driven Approaches in Groundwater Level Forecasting 
 

In recent years, many researchers have leveraged methodologies such as Machine Learning 

(ML), Deep Learning (DL) and Time series (TS) models on GW data (Sarma and Singh, 2022). 

The adaptation of these models has led to its own advantages and challenges in terms of 

performance, interpretability and sustainability in relation to long-term forecasting, as all these 

factors will be considered to answer the research question in section 1.1. 

The predictive abilities of machine learning techniques were further tested in the context 

of multiscale GW forecasting, as it has the capability of modelling nonlinearities between GW 

and its environmental drivers such as rainfall (Rahman et al., 2020). With the lack of physical 

understanding, the machine learning approach in over two decades has been able to overlook 

the intricate hydrological processes as it relies on the statistical connection such as rainfall, 

linking with the response variables such as groundwater levels (Rajaee et al. 2019). An 
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experimental exercise was conducted in the southern part of Japan where over one million 

people depended fully on groundwater for their daily domestic use with the usage of 58 pump 

stations to meet their demand. The exercise used three ML models; Support Vector Machine 

was used for its frequent accuracy predictions (Ferreira et al., 2019; Rajaee et al. 2019), 

Random Forest for its high precision in handling input variables that are large in numbers 

(Tyralis, Papacharalampous and Langousis, 2020), Extreme Gradient Boosting (XGBT) for its 

built-in improved regularization features that helps prevents overfitting which is a common 

problem for machine learning models (Chen et al., 2019). Even though machine learning has 

previously showed success in forecasting GWL, it exhibits some limitations such as inaccurate 

predictions when multiscale changes over time (Rahman et al., 2020). The study suggested that 

the result could further be improved with a more advance model that could identify hidden 

time frequencies from localised features.   

The application of DL in GWL forecasting has gained more traction and has emerged as a 

powerful tool when predicting complex, and non-linear relationships with large datasets. A 

study was able to use Recurrent Neural Networks (RNNs) to predict GWL in a confined area 

across southern Africa (Seyler et al., 2020). In the research, the deep learning model was used 

to analyse the temporal behaviour, influx, reserves and discharges. With the goal to answer two 

questions, first, to what extent could deep learning further predict groundwater levels? and 

secondly, what efficiency is required to generate aquifer fluxes with the adapted deep learning 

model. Particularly, the study evaluated and compared the performance of two RNNs models 

including Neural Network Autoregressive (NNAR) and Long-Short Term Memory (LSTM) 

networks. With the use of LSTM as a variant of RNNs, it was found to be superior to NNAR 

in terms of its prediction accuracy, having better results on the performance metrics such as 

RMSE and 𝑅2. In the realization of addressing the questions, the research highly noted LSTM 

to be efficient in identifying GWL changes and fluxes, while NNAR model struggled and was 

unstable to capture key variables in relation to the influx. In spite of the progress made, the 

research highlighted a significant limitation, that it lacked sufficient high-quality data which 

remains an important factor when using DL models for forecasting GWL (Seyler et al., 2020). 

Capitalizing on the shortcomings of the previous research, another study extended the 

scope of its own research, as it applied different sets of machine and deep learning techniques 

using a more complex, high-quality dataset which aimed to predict groundwater levels in the 

United States across twelve districts (Bedi et al., 2020). The study showing its relatable 

properties to the objective of this research in section 1.1. The study included models like 

Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), and Artificial Neural 

Networks (ANNs). From the data provided, the study focus was on the water quality, mainly 

considering the pesticides and nitrates levels, as the use of deep learning techniques proved to 

be insightful during the evaluation process. Based on the result, XGB had outperformed both 

SVM and ANN in terms of accuracy, however, a notable fault was found in the model. This 

highlights a questionable trade-off between practicality and accuracy when applying deep 

learning techniques to environmental data 

Subsequently, another researcher used over 20 years of historical data on GWL to make 

predictions for the next five years in Taiwan. The study used both LSTM and convolutional 

Neural Networks (CNNs) as the deep learning techniques, after preprocessing and dividing the 

data into training, validation, and test sets (Chen et al., 2023). The models evaluated using 
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standard metrics produced high accuracy values such as RMSE resulting in LSTM having 

0.008, CNN with 0.007 and 𝑅2 value of both models exceeding 0.997. From the results of the 

predictions, the deep learning model demonstrated that it had the ability to capture temporal 

dynamics of groundwater systems as it also identified some limitations (Chen et al., 2023).  

2.3 Comparisons in Groundwater Forecasting Approaches 
 

Numerous approaches have been investigated for forecasting GWL as each have shown their 

individual strengths and boundaries. For instance, a comprehensive review was conducted on 

over 109 papers, as it identified the gaps in both machine learning, deep learning approaches 

and traditional time series (Khan et al., 2023).  During the investigation, ARIMA model stood 

out, as it performed better in capturing trends and seasonal fluctuations. Also, in light of the 

investigation, the study noted that most models were evaluated with common performance 

metrics including RMSE, MAPE, and 𝑅2 as it underlines the importance of conducting long-

term interval forecasting. This provided insights into the ARIMA model for further analysis. 

While considering the traditional time series model, there have been some reoccurring deep 

learning models like LSTM and ANNs that have shown excellent results when capturing 

complex relationships, but they require extensive computational power (Seyler et al., 2020; 

Bedi et al., 2020). However, the deep learning models including LSTM and CNN that were 

used in predicting groundwater levels in Taiwan, were explained to have failed to uncover 

extreme patterns, which indicates a probable setback when dealing with high-variable data 

(Chen et al., 2023). In contrast, the use of the traditional time series models such as ARIMA 

when analysed by (Mirsanjari et al., 2019; Rashid et al., 2022) was discovered to have shown 

strengths in forecasting long-term trends, and seasonal variations. 

When comparing the different data-driven approaches, certain realization shows that time 

Series models (particularly Arima), seem to be more reliable in forecasting trend-based 

fluctuations in GWL. The model has an inherent strength in handling temporal data and their 

simplicity (Takafuji et al., 2019). An example of its unique abilities over other approaches was 

where the ARIMA model was evaluated and compared with both ANNs and other statistical 

models in term of its accuracy, interpretability and simplicity (Kontopoulou et al., 2023). 

Regardless of the need for assumptions, the model was able to forecast without extensive input 

data, as it was less prone to overfitting which made it an appealing choice, especially for 

regions like Iran and Mahran with limited GW data (Goodarzi, 2020). While deep learning 

models offer flexibility, the ARIMA model which is proposed in this study, is been adopted 

due to its ability in handling long-term trend analysis and its interpretability which is essential 

for sustainable groundwater management (Takafuji et al., 2019).  

2.4 Identifying the Gaps in Groundwater Levels Forecasting  
 

Through the review of previous literature, GWL forecasting has faced some challenges 

resulting in gaps in current methodologies. Groundwater is a vital resource and of deep 

importance to certain regions, hence accurate forecasting of models is necessary for sustainable 

management (Lall et al., 2020). A summary table below has highlighted these limitations from 

a few research papers while suggesting a feasible solution that can improve the accuracy and 

applicability of groundwater forecasting models. 
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Table 1: Summary of Gaps and Solutions in Groundwater Level Forecasting 
 

Reference Gaps Details Solutions 

Rashid et al.(2020); 

Seyler et al. (2020) 

Short Dataset 

Duration 

Many studies use only five to 

ten years of data, limiting long 

term insights. 

Leverage over thirty years 

of historical data for a long-

term trend  

Rashid et al. (2022); 

Chen et al.   (2023) 

Short-Term 

Prediction 

Most forecast often focus on 

one to three years predictions, 

missing short term 

sustainability needs  

Extend prediction horizon 

to eight years for better 

long-term planning  

Goodarzi (2020); 

Khan et al. (2023) 

Complexity & 

Black-Box Nature of 

ML and DL Models 

ML and DL models such as 

SVN and ANN are often 

difficult to interpret and 

explain 

Use ARIMA model for 

simplicity, transparency and 

ease for interpretation 

Bedi et al.    (2020); 

Khan et al.   (2023) 

Limited Evaluation 

Metrics 

Studies mostly use RMSE, 

MAE, and R², lacking 

comprehensive evaluation 

Employ broader evaluation 

metrics such as R², RMSE, 

MAE, AIC, and MAPE for 

deeper analysis. 
 

2.5 Conclusions of Related Work  
 

In summary, analysing different research papers identified gaps in GW forecasting, and 

addressing them is important for an effective management. The use of a higher-quality dataset 

for a longer-term prediction on easier interpretable models with a wider range of evaluation 

metrics could further improve the reliability and relevance of this research. From the above 

literature, a foundation has been established for further investigation into the research propose, 

specifically adapting the time series models. The next section provides a detailed explanation 

on the methodology adapted for a novelty solution into forecasting groundwater as it aims to 

answering the research questions in section 1.1. 
 
 

3 Research Methodology in Groundwater Level Forecasting 
 

This section provides a description of the methodology used to forecast GWL. The methods 

propose an advanced and robust time series model for more sustainable water resource 

management. The subsection explains the adopted framework, architectural design, and 

process flow of the applied methods. Additionally, the subsections include diagrams and tables 

that better show each process activity. 

3.1 Adopted Framework in Groundwater Levels Forecasting 
 

In this research, the Knowledge Discovery in Databases (KDD) methodology is adopted as a 

framework in forecasting GWL. This is because KDD serves as a systematically structured and 

multi-phase process that can learn valuable information from historical data (Wetzel et al., 

2024). The KDD framework shown in Figure 1. consists of eight major steps of a reproductive 

approach used to analyse time series data in other to build predictive models (Iqbal et al., 2021; 

Baydaroğlu et al., 2023). The functional flow of the diagram as used in this research consists 

of eight major steps. Step one, Data Selection, which involved collecting raw historical GW 
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data from Kaggle repository provided by CDWR. Step two, Data pre-processing, where the 

raw data is been transformed and cleaned it to improve quality and efficiency. Step three, Data 

Transformation, refined the features to sure the data is in a suitable format for further analysis. 

Step four, Data Descriptive Analysis which explores underlying characteristics through time 

series and statistical analysis of the features. step five, which selects relevant features to 

optimize model accuracy. step six, Splits Data into training and testing set.  In step seven, 

Model Building of various time series methods are developed using the training data, while the 

test data are used to evaluate the trained models. Finally, step eight, Evaluation, adopted 

multiple performance metrics to determine accuracy and reliability. The goal is to create an 

actionable groundwater knowledge that supports the objectives in section 1.2. The following 

subsection describes the core architecture of the research.  

 

Figure 1: Adopted KDD Methodology for Groundwater Level Forecasting 
 

 

3.2 Architectural Model Design in Groundwater Levels Forecasting  
 

This subsection describes the core architecture used to develop the time series models. As 

illustrated in Figure.2, presents a comprehensive multi-layered architecture model design, that 

serves as a blueprint for GWL forecasting (Iqbal et al., 2021). The diagram comprises of six 

layers. The first layer begins with the data warehouse. At this stage, the data is extracted from 

Kaggle repository in csv format and then stored in a database (Meta data), to ensure easy 

access. The second layer shows the tools and software used for the research. These resources 

make the outlined objectives in section 1.2 achievable. The third layer shows the information 

of the data stored in layer-one and retrieved by layer-two. The fourth layer performs 

preprocessing steps on the GWL data from layer-two. While the preprocessing steps focused 

on transforming the GWL data into suitable formats for modelling. The fifth layer presents 

three different predictive models chosen for this research. First is the ARIMA model as the 

proposed and main model for the investigation. While the second models including 

Exponential smoothing and simple time series are alternative methods which are used as 

benchmarks to compare with the proposed model. The sixth layer is the final stage in the 

pipeline. At this layer, an evaluation in the performance of each model is analysed from the 

performance of the prediction results, and eight years forecast on different period is generated. 

Then the result evaluated provides knowledge about GWL prediction outcome in answering 

the research question. The next subsection provides a detailed process flow on how the 

architecture design was implemented. 
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Figure 2: Architectural Model Design in Groundwater Levels Forecasting 
 

 

3.3 Process Flow in Groundwater Levels Forecasting  
 

A more detailed functional flow into each process method used in forecasting GWL is shown 

in Figure 3. The process begins by collecting and understanding the GWL raw data, extracted 

from the Kaggle repository and stored in a Mongo database. Next, the extracted data in the 

programming environment is then pre-processed, to a clean, organised and standard form. Once 

prepared, the selected data passes through multiple data analyses, where each feature across 

different stations is examined. The analysis showing the trends in patterns of the historical data 

supports the selection and application of building time-series models. The final evaluation 

produces output as GLW predictions. Next, subsection provides an overview of the GWL data1 

used in this research. 

 

Figure 3: Process Flow Design in Groundwater Levels Forecasting 
 

 

 
 
1 https://www.kaggle.com/datasets/alifarahmandfar/continuous-groundwater-level-measurements-2023/data 

https://www.kaggle.com/datasets/alifarahmandfar/continuous-groundwater-level-measurements-2023/data
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3.4 Time-Series Groundwater Level Measurement Dataset  
 

This subsection presents the GWL data used for this study, sourced from the California 

Department of Water Resources in Kaggle repository. Data titled “Continuous Groundwater 

Level Measurement” was made public in 2023 and license for usage by the open-source 

repository. The dataset consists of daily and monthly mean versions of GWL measurements, 

but in this study, the daily version of the data is utilized as it provides an extended range of 

information suitable for long-term predictions. The daily version of the data spanning from 

March 1992 to December 2020, contains over 1,048,575 records and 12 features of GWL 

information from the California region. Detailed properties of the GWL data are shown in table 

2. The subsequent section provides information on how this data was further utilized.  

 

Table 2: Detailed Summary of Continuous Groundwater Level Measurement Data 
 

Column Label Data Type  Description 

STATION Station Character (Chr) Unique Station ID 

MSMT_DATE Measurement Date (PST) Date (Date) Date/time of measurement 

WLM_RPE RPE Numeric (Float) Reference Point Elevation 

WLM_RPE_QC RPE Quality Code Integer (Int) Quality code for WLM_RPE 

WLM_GSE GSE Numeric (Float) Ground Surface Elevation 

WLM_GSE_QC GSE Quality Code Integer (Int) Quality code for WLM_GSE 

RPE_WSE RPE to WSE Numeric (Float) Depth to water surface below RPE 

RPE_WSE_QC RPE to WSE Quality Code Integer (Int) Quality code for RPE_WSE 

GSE_WSE GSE to WSE Numeric (Float) Depth to water surface below GSE 

GSE_WSE_QC GSE to WSE Quality Code Integer (Int) Quality code for GSE_WSE 

WSE WS Elevation Numeric (Float) Water surface elevation above sea level 

WSE_QC WS Elevation Quality Code Integer (Int) Quality code for WSE 

 

3.5 Data Understanding and Exploration  
 

After collecting the GWL dataset, an initial exploration revealed potential issues. Notably, the 

acquired dataset had a total of 94,130 missing and duplicate values out of the 1,048,575 records 

as well as irrelevant features like the quality code columns shown in Table 2. that was not 

significant to the analysis. Also, inconsistent entities with the date column, made it not suitable 

for time series analysis, while the station column accumulated trivial location IDs, adding noise 

to the data. This finding guided the pre-processing and transformation step.  

3.6 Data Pre-processing and Transformation  
 

This step ensures that GWL raw data is properly cleaned and structured for a more consistent, 

quality and reliable forecasting. Missing and duplicate values from the data were removed, 

retaining over 954,445 records. The date column was standardized while irrelevant columns 

like the quality code measurement including RPE_QC, WSE_QC, WLM_GSE_QC, 

RPE_WSE_QC and GSE_WSE_QC, were removed, to focus on predictive GWL features. The 

station column with incomplete or null values were filtered out, as the remaining station records 

were groups into A to E, enabling detailed analysis across specific locations. Additionally, 

transformation using standardization technique was done on the selected and prepared data 

ensuring a consistent scale of variables for accurate model training. The pre-processed and 

transformed data are further explored in the next subsection.  
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3.7 Descriptive Data Analysis for Stations  
 

At this stage, the primary focus was to analyse the prepared data, understand relationships 

between the features, identify trends, and uncover patterns, essential to GWL forecasting. In 

the preprocessing stage, the data was divided into five stations group (A to E). Each station 

group retained more than 10,368 records and 6 columns including the MSMT_DATE, 

WLM_RPE, WLM_GSE, RPE_WSE, GSE_WSE and WSE. Various comparison analysis was 

conducted, for instance, Figure.4 analysed the surface and depth of Water of multiple stations 

over time. This helped understand the difference trends and seasonal fluctuation over the years. 

Figure 5 also compared the variations using a box plot of ground surface water elevation to the 

depth of water below ground surface in all Stations. This showed each station geographical and 

hydrological characteristic. Correlation analysis using heatmap in Figure 6 revealed the 

interrelationship between features at each station, which can be useful for predictions.  Also, 

Figure. 7 applied time series analysis using seasonal decomposition of trends, seasonality, and 

residual components. This made way for a full view into the fluctuations and cyclic patterns 

that influenced the GWL on multiple stations. This analysis showed valuable insights into the 

hydrological behaviour of different stations, providing robust knowledge for building 

predictive time series models. The subsequent sections use these insights to build the models 

proposed for this research.  

 
Figure 4: Comparison Analysis Based on Surface 

and Depth of Water on Multiple Stations over 

Time 
 

Figure 5: Comparison Analysis based on Ground 

Surface Elevation and Depth Below Ground 

Surface in all stations. 
 

 
 

 

Figure 6: Correlation Analysis of Multiple 

Stations 
 

Figure 7: Seasonal Decomposition of all 

Stations over Time. 
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3.8 Time-Series Modelling Approach for Groundwater Levels Forecasting  
 

This research uses time-series models to forecast the historical GWL data as illustrated in 

Figure 8. The approach is split into two. The first part explores four alternative models:   Simple 

Time Series Models like Naïve and Drift methods which make straightforward forecasts from 

past values and Exponential Smoothing Models like simple Exponential Smoothing and Holt-

Winter methods which capture short-term forecasts of both trends and seasonal variations. The 

second part focuses on the proposes ARIMA model (Autoregressive Integrated Moving 

Average), with its ability to manage more difficult and temporal structure problems. ARIMA 

consists of Auto-regressive (AR or q) which uses dependencies from both past and current 

values, Integrated (I) for trends differencing, and Moving Average (MA or d) for smoothing 

noise based on past error values. The ARIMA model is a more flexible choice and from 

previous literature, it has proven to capture trends and seasonal patterns (Monir et al., 2023). 

Regardless of this, the ARIMA model would be compared with the alternative models with the 

aim of finding a best-fit model that can answer the question in section 1.1. The method by 

which the best-fit model is evaluated is explained in the following subsection. 

 

Figure 8: Time-Series Models for Groundwater Level Forecasting 
 

 

 
 

3.9 Evaluation Metrics for Groundwater Levels Forecasting  
 

The evaluation metrics used to analyse the alternative and the proposed models in Figure 8 are 

explained in this section. These are sets of statistical metrics that measure the accuracy and 

reliability of the GWL models. They help in quantifying the model’s performance by 

comparing them against a set of actual observed values from the data. The evaluation metrics 

include coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Akaike's Information Criterion (AIC), and Mean Absolute Percentage Error 

(MAPE). Also, based on the objectives in section 1.2, each model would further be compared 

using RMSE and 𝑅2, to find out the most efficient model based on their accuracy and predictive 

power. The characteristics of each evaluation metric are further explained in Table 3, which 

are applicable to groundwater level forecasting (Iqbal et al., 2021). 
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Table 3: Evaluation Metrics for Time Series Models in Groundwater Levels Forecasting 
 

 

Metrics Characteristics  Interpretation Formula  

Coefficient of 

Determination  

Goodness-of-fit – Measures 

how well the model fits the 

data  

Closer to 1 or > 0.7 

indicates better model 

fit 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

 

Root Mean 

Squared Error 

 

Model accuracy – Measures 

the average magnitude of 

error, sensitive to large errors  

Lower RMSE of < 1.5 

indicates more accurate 

predictions 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

 

Mean  Absolute 

Error 

Model accuracy – Measures 

the average absolute 

difference between actual and 

predicted values 

Lower MAE of < 10% 

indicates higher 

prediction accuracy  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

 

Mean Absolute 

Percentage 

Error 

Model Accuracy – Measures 

the average percentage error 

between actual and predicted 

value 

Lower MAPE < 10% 

(Excellent) or <50% 

(Acceptable) indicates 

higher forecast 

accuracy  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑛

𝑖=1

× 100 

 

Akaike's 

Information 

Criterion 

Model complexity – Measures 

the relative quality of 

statistical models for a given 

set of data 

Lower AIC values 

suggest a simpler, 

better fitting model  

AIC = 2k-2 In(L) 

 

3.10 Conclusion of Methodology  
 

The section provides a structured multifaced framework in GWL forecasting. It has outlined 

each process applied from data collection, preprocessing, transformation, analysis, modelling 

and evaluation metrics used.  The ARIMA model is adopted as the primary model and 

compared with the Exponential Smoothing and Simple Time Series models, to determine the 

best-fit model for sustainable water resource management. The methodology framework 

guarantees the integrity of the data as it systematically addresses data quality issues, 

incorporating exploratory and data analysis and applying different standardization techniques 

to further improve the model performance to support the research question. 

 

 

4 Implementation and Experimental Setup 
 

This section presents the experimental setup employed to implement the proposed 

methodology, which encompasses several multi-layered processes involved in building, 

training and testing the models in forecasting groundwater levels. With the use of real-world 

applications and tools as depicted in Figure. 2. key resources, feature selection process, and 

data preparation (Validation and splitting), for time series modelling are further explained. This 

effort ensures that the implementation and experiments done provides a comprehensive 

framework aligned with the research objective in section 1.2. 
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4.1 Groundwater Level Resources and Tools  
 

The experiments were performed on Jupyter Notebook within the Anaconda package 

management as an integrated development environment. The package uses Python as the 

primary Programming Language to conduct extensive coding for data manipulation, processing 

and analysis. The environment installed and updated necessary core Python libraries like 

Pandas, Seaborn, NumPy, Matplotlib for data handling and visualization while Sklearn and 

Statsmodels were employed for modelling. Furthermore, MongoDB worked as a database 

software to store and manage the large GWL dataset, while Microsoft Excel created a project 

timeline to track each deliverable set as objectives. Draw.io was used as a diagrammatic tool 

to create visuals for the research methodology, and workflow process. The Intel (R) Core i7- -

2640M CPU @ 2.80GHz and 8.00 GB RAM were components of the operating system used 

to run the experiments. 

4.2 Feature Selection of Stations  
 

Each station group (A-E) retains six core features including MSMT_DATE, WLM_RPE, 

WLM_GSE, RPE_WSE, GSE_WSE, and WSE. Recognizing feature selection as an important 

step in any time series modelling, a simple yet effective approach was used, as non-essential 

features (Column) were dropped in other to provide significant information for GWL 

forecasting (Iqbal et al., 2021).  Understand that the main goal of the research is to conduct a 

time series analysis that can forecast WSE above sea level over an eight-year period, hence 

only the MSMT_DATE and WSE features were finally retained. By conducting several 

correlation analyses shown in Figure 6 and seasonal decomposition shown in Figure. 7 on all 

station groups, the selected features can be justified based on the following reasons.  

  Target Variable Focus – WSE column represents a key variable for forecasting the water 

surface above ground level, hence retaining it ensures the model focuses directly on the 

prediction of the most relevant outcome when it comes to groundwater management.  

Relevance of Time Dimension – MSMT_DATE offers a temporal structure that time series 

can rely on as it captures historical trends, seasonal patterns, and long-term fluctuations 

important for prediction. 

Irrelevant Exclusion – Features such as WLM_RPE, WLM_GSE, RPE_WSE, GSE_WSE, 

added contextual hydrological information but had minimal predictive value unlike WSE, 

hence their exclusion  

Dimensionality and Efficiency – Reducing the dataset to WSE and MSMT_DATE, 

simplified the analysis, by gaining computational efficiency and avoided overfitting from 

redundant data  

4.3 Data Validation and Splitting  
 

This stage is the last phase before developing the models. The validity of the data was explored 

by checking the class distribution of each station, A through E, to ensure data balancing. The 

MSMT_DATE and WSE column was confirmed to be in a proper datetime and float64 format. 

Furthermore, the data of each station (A-E) was split into train and test sets using a ratio of 

80:20 per cent respectively. This approach provided a very robust foundation for training 

models on past patterns while reserving the unseen data for model evaluation  
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4.4 Conclusion of Implementation and Experimental Setup  
 

The implementation and experimental setup have efficiently established a base framework for 

building time series models for groundwater levels. With the use of robust tools, features 

selection and validation and splitting of the data to ensure integrity, this research was set to 

achieve its aim of obtaining an accurate forecast of water surface elevation. This approach 

enhances the reliability of the subsequent modelling efforts, while also being in line with the 

objectives.  

 

 

5 Evaluation Result and Analysis 
 

This section evaluates and interprets the results of forecasting GWL using various time series 

models. The analysis aimed to assess the performance based on multiple statistical metrics 

shown in Table 3, while investigating their implications. In the process, the research tests three 

different experimental cases – Simple Time Series, Exponential Smoothing, and ARIMA 

models, while analysing their performance and contributions to the research question in 1.1.   

5.1 Experiment 1: – Simple Time Series Models 
 

 

Table 4: Performance Evaluation Results Using Naïve Base and Drift Methods 
 
 

 
STATIONS           

 

                Naive Base Method                                                  Drift Method 

 RMSE    MAE        R²      MAPE     AIC            RMSE     MAE      R²        MAPE          AIC 

     A                2.39        1.76      -0.11     9.51      3840.23           2.40         1.77     -0.12    9.56        3865.76 

 

     B                56.98      53.55    -6.30    3449.07   17555.15     65.07       62.00    -8.52    3772.80    18132.04 

 

     C                22.87      14.35   -0.30     334.59   13584.85        22.69       14.24    -0.28   326.94    13551.08 

 

     D                5.87        5.11     -2.20     25.16     7487.49          6.58         5.85      -3.01    29.02        7968.60 
 

     E                5.34        3.83     -0.00     35.43     6952.80          5.39         3.87      -0.02    35.97        6989.77 

 

The first experiment used simple time series models including naïve base and drift methods for 

its analysis. The results shown in Table 4 are based on Table 3, across station A to E. From the 

performance of the naïve base method, it generally had lower error metrics (RMSE and MAE), 

for most stations compared to the drift method. Also, the R² values across all stations are 

negative, indicating poor fit and the inability to explain the variance of the data. Relatively, 

moderate values of MAPE are obtained for stations A, D and E, while B and C station values 

obtained are very high, as these show significant inaccuracies in forecasting. The drift method 

has higher RSME and MAE across all stations, which means that it presents greater forecast 

errors compared to Navie method. Negative R² values are more evident in this method, 

specifically for station B with -8.52 and station D with -3.01, which implies a poorer fit of the 

model compared to the naïve method. The MAPE values across all stations are very high, 

especially for stations B and C with 3772.80% and 326.94% respectively, which also indicate 
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a high inaccuracy while forecasting. Overall, the naïve base method outperformed the drift 

method indicating lower RMSE, MAE, and AIC values for most stations, while both models 

struggle with poor R² and high MAPE, especially in the case of stations B and C. Stations A, 

D, and E showed relatively better results. The naive base method may have had slightly more 

reliable forecasts in predicting groundwater levels, but both models serving as baseline 

references were not sufficient in forecasting GWL due to their inability to capture temporal 

patterns.  

5.2 Experiment 2: – Using Exponential Smoothing Models  
 

After analysing the simple time series methods and their limitations, experiment 2 explored 

more sophisticated models including simple exponential smoothing (SES) and Holt-winter 

methods to improve the forecasting accuracy. Unfortunately, the results derived using these 

two methods indicated significant challenges in providing reliable forecasts, especially in the 

eight-year prediction. SES performance metrics like RMSE and MAE were considerably high 

in most stations (for example, RMSE for station B was 56.98 and for station C was 22.87). The 

R² values were negative for all stations, as this indicates a poor fit model, while MAPE was 

undefined, because of its irregularities in handling the GWL data or extreme forecast error. As 

shown in Table 5, the forecasted value was static and failed to capture variability, indicating 

that SES was not able to adapt to the inheritance fluctuations of groundwater levels.  However, 

Holt- Winter method extended SES by considering both trends and seasonality components, 

but did not perform even as well as SES. For example, during the analysis of Holt-Winter, it 

RMSE values in station B blew to up 553.99 and 126.74 for station A indicating extreme 

deviations from the observed data. Also, it had negative R² values such as -3116.18 for station 

A, showed that the method did worse than even the simple Naïve base method. Table 5 also 

reflects how the future forecast of the eight years period further moves away into unrealistic 

values which does not consider or support hydrological realities.  Overall neither SES nor Holt-

Winter methods significantly improved the performance of the basic time series models. 

Instead, their inability to cope with the complexity of GWL data suggests these models are 

unsuitable for long-term forecasting of groundwater levels. 

 

Table 5: Performance Forecast of Simple Exponential Smoothing and Holt-Winter Methods 
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5.3 Experiment 3: – Proposed ARIMA Model 
 

This experiment further used the proposed ARIMA model. It was expected to capture and 

improve temporal dependencies for the complex GWL data. The model showed improvements 

over the simple time series and exponential smoothing models in Table 6 but still faced 

difficulties in the accurate forecasting of groundwater levels. For instance, although the RSME 

and MAE were relatively lower in some stations than in previous methods, significant errors 

were still recorded, especially in stations B and C with RMSE of 65.79 and 23.19 respectively. 

Also, this model consistently followed the baseline models with negative R² values across all 

stations indicating a poor performance in explaining the variance in groundwater data. Based 

on the forecast patterns, table 6 shows that most stations’ predictions were either stable or 

showed a simplistic trend, like a gradual increase in Station C or a decline in Station D, which 

also failed to capture the complex dynamics. Long-term forecasts for some stations, such as 

Station B, were erratic, showing instability in model predictions. 

 

Table 6: Performance Evaluation and Forecast Results for ARIMA Model 
 

 
 

 
Figure 9: WSE Eight Years Forecast for Station A using ARIMA Model. 
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      In figure 9, the ARIMA model trains the data in blue, as it captures the historical values of 

WSE. Fluctuations are observable in this trend, which are gradually stabilized over time. 

However, the test data represented by the orange line shows a series of high variability is not 

well predicted by the model. The test predictions in the green line remain almost constant 

throughout, reflecting none of the fluctuations in the test data. Finally, the eight years future 

forecast represented in red dashed line is completely flat (straight) and constant through 2030. 

This shows that the ARIMA model failed to predict and forecast the actual groundwater data.  

5.4 Comparisons Analysis of Models  
 

As part of the objective to compare all models, the three experiments focusing on the statistical 

performance of RMSE and R² metrics exhibited various degrees of their predictive powers. 

The ARIMA model turned out to be the best-performing model. For instance, across all stations 

and methods, station A achieved the lowest RMSE value of 2.31 and the highest but yet 

negative R² of -0.04. The simple time series methods showed basic limitations in their 

predictive capabilities while exponential smoothing provided a middle ground in capturing 

smooth trends as it struggled with variability. Despite the relatively better performance of 

ARIMA results, it was well below the accuracy level that was anticipated for groundwater 

research.  The ARIMA model based on literature, proposed a robust tool that is flexible, 

interpretable and suitable to capture long term trends for sustainable groundwater management 

(Takafuji et al., 2019). Overall, the ARIMA model showed some promises, but still, none of 

the models gave satisfactory accuracy, hence these approaches are limited for complex 

groundwater forecasting.  

 

 

6 Discussion 
 

This study investigated the potential of time series models in GWL forecasting for 

sustainable water resource management. During the analysis, the research tried to fill in the 

gaps from previous related works (in subsection 2.3) as it proposed the ARIMA model in 

handling long-term trends. However, the model fell short of expectations. This underlines the 

complexity of the groundwater system, possibly requiring the adoption of a more advanced 

approach. A number of challenges were faced during the investigations, as this may have 

influenced the suboptimal results of the models. In the data collection phase (in subsection 3.4), 

it was difficult to know the ideal data resolution (daily vs. monthly) suitable for forecasting. 

The data preparation phase (in subsection 3.6) also had issues in terms of ‘stations’ grouping 

and categorisation, as only five stations within 600 locations were selected. A more focused 

approach to grouping might have been more insightful. Furthermore, not many studies 

conducted groundwater predictions using simple time series or exponential smoothing, 

meaning that there were limited opportunities for benchmarking and putting the results into 

perspective. 

Despite all its challenges, this research followed a structured methodology pipeline (in 

subsection 3.1) that included robust pre-processing and transformation steps of GWL data. This 

pipeline ensured data quality and a minimum amount of noise. However, the inherent 

limitations of the models were reflected by their inability to adapt to dynamic groundwater 
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fluctuations. Therefore, it seems that the hypothesis of time series models being able to forecast 

GWL accurately, for sustainable water resource management is partially unsupported. The 

ARIMA model performed relatively better; however, none of the models were found to be 

good enough to use with confidence in decision-making. For instance, a real-world 

interpretation of the best results previously presented in Figure 9, implies that while the 

ARIMA model could provide a basic estimate of average groundwater levels, it cannot be used 

to predict the increase or decrease of water levels, which are important for resource planning. 

The flat forecast from the image further suggests that the model does not consider seasonal 

fluctuations, droughts, or human-made influences, and therefore, this approach is less useful 

for dynamic strategies in groundwater management. 

 

 

7 Conclusion 
 

In conclusion, this research has highlighted the limitations of the traditional time series 

models for GWL forecasting, as it emphasized the need for an advanced approach. While the 

results of the analysis cannot provide strong evidence to support the research question (in 

section 1.1), they do offer insights into the limitations applied and avenues for further 

improvements. This paper contributes to the knowledge base, by documenting the challenges 

and outcomes of the study, which can help future researchers avoid similar pitfalls and 

encourage the exploration of more innovative methods. Future work should explore hybrid 

models while combining ARIMA trend analysis strengths with machine learning to capture 

complex patterns. In addition, external variables such as climate data and extended datasets 

could improve model accuracy and predictions. This approach retains ARIMA interpretability 

while addressing its limitations. 
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