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1 Introduction 
 

This document provides comprehensive instructions about both hardware and software settings 

and will explain the practical implementation of the research by describing dataset preparation, 

pre-processing, model building, and evaluation. 

 

2 Hardware and Software Requirements 

2.1 Hardware Configuration 

 

This research work was done on a personal laptop and system configuration settings are shown 

in Figure 1. The hardware configuration is as follows: 

• Processor: 13th Gen Intel(R) Core(TM) i5-13500H CPU @ 2.60 GHz 

• Installed RAM: 16 GB (15.6 GB usable) 

• System Type: 64-bit operating system, x64-based processor 

 

 
Figure 1: System Configuration 

2.2 Software Configuration 

 

This section describes all the environments that were configured and used for the 

implementation, which should have been ready in advance. Following software or applications 

have been setup and need to be installed onto the system before going ahead with the process: 
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• Operating System: Windows 11 Pro (64-bit) 

• Development Environment: Visual Studio Code (VSCode) configured with the Jupyter 

Notebook extension for interactive coding and analysis. 

• Programming Language: Python (latest version at the time of development, Python 

3.12.5). 

It should be underlined at this point that this setting is not mandatory in terms of software. The 

project may also be executed for other environments, like Google Colab, Anaconda, or similar, 

including macOS-based ones. In such a case, however, users would be expected to have the 

environment properly prepared to work with the toolset and workflows concerned. 

 

3 Packages & Libraries 
 

Data analysis and any kind of machine learning require the importing of certain packages and 

libraries. Figure 2 shows the compilation of libraries taken in use for this project. These should 

be installed before the actual running of code so that the availability of functions and features 

can be guaranteed. 

The following libraries can be installed by running the following in your terminal or command 

prompt: 

pip install pandas numpy matplotlib seaborn scikit-learn 

 

 
Figure 2: Imported Libraries and Modules for the Project 

 

4 Dataset 
 

The dataset used in this analysis can be downloaded from the following Kaggle: 

https://www.kaggle.com/datasets/yasserh/uber-fares-dataset. After downloading the dataset, it 

has to be extracted onto the preferred folder in which you plan to code. The extraction must be 

in such a way that the extracted file is readily accessible from the environment where the coding 

is being performed because it will be the main dataset under analysis and model training. 

The code in Figure 3 shows how the dataset can be loaded into a Pandas DataFrame. It also 

gives an overview of the dataset after loading, showing the important features of fare_amount, 

pickup_datetime, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude, and 

passenger_count. These are the major features which, in this project, data preprocessing and 

machine learning modelling will be based. 
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Figure 3: Dataset Preview After Loading 

 

This dataset comprises 200,000 rows and 9 columns, as shown in Figure 4 below, which 

summarizes the data types for each column. Also, checks for missing values, duplicates, and 

null entries present this as a clean dataset with very little preprocessing required. 

 

  
Figure 4: Dataset Shape, Data Types, Missing Values, and Duplicate Check 

 

5 Exploratory Data Analysis 

5.1 Basic EDA 
 

EDA has been carried out to understand the structure and distribution of the data, locate some 

outlier cases, and extract insights over some important features. The following figures are the 

code with their respective outputs that were developed in the EDA conducted on the dataset. 
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Figure 5: Boxplot of Ride Distance 

 

 
Figure 6: Histogram of Ride Distance 

 

 
Figure 7: Boxplot of Fare Amount 
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Figure 8: Histogram of Fare Amount 

 

 
Figure 9: Bar Plot Showing Count of Low and High Fares 

 

 
Figure 10: Histogram of Passenger Count 
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Figure 11: Count Plot of Passenger Count 

 
Figure 12: Boxplots of Pickup and Dropoff Coordinates 

 

 
Figure 13: Scatter Plot of Pickup and Dropoff Coordinates 
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5.2 Advanced EDA 
 

The following sections are a series of visualizations that tried answering the research questions 

by analysing trends and patterns in this dataset. The following plots examine the relationship 

among some of the major variables: average fare amount against hour of day, day of week, and 

passenger count. In addition, scatter plots on such relationships as fare amount against ride 

distance and passenger count. Further, distance categories are analysed against fare amounts to 

highlight the differences in pricing patterns. 

 

The following figures show the code and their respective outputs for this analysis. 

 

 
Figure 14: Average Fare Amount by Hour of the Day 
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Figure 15: Number of Rides by Hour of the Day 

 

 

 

 
Figure 16: Average Fare Amount by Weekday 



9 
 

 

 

 
Figure 17: Number of Rides by Weekday 

 

 
Figure 17: Ride Distance vs Fare Amount 
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Figure 18: Passenger Count vs Fare Amount 

 

 
Figure 19: Average Fare by Hour for Distance Categories 
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Figure 20: Average Fare by Weekday for Distance Categories 

 

6 Data Preparation 
 

The preprocessing steps include cleaning and feature engineering: cleaning the data by 

removing unnecessary columns, and feature engineering, creating new features including 

ride_distance that is computed using a custom Manhattan distance function. Extract temporal 

features like Hour, WeekDay, and Month from it and clean the invalid or extreme values 

according to the conditions. Later, this dataset was standardized and cyclic and categorical 

features encoded to work with the model. The following figures represent the code used for 

these steps. 

 

 
Figure 21: Calculating Ride Distance Using Manhattan Distance Formula 
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Figure 22: Extracting Temporal Features from Pickup Datetime 

 

 
Figure 23: Dropping Unnecessary Columns 

 

 
Figure 24: Removing Outliers in Fare Amount, Ride Distance, and Passenger Count 

 

 
Figure 25: Filtering Entries Within NYC Geographic Boundaries 

 

 
Figure 26: Dropping Unused Columns After Cleaning 
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Figure 27: Standardizing, Encoding Cyclic Features, and One-Hot Encoding 

 

7 Machine Learning Models 
 

Various machine learning models were implemented using features such as ride distance, 

passenger count, and time-based variables in order to obtain the fare amount in this section. 

First of all, it splits the data into a training set and a test set. Then, the model training includes 

Linear Regression, Random Forest, Neural Networks, and Gradient Boosting on this dataset. 

Each of the models developed was assessed in terms of their MAE, RMSE, and R² score that 

would outline their performance in terms of accuracy and robustness. The best performing, in 

this respect, is Gradient Boosting, hence quite suitable for this task of prediction. 

 

The following figures show code and result of each model: 

 

 
Figure 28: Splitting the Dataset into Training and Testing Sets 

 

 
Figure 29: Linear Regression (Baseline Model) Code and Results 
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Figure 30: Random Forest Model Code and Results 

 

 
Figure 31: Neural Networks (MLP) Model Code and Results 

 

 
Figure 31: Gradient Boosting Model Code and Results 
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7.1 Model Comparison 
 

After training the machine learning models, a comparison was made between them to evaluate 

their performance using some key metrics: Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and R² score. As evident from the results, Gradient Boosting outperformed all 

the other models by scoring the lowest in both MAE and RMSE, along with having the highest 

R² score, indicating better predictive power. For each metric, visualizations were also created 

to give a complete overview of how the models compare. 

 

The next couple of figures show the code and the outputs for model comparison: 
 

 
Figure 32: Code for Model Performance Comparison 

 

 
Figure 33: Bar Plot Showing MAE for Each Model 
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Figure 34: Bar Plot Showing RMSE for Each Model 

 

 
Figure 35: Bar Plot Showing R² Score for Each Model 
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7.2 Hyperparameter Tuning 
 

Hyperparameter tuning was performed using GridSearchCV to try to improve the Gradient 

Boosting model. It tried all combinations of parameters defined, such as the number of 

estimators, maximum depth, and learning rate, on cross-validation to find the best combination 

that would give the lowest Mean Absolute Error. The best combination was found, and the 

model with the tuned parameters was trained and evaluated; it outperformed the model with 

the default settings. Below is a heat map visualizing how the different combinations of 

parameters affect the model performance. 

 

The following are the codes and results of the hyperparameter tuning: 

 

 
Figure 36: Code for Hyperparameter Tuning with GridSearchCV 

 

 
Figure 37: Heatmap of Hyperparameter Tuning Results 



18 
 

 

 
Figure 38: Evaluation of the Optimized Gradient Boosting Model 

 

8 Testing and Deployment 
 

For testing and deploying the model, a number of scenarios were taken to make it close to the 

real world. Further, functions were created to convert the input data to a corresponding scale 

for making predictions and then scaling back the same prediction to its original values. 

Different test cases were elaborated in order to understand model performance for different 

situations-like distance, number of passengers, peak and off-peak hours, weekdays or 

weekends, and seasons. The obtained results were analyzed in order to get some practical 

insight for applications in real life. 

 

 
Figure 39: Function to transform input data for model prediction. 
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Figure 40: Function to inverse-transform fare predictions to original scale. 

 

 
Figure 41: First scenario testing fare for one and four passengers for a specific distance and 

time. 

 

 
Figure 42: Second scenario testing peak and off-peak fares for the same ride. 
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Figure 43: Third scenario testing weekday and weekend morning ride fares. 

 

 
Figure 44: Fourth scenario testing weekday and weekend late-night ride fares. 



21 
 

 

 
Figure 45: Fifth scenario testing spring and holiday season ride fares. 

 

 
Figure 46: Sixth scenario testing late-night ride fares at different times. 


