

Configuration Manual

MSc Research Project

Data Analytics (MSCDAD_JAN24A_O)

Muhammad Abdur Rabb

Student ID: x23237511

School of Computing

National College of Ireland

Supervisor: Dr. David Hamill

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

……. Muhammad Abdur Rabb ………………………………………………………

Student ID:

………x23237511……………………………………………………………….…………………

Programme:

……… M.Sc. Data Analytics ………………………

Year:

………2024…..

Module:

………… Research Project ……………………………………………………………….………

Lecturer:

………… Dr. David Hamill………………………………………………………………….………

Submission

Due Date:

…………12/12/2024………………………………………………………………………………….………

Project

Title:

………… Dynamic Pricing using Machine Learning for Emerging

Ride-on-demand Service ………………………………….………

Word

Count:

…………1533……………………… Page Count: …………………21……………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………Muhammad Abdur Rabb………………………………………………………………

Date:

………11/12/2024..…………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Muhammad Abdur Rabb

x23237511

1 Introduction

This document provides comprehensive instructions about both hardware and software settings

and will explain the practical implementation of the research by describing dataset preparation,

pre-processing, model building, and evaluation.

2 Hardware and Software Requirements

2.1 Hardware Configuration

This research work was done on a personal laptop and system configuration settings are shown

in Figure 1. The hardware configuration is as follows:

• Processor: 13th Gen Intel(R) Core(TM) i5-13500H CPU @ 2.60 GHz

• Installed RAM: 16 GB (15.6 GB usable)

• System Type: 64-bit operating system, x64-based processor

Figure 1: System Configuration

2.2 Software Configuration

This section describes all the environments that were configured and used for the

implementation, which should have been ready in advance. Following software or applications

have been setup and need to be installed onto the system before going ahead with the process:

2

• Operating System: Windows 11 Pro (64-bit)

• Development Environment: Visual Studio Code (VSCode) configured with the Jupyter

Notebook extension for interactive coding and analysis.

• Programming Language: Python (latest version at the time of development, Python

3.12.5).

It should be underlined at this point that this setting is not mandatory in terms of software. The

project may also be executed for other environments, like Google Colab, Anaconda, or similar,

including macOS-based ones. In such a case, however, users would be expected to have the

environment properly prepared to work with the toolset and workflows concerned.

3 Packages & Libraries

Data analysis and any kind of machine learning require the importing of certain packages and

libraries. Figure 2 shows the compilation of libraries taken in use for this project. These should

be installed before the actual running of code so that the availability of functions and features

can be guaranteed.

The following libraries can be installed by running the following in your terminal or command

prompt:

pip install pandas numpy matplotlib seaborn scikit-learn

Figure 2: Imported Libraries and Modules for the Project

4 Dataset

The dataset used in this analysis can be downloaded from the following Kaggle:

https://www.kaggle.com/datasets/yasserh/uber-fares-dataset. After downloading the dataset, it

has to be extracted onto the preferred folder in which you plan to code. The extraction must be

in such a way that the extracted file is readily accessible from the environment where the coding

is being performed because it will be the main dataset under analysis and model training.

The code in Figure 3 shows how the dataset can be loaded into a Pandas DataFrame. It also

gives an overview of the dataset after loading, showing the important features of fare_amount,

pickup_datetime, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude, and

passenger_count. These are the major features which, in this project, data preprocessing and

machine learning modelling will be based.

3

Figure 3: Dataset Preview After Loading

This dataset comprises 200,000 rows and 9 columns, as shown in Figure 4 below, which

summarizes the data types for each column. Also, checks for missing values, duplicates, and

null entries present this as a clean dataset with very little preprocessing required.

Figure 4: Dataset Shape, Data Types, Missing Values, and Duplicate Check

5 Exploratory Data Analysis

5.1 Basic EDA

EDA has been carried out to understand the structure and distribution of the data, locate some

outlier cases, and extract insights over some important features. The following figures are the

code with their respective outputs that were developed in the EDA conducted on the dataset.

4

Figure 5: Boxplot of Ride Distance

Figure 6: Histogram of Ride Distance

Figure 7: Boxplot of Fare Amount

5

Figure 8: Histogram of Fare Amount

Figure 9: Bar Plot Showing Count of Low and High Fares

Figure 10: Histogram of Passenger Count

6

Figure 11: Count Plot of Passenger Count

Figure 12: Boxplots of Pickup and Dropoff Coordinates

Figure 13: Scatter Plot of Pickup and Dropoff Coordinates

7

5.2 Advanced EDA

The following sections are a series of visualizations that tried answering the research questions

by analysing trends and patterns in this dataset. The following plots examine the relationship

among some of the major variables: average fare amount against hour of day, day of week, and

passenger count. In addition, scatter plots on such relationships as fare amount against ride

distance and passenger count. Further, distance categories are analysed against fare amounts to

highlight the differences in pricing patterns.

The following figures show the code and their respective outputs for this analysis.

Figure 14: Average Fare Amount by Hour of the Day

8

Figure 15: Number of Rides by Hour of the Day

Figure 16: Average Fare Amount by Weekday

9

Figure 17: Number of Rides by Weekday

Figure 17: Ride Distance vs Fare Amount

10

Figure 18: Passenger Count vs Fare Amount

Figure 19: Average Fare by Hour for Distance Categories

11

Figure 20: Average Fare by Weekday for Distance Categories

6 Data Preparation

The preprocessing steps include cleaning and feature engineering: cleaning the data by

removing unnecessary columns, and feature engineering, creating new features including

ride_distance that is computed using a custom Manhattan distance function. Extract temporal

features like Hour, WeekDay, and Month from it and clean the invalid or extreme values

according to the conditions. Later, this dataset was standardized and cyclic and categorical

features encoded to work with the model. The following figures represent the code used for

these steps.

Figure 21: Calculating Ride Distance Using Manhattan Distance Formula

12

Figure 22: Extracting Temporal Features from Pickup Datetime

Figure 23: Dropping Unnecessary Columns

Figure 24: Removing Outliers in Fare Amount, Ride Distance, and Passenger Count

Figure 25: Filtering Entries Within NYC Geographic Boundaries

Figure 26: Dropping Unused Columns After Cleaning

13

Figure 27: Standardizing, Encoding Cyclic Features, and One-Hot Encoding

7 Machine Learning Models

Various machine learning models were implemented using features such as ride distance,

passenger count, and time-based variables in order to obtain the fare amount in this section.

First of all, it splits the data into a training set and a test set. Then, the model training includes

Linear Regression, Random Forest, Neural Networks, and Gradient Boosting on this dataset.

Each of the models developed was assessed in terms of their MAE, RMSE, and R² score that

would outline their performance in terms of accuracy and robustness. The best performing, in

this respect, is Gradient Boosting, hence quite suitable for this task of prediction.

The following figures show code and result of each model:

Figure 28: Splitting the Dataset into Training and Testing Sets

Figure 29: Linear Regression (Baseline Model) Code and Results

14

Figure 30: Random Forest Model Code and Results

Figure 31: Neural Networks (MLP) Model Code and Results

Figure 31: Gradient Boosting Model Code and Results

15

7.1 Model Comparison

After training the machine learning models, a comparison was made between them to evaluate

their performance using some key metrics: Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), and R² score. As evident from the results, Gradient Boosting outperformed all

the other models by scoring the lowest in both MAE and RMSE, along with having the highest

R² score, indicating better predictive power. For each metric, visualizations were also created

to give a complete overview of how the models compare.

The next couple of figures show the code and the outputs for model comparison:

Figure 32: Code for Model Performance Comparison

Figure 33: Bar Plot Showing MAE for Each Model

16

Figure 34: Bar Plot Showing RMSE for Each Model

Figure 35: Bar Plot Showing R² Score for Each Model

17

7.2 Hyperparameter Tuning

Hyperparameter tuning was performed using GridSearchCV to try to improve the Gradient

Boosting model. It tried all combinations of parameters defined, such as the number of

estimators, maximum depth, and learning rate, on cross-validation to find the best combination

that would give the lowest Mean Absolute Error. The best combination was found, and the

model with the tuned parameters was trained and evaluated; it outperformed the model with

the default settings. Below is a heat map visualizing how the different combinations of

parameters affect the model performance.

The following are the codes and results of the hyperparameter tuning:

Figure 36: Code for Hyperparameter Tuning with GridSearchCV

Figure 37: Heatmap of Hyperparameter Tuning Results

18

Figure 38: Evaluation of the Optimized Gradient Boosting Model

8 Testing and Deployment

For testing and deploying the model, a number of scenarios were taken to make it close to the

real world. Further, functions were created to convert the input data to a corresponding scale

for making predictions and then scaling back the same prediction to its original values.

Different test cases were elaborated in order to understand model performance for different

situations-like distance, number of passengers, peak and off-peak hours, weekdays or

weekends, and seasons. The obtained results were analyzed in order to get some practical

insight for applications in real life.

Figure 39: Function to transform input data for model prediction.

19

Figure 40: Function to inverse-transform fare predictions to original scale.

Figure 41: First scenario testing fare for one and four passengers for a specific distance and

time.

Figure 42: Second scenario testing peak and off-peak fares for the same ride.

20

Figure 43: Third scenario testing weekday and weekend morning ride fares.

Figure 44: Fourth scenario testing weekday and weekend late-night ride fares.

21

Figure 45: Fifth scenario testing spring and holiday season ride fares.

Figure 46: Sixth scenario testing late-night ride fares at different times.

