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Abstract 

The application of machine learning presents considerable opportunities for enhancing 

dynamic pricing mechanisms in ride-hailing services, particularly in response to swift 

variations in supply and demand. This study utilised historical data from Uber rides in 

New York City, following the CRISP-DM framework, to examine essential factors 

including ride distance, time of day, and number of passengers. Among these variables, 

ride distance was identified as the paramount factor influencing fare, whereas the number 

of passengers demonstrated negligible effects. Indeed, Gradient Boosting Regressor 

outperformed the three models, namely Linear Regression, Random Forest, and Multi-

Layer Perceptron, with a mean absolute error of 0.2550 and an R² of 0.8036, thereby 

effectively modelling nonlinear relationships relevant for dynamic pricing.  

Despite this, the adopted modelling is limited within this inquiry, due to the non-

availability of any real-time data and other outside factors such as traffic and weather. 

Unfortunately, in this instance, it was necessary to rely on a historical dataset from 2009 

to 2015. If these factors were taken into consideration, together with an investigation of 

hybrid modelling techniques, this would clearly provide more adaptability and 

responsiveness. In conclusion, the findings and results clearly show how machine learning 

can produce dynamic pricing methods that balance profitability with customer satisfaction 

in the ride-on-demand marketplaces. 

 
 

1 Introduction 
 

 Ride-on-demand services like FreeNow and Uber have grown in popularity in recent 

years. They appeal to passengers due to their convenience and flexibility, affordable pricing, 

while also attracting drivers who prefer the flexibility of using their own cars. 

 These services use dynamic pricing to increase revenue. In other words, they change 

prices based on things happening right now, based on supply and demand, for e.g., how many 

drivers are available, how many people need rides, seasonal conditions, events, fuel pricing 

and subsequent traffic. This is different from static pricing, where prices stay the same no 

matter what (Banerjee, Riquelme, and Johari, 2015). Since cities have busy traffic and 

changing conditions, static pricing doesn't work well anymore. To address this, companies can 

use machine learning, which helps them look at a lot of data and find patterns. 

 Static pricing doesn't fit well with changing situations like peak hours, driver 

availability, and traffic. Because these things keep changing, using dynamic pricing makes 
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sense to help companies make more money and have enough drivers available (McGuire, 

2015). Machine learning assists companies check how many people need rides, how many 

drivers there are, and how traffic is. It lets them set prices in real-time, so they can charge fair 

prices and still have enough drivers when people need rides. 

 Even though dynamic pricing has been used for a while, there’s still room for 

improvement using better machine learning. Current studies say there is a need for models that 

can work with real-time data and adjust prices to maximize profit while keeping customers 

happy. This study aims to look at machine learning models that can predict the best prices using 

historical data. 

RQ: “How optimized multi-variable dynamic pricing strategies can be developed using 

machine learning for an industry like the ride-on-demand service where demand and supply 

can fluctuate rapidly on a daily basis for time of day, distance to be covered, and number of 

passengers with competition dynamics while still assuring profitability & customer 

satisfaction?” 

SQ1: “How do different time-of-day segments (peak vs. off- peak hours) affect dynamic 

pricing model, which machine learning algorithms can be used to capture these temporal 

variations for the purpose of optimizing price?” 

SQ2: “What influence does the distance to cover and number of passengers in a dynamic 

pricing model, also which machine learning techniques are best suited for predicting fare 

changes on this basis?” 

 Although previous studies have investigated various aspects of dynamic pricing in ride-

on-demand, considerable gaps still remain. Many studies aim at the optimization of a single 

variable or a small set of variables, which often do not consider how important variables like 

time of day, day of the week, and ride distance interact in creating pricing strategies. Moreover, 

the ability of advanced machine learning methods, such as Gradient Boosting, to capture such 

complex relationships is yet unexplored. Another major shortcoming is that real-world 

constraints—like supply side variations—have been dealt with poorly so far, especially during 

severe mismatches in demand and supply. This gap is filled with a multi-variable machine 

learning approach by integrating temporal trends, ride distances, and supply-demand dynamics 

into dynamic pricing strategy optimization. This study develops a detailed framework for 

creating adaptive, robust pricing models of ride-on-demand services by using advanced 

predictive techniques and overcoming the limitations inherent in existing methodologies. 

 The objective of this study is to investigate the dynamic pricing in case of ride-on-

demand services with a brief review over previous works and what advantages it offers over 

the prevailing static pricing that we have. The study will also break down the data to identify 

trends by time of day, trip distance, as well as by passenger count in order to determine how 

and when these play a role in pricing. A critical step is to prepare the data for analysis by 

cleaning it, filling in missing information, treatment of outliers and preparing it to be 

compatible for ML models. Then to build & test machine learning models (like regression 

based and decision tree) to predict the best fares. The models will be evaluated on accuracy — 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared. Finally, a report 

detailing each of these steps and results, as well as recommend areas for further 

research/comparison and how to optimize ride-on-demand services pricing strategies. 
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 This study can provide a range of benefits, including the possibility to offer ride-on-

demand businesses an intelligent approach to pricing, as well as the opportunity to help 

businesses gain maximum profits by using adaptive pricing strategies. 

 This report is divided into four major sections. Related work on dynamic pricing of 

ride-on-demand services is presented in Chapter 2. In Chapter 3, the methodology of this 

research is discussed, which includes details of machine learning models, as well as their 

specifications. In Chapter 4, the validation of the models using various metrics in terms of 

performance, like accuracy, is discussed in detail. Finally, the findings obtained from this 

study, along with the conclusion and discussion for future work and enhancing solutions to 

implement a better dynamic pricing practice, are discussed in Chapter 5. 

 

2 Review of Literature 
 

 The current review chapter will assess previous dynamic pricing models, machine 

learning techniques, and metrics for ride-on-demand services. Dynamic pricing models allow 

price adjustments according to the real-time situation. Various dynamic pricing strategies that 

have evolved over the years from basic descriptive analytics to complex optimization on real-

time personalized data will also be discussed and evaluated. Finally, several machine-learning 

approaches will be discussed, as such methods can be adopted to improve the estimates and 

ride pricing in general. Moreover, concepts coming under coverage will include but are not 

limited to neural networks and time series. Finally, the chapter focuses on how the accuracy of 

such models is sustained through evaluation metrics, such as mean absolute error or R-squared, 

displaying how the model is performing. The information to be covered will give a general 

overview of the relevant research, particularly within a data-driven arena related to the ride-

on-demand industry.  

2.1 Dynamic pricing models 

 

 The wide adoption of dynamic pricing models changed the dynamics of ride-on-

demand services, where the price can be changed with respect to immediate fluctuation in 

supply and demand. This section presents the use of dynamic pricing based on research in the 

literature, methodologies used and obtained results in order to analyse the research question. 

 The study by Guo et al. in 2017 focused on the empirical analysis of pricing 

mechanisms concerning ride-on-demand services, in which data was obtained from a leading 

Chinese ride-on-demand provider. The authors focused on the role of dynamic pricing 

variables, which change both in location and time to regulate the supply-demand balance. 

Simultaneously, the solution that Chen et al. proposed in 2020, basically analyses how to 

develop optimisation strategies for dynamic pricing. The authors have emphasised the need for 

real-time data and machine learning models that can effectively predict demand and ensure the 

introduction of relevant features. Thus, Guo et al. suggested the need to understand the essence 

of dynamic pricing, whereas Chen et al. took it forward by emphasising the introduction of 

machine learning-based optimization strategies. Considering the transition of the literature 

from descriptive analytics to predictive ones, this study tries to develop an optimal dynamic 

pricing strategy by incorporating machine learning. 
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 In the context of using dynamic pricing to influence consumer behaviour and improve 

service efficiency, Luo et al. in 2017 performed both theoretical modelling and empirical 

analysis. The authors concluded that besides improving the operation effort of services, 

dynamic pricing also increased passenger satisfaction due to reduced waiting time. However, 

later research by Sun et al., 2020 discussed the integration of dynamic pricing with real-time 

traffic and environmental information to further create refinement in the pricing model. 

Furthermore, these studies indicate that dynamic factors are sustainable in view of higher 

accuracy and functional efficiency in the dynamic pricing model. It would, therefore, probably 

not be surprising that drivers behind dynamic pricing are multivariate in nature: while the 

discussion by Luo et al. centres on consumer behaviour, Sun et al. emphasise the use of external 

data. How real-time variables in the form of traffic and environmental conditions improve 

predictive accuracy and general efficiency in dynamic pricing models is, therefore, of prime 

importance to investigate. 

 Battifarano and Qian (2019) presented a model on surge multiplier prediction for Uber 

and Lyft using L1 regularization with clustering techniques. This real-time spatiotemporal 

predictive model produces an accurate forecast of surge price up to two hours in advance, 

defeating the traditional models. Their model focuses on the prediction of gaps between 

demand and supply but does not consider complications that might be involved in optimizing 

dynamic pricing, such as fluctuation of fares with regard to distance or time factors, including 

peak and off-peak periods. This paper has incorporated optimization of pricing in the model. 

Machine learning models will be applied to predict fares, factoring in several aspects: trip 

distance, temporal variation, and supply-demand gap discrepancies. This distinction represents 

an important limitation to their study, since the lack of price integration confines the 

applicability of their findings only to theoretical price mechanisms. 

 Chen and Sheldon (2015) analysed the impact of surge pricing on the behaviour of 

drivers. According to them, surge pricing significantly incentivizes drivers to work during 

periods of high demand. Their work revolved around how surge pricing controls labour 

elasticity in the gig economy, hence some of the earlier theories regarding income targeting 

were proven wrong. Though the findings are vital in understanding supply-side dynamics, these 

findings fail to relate such labour behaviour to the pricing of fares. While the present study 

follows their earlier work in so far as it looks at supply-demand dynamics, it also embeds them 

in methodologies for fare optimization. Whereas Chen and Sheldon's work had a focus on 

behavioural economics, the present study deploys machine learning methods to develop 

practical, data-driven price determination strategies that improve profitability and operational 

efficiency. 

 This review presented how dynamic pricing cannot be taken away from ride-on-

demand services, and the models can further be extended with the use of optimisation methods. 

The ideas ranged from analysing the pattern of the price to the use of real-time data in the 

optimization hence framing the current research on dynamic pricing. Ultimately, this forms the 

basis of the authors’ own research, in which a dynamic pricing strategy has been considered 

by applying machine learning techniques to devise a strategy that would consider a set of 

variables in real-time against shifting levels of demand and supply. 

 The following section compares different machine learning models, which will 

determine the optimal model for dynamic pricing of the ride-on-demand service. 
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2.2 Machine learning applications in dynamic pricing 
 
 Machine learning (ML) has been integrated into the fare predictions of ride-on-demand 

services for serving dynamically priced models more accurately and effectively, particularly in 

recent times. The following review selected the research works that have employed machine 

learning in dynamic pricing for a wide variety of contexts in order to establish if, indeed, the 

introduction of machine learning techniques can improve dynamic pricing strategies, hence 

answering the main question that forms the core of this research. 

 An early study by Guo et al. (2018) proposed a neural network to analyse multisource 

urban data to predict dynamic prices. The model, considering complex, high-dimensional 

characteristics from the input data, resulted in a very high accuracy of prediction and gave 

significant improvement over traditional baseline models. Alternatively, a more recent inquiry 

by Nalamothu (2023) compares different ML models, such as K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), and Random Forest, to discover which one is best for the 

dynamic pricing prediction of ride-on-demand services. It followed that Random Forest was 

the optimal choice, followed by SVM and KNN. Comparing the neural network approach of 

Guo et al. with the approach of Nalamothu evaluating multiple models yields important insights 

into the strengths and weaknesses of various ML techniques. These studies have brought forth 

the foresight that model selection will be tantamount to the complexity of data and specific 

requirements of prediction. 

 Arora et al. (2021) performed linear regression for dynamic pricing in on-demand ride 

services based on various features like travel distance and time. Good accuracy obtained shows 

that even linear regression can provide distinct advantages within his area. As such, exploratory 

data analysis was conducted to get the most useful patterns and trends of the data to choose the 

best model. Conclusions have shown it was well-suited for introductory dynamic pricing tasks 

because of the simplicity and interpretability of the variables when the relationship between 

them is in a simple form. Further studies by Faghih et al. (2020) combined linear regression 

with the ARMA model with a view to considering other factors, such as weather and demands 

for high service. In this instance, Timeseries analysis was adopted to catch seasonal trends and 

has provided improved results as compared to using only linear regression. Their findings 

prove that combined, machine learning methods with time-series analysis solve the problem of 

temporal dependencies in dynamic pricing, with the introduction of the ARMA model best 

suited to discover the time-dependent relationship. 

 El Youbi et al. (2023) carried out a comprehensive comparative study of Gradient 

Boosting Machine, Random Forest, and Neural Networks in modelling performance, with 

particular emphasis on applicability to dynamic pricing strategies in e-commerce. Their 

findings indicated that the Gradient Boosting Machine (GBM) outperformed the rest of the 

models by achieving an R² value of 0.92, thereby completing the ability of modelling complex, 

non-linear relationships in large datasets. The study has emphasized the utility of 

hyperparameter tuning for model performance optimization in dynamic environments, where 

variables such as competitor actions and customer behaviour drive pricing decisions. Despite 

the very interesting insights that are brought out in the work of these researchers on the 

potential of GBM, the domain remains limited to e-commerce, where price optimization is 

driven by market trends and purchasing patterns of individuals. In contrast, this paper extends 
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their approach to the ride-on-demand sector, including time-dependent and ride-specific 

parameters such as distance, time of day and changes in demand and supply. This study thus 

adapts GBM to these specific problems and thereby demonstrates the adaptability and 

effectiveness of the algorithm in solving dynamic pricing problems in mobility services. 

 Saadi et al. (2022) present an in-depth analysis that involves spatiotemporal demand 

prediction in ride-hailing based on machine learning techniques. The work focused on the 

assessment of changes in short-term demand based on such influences as meteorological 

conditions, traffic volume, and dynamic pricing. Single decision trees, bagged decision trees, 

random forests, boosted decision trees, and artificial neural networks are different models 

applied in their work for which their respective performances were methodically compared. 

Among them, boosted decision trees attained an improved predictive performance for the least 

value of root mean square error (RMSE), avoiding overfitting, hence very suitable for short-

term demand forecasting. This research points out the importance of spatio-temporal dynamics 

in demand fluctuations of different districts and times of a day for the effective management 

of ride-hailing services. However, this framework was only limited to the prediction of demand 

trends and did not include optimization of pricing strategies. This present research, on the other 

hand, uses the same temporal dynamics but takes one step further by embedding these into a 

holistic pricing framework. By correlating demand forecasts with fare modifications, this 

research establishes a connection between understanding variations in demand and 

implementing effective pricing strategies aimed at revenue maximization while reconciling 

discrepancies between supply and demand. This distinction underlines the contribution of this 

present study to address both the operational and strategic aspects of dynamic pricing in the 

context of ride-on-demand service. 

 The work of Yamuna et al. (2024) studied different machine learning models for 

dynamic pricing at e-commerce companies to study the effects on profit maximization and 

customer satisfaction by making real-time adjustments. Methodologies ranged from competitor 

pricing to demand fluctuation and seasonality, hence representing the flexibility of machine 

learning in dynamic and competitive market settings. They applied reinforcement learning and 

Gradient Boosting to demonstrate how such models can efficiently balance profitability and 

customer retention while price setting. However, their study largely ignored contextual factors 

like supply-side constraints, which in ride-on-demand services are very important as the 

availability of drivers and real-time supply-demand imbalances strongly impact pricing 

strategies. Building on the work of Yamuna et al., this study modifies dynamic pricing 

frameworks to capture ride-specific variables such as distance, temporal variations, and peak-

hour demand patterns addressing unique challenges in this domain. 

 These reviewed studies have provided unique insights into ML techniques applied to 

the dynamic pricing problem in ride-hailing services. While neural networks and model 

comparison methods have their own merits, so does time-series integrated analysis use of linear 

regression. All the works identify the problem of robust machine learning models that will be 

capable of dealing with real-time data and complex variables for optimal pricing solutions. 

This will align with the purpose of the research, which will be to develop an efficient dynamic 

pricing model using advanced ML techniques. 
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 The subsequent section presents the performance measures that will be used in testing 

the efficacy and robustness of the proposed machine learning models in dynamic pricing for 

ride-on-demand services. 

2.3 Evaluation metrics in machine learning for dynamic pricing 

 

 In dynamically priced ride-on-demand services, the evaluation metric becomes very 

important, in indicating whether the performance of the machine learning models is accurate 

or not. The section that follows will review relevant studies, putting more emphasis on an 

appropriate metric which best suits the research question. 

 Chai and Draxler (2014) provided an exhaustive review of the statistical measures 

adopted for model predictions. From a practical viewpoint, both mean absolute error (MAE) 

and root mean squared error (RMSE) are useful. Though the latter is more general in the 

literature, its value is misleading quite often due to its sensitivity to outliers. Therefore, it would 

seem that MAE has the obvious interpretation as an average error, hence an edge against 

outliers in applications. Indeed, Willmott and Matsuura (2005) further offer more weight to 

this view when they hold that MAE is, in theory, a more logical and unambiguous estimate of 

average error than RMSE. They caution against using the RMSE because its scaling with error 

variance might result in bias that could mislead the interpretation of model performance. This 

becomes even more critical in dynamic pricing, where the choices of the most representative 

performance metrics should not be too sensitive to outliers in precision and robustness. 

 In fact, early studies by Chicco et al. (2021) stated that the coefficient of determination 

can be used instead of symmetric mean absolute percentage error (SMAPE), mean absolute 

error (MAE), mean absolute percentage error (MAPE), mean square error (MSE), and root 

mean squared error (RMSE), provided a regression analysis has been applied. It will provide 

information about how well the model explains the variability of the response data, a very 

important aspect in dynamic pricing models. Similarly, Hodson describes the same use for 

RMSE and MAE in 2022. According to their study, RMSE works best when the form of error 

takes a normal distribution, and for non-normal distributions of error, MAE will be more apt. 

Hodson concludes that neither measure is intrinsically better than the other. The suitability 

depends upon the type of distribution in error for that particular usage. This view will be 

necessary for dynamic pricing models since it gives light to the choice of a good metric for 

evaluation, bringing more intuition about the error behaviour. 

 These studies further emphasize applying appropriate assessment measures with regard 

to dynamic pricing models. MAE indeed seems robust, performing particularly well in cases 

of non-normal distribution of errors, while R-squared again provides valuable information with 

respect to variance explanation. Such insights will iteratively help to improve the performance 

of dynamic pricing models that needs to be evaluated. 

 In other words, there are still gaps in the literature today with regard to dynamic pricing 

models and even machine learning techniques. Most of the studies done in the past focused on 

single variables or single models that cannot capture the dynamics in real time, considering 

supply, demand, traffic, and competition. Other areas of further study call for the development 

of hybrid models that combine different machine learning techniques. This paper tends to 

bridge those gaps by proposing a new multidimensional dynamic pricing model for the ride-
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on-demand economy with the power of machine learning to improve profitability, keeping 

customer satisfaction in mind. 

 The next chapter describes the methodology and specification of the research, 

incorporating how this study was carried out based on the literature review. 

 

3 Research Methodology 
 

 The key basis for adopting CRISP-DM within this research study is that it introduces a 

robust, structured process in which, logically, there will be clear routes from problem 

identification to model deployment: business understanding, data understanding, data 

preparation, modelling, evaluation, and deployment. All of these involve repetition for each 

step since sometimes steps require revision after new facts have been learned. In practice, this 

makes the CRISP-DM most effective in volatile contexts like the dynamic pricing in ride-on-

demand services, where real-time information often changes significantly. The cyclical nature 

of the CRISP-DM ensures that data undergoes constant review, hence always accommodative 

to new information, a great advantage in handling big and dynamic datasets. (Saltz, 2021) 

 Other methods have been explored such as the KDD, or Knowledge Discovery in 

Databases, and SEMMA: Sample, Explore, Modify, Model, Assess. These have proven to be 

less flexible than the Cross-Industry process. KDD focuses on finding trends within data. Due 

to the inability to iterate further back than model evaluation, this makes it unsuitable for 

projects that need to refine the models iteratively, like in dynamic pricing (Fayyad et al., 1996). 

The SEMMA methodology, formulated by SAS, emphasizes exploratory data analysis and the 

construction of models; however, it is deficient in the thorough comprehension of business 

contexts and the deployment stages that are essential for practical applications (SAS Institute, 

2008). In contrast, CRISP-DM adopts a comprehensive framework that integrates business 

objectives and deployment, thereby guaranteeing that the machine learning models created are 

not only technically robust but also consistent with organizational aims (Saltz, 2021). 

 More applicable for this research, CRISP-DM gives the opportunity to consider at early 

stages the business contexts, supported by deep data and model exploration. Considering 

dynamic pricing, changes have to be instant, given that the demand and supply conditions 

change rapidly; the adaptability and the iterative feedback mechanism within CRISP-DM 

enable the continuous improvement of the pricing models. This will make sure the model 

continuously meets the business needs by optimizing performance (Saltz, 2021; Rathore et al., 

2024). The model implementation calls for adaptability most in dynamic settings; thus, as in 

the case of the ride-on-demand service, approaches like KDD and SEMMA cannot compete 

against real-time market fluctuations. 

 CRISP-DM stands for Cross Industry Standard Process for Data Mining. It describes 

one widely used model in breaking down data science projects into six steps. Each step brings 

structure and a guideline to keep the project on track and assure that the outcome is meaningful. 

Specific details of each step are delineated as follows: 
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Figure 3.1: The CRISP-DM Process. 

 

i) Business understanding 

 This is the very foundational step. It stipulates the business objectives, stating the 

problems that are to be solved. The aim during this stage is to have a clear vision with respect 

to what the success of the projects would look like, and whether the data analytics methodology 

is in line with the aim of the organization. During this stage, a broader view of insight into the 

business is necessary. 

ii) Data understanding 

 Where the business objectives are well-defined, the subsequent process becomes that 

of data exploration. The gathering of data, familiarization with its structure, and identification 

of key variables are included in this. The quality assessment of the data should be performed 

on the assumption that the sooner incompleteness or inconsistency is detected, the fewer 

problems will emerge during further project work. 

iii) Data preparation 

 In this step data cleaning and preparation are performed, by treating missing values, 

outliers, and sometimes inconsistencies, and at times making new features out of existing ones, 

usually improving the performance of a model. Actually, it is one of the most time-consuming 

steps; however, it lays the bed for the success of the entire project. 

iv) Modeling 

 With clean data, various machine learning or statistical models are created and 

compared. This is the area where choices regarding which algorithm is best should be made, 

together with their optimization, in order to determine the best model for the project. Many 

different models may be considered in finding which best actually makes the most accurate or 

valuable predictions on the data. 

v) Evaluation 



 

10 
 

 

 After modelling, the next in line is model evaluation. The developed models have to be 

checked against the business goals during this step and their performance in terms of some key 

metrics. Otherwise, if the results cannot give satisfaction, it might be necessary to tune the 

model and probably try new ones. 

vi) Deployment 

 At this stage, which is the end of model development, it is now ready to be deployed, 

either embedding the model in a real-world application or running simulations so as to test how 

the model would work in practice. This is, therefore, done in order to exploit the insight 

extracted from the data for better decision-making or the automation of a certain process. 

3.1 Implementation of dynamic pricing with machine learning 

 

 Following is the detailed methodology of implementation of dynamic pricing with 

machine learning: 

 
Figure 3.2: The CRISP-DM Process for Dynamic Pricing 

 

3.1.1 Business understanding 

 The Business Understanding phase of CRISP-DM is crucial for setting the foundation 

of a project by aligning data-driven goals with business objectives. For ride-hailing services, 

the main challenge is optimizing pricing to balance supply and demand efficiently. Dynamic 

pricing allows for real-time adjustments, preventing mismatches in availability and fare 

pricing. One such approach, certain studies have pointed out, would increase overall service 

reliability and customer satisfaction since driver supply would accord with dynamic pricing 

according to the situation (Yan et al., 2020). The prices of fares can also be estimated by 

machine learning algorithms through demand fluctuation and supply constraints for 

profitability and enhancement in user experience (Ashlagi et al., 2018). 

 Key focus is to determine how several variables interact with each other to influence 

price while keeping the system fair for customers and profitable for the business. Predicting 
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how much and when the price would change, based on historical data, market dynamics, and 

real-time factors, is key. Refining these predictions through machine learning will help achieve 

the aim of optimizing pricing for profitability without compromising service quality. 

 

3.1.2 Data understanding 

 Following the CRISP-DM methodology, Data Understanding should be done to 

develop preliminary insights into the data and detect any problems that might pop up in order 

to adjust the approach in the further process. 

 Analysis and exploration in this research are going to be done using Python, Jupyter 

Notebook, and VSCode, supported by libraries like pandas, numpy, matplotlib, and seaborn. 

This is deep exploration into the dataset for key variables of interest: ride distance, fare amount, 

and duration of the ride, with deep understanding of any pattern, inconsistency, or outliers that 

could influence model predictions. The data quality checks include the detection of missing 

values to be imputed or excluded, and outliers to be excluded or transformed. EDA is done to 

illustrate key relationships and correlations that give further understanding of those variables 

causing dynamic pricing, for example, how peak hours or long-distance rides affect the fares. 

It is a good framework to build correct models because the step ensures that the data is well 

understood and prepared for preparation and modelling in later stages. 

 The present section will proceed with discussing the collection of data, description, and 

quality assessment procedures that are supposed to precede preliminary exploratory analysis. 

i) Data collection 

 The data set used for this analysis is a publicly available one, containing historical 

records of Uber rides. The data is very important to understand the dynamic pricing 

mechanism, as it contains important information about every ride regarding time, place, and 

fare amount-which are the keys to understanding the basics of any pricing model. 

• Source: Data for this research is taken from a publicly sourced dataset on Kaggle entitled 

"Uber Fares Dataset". The dataset is actually designed for research studies to be performed 

on Uber ride pricing and contains all the necessary information with regard to time, 

location, and the amount of fare. It is commonly used to analyze patterns in Uber rides, 

including fare fluctuations, ride demand, and other features that impact dynamic pricing.  

The dataset is licensed under the CC0: Creative Commons Public Domain License. As 

such, it indicates that the dataset has been dedicated to the public domain, and users can, 

without restriction under copyright or database law, copy, modify, distribute and perform 

the work, including for commercial purposes, without having to obtain permission. 

Regarding this dataset, no copyright restrictions exist; the dataset is available for all 

possible uses. 

ii) Data description 

• Variables: The dataset contains various feature types relevant in dynamic pricing research. 

Some of the essential variables are: 

a. Time of Ride (pickup_datetime): this includes the date, time, and even day of the 

week that the ride was begun. This would give them an idea of peak hours for demand 

and how those might impact prices of their services. 
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b. Ride Distance (calculated from pickup and dropoff coordinates): The critical 

determinant of pricing of fares is the distance that lies between the pickup and drop-off 

points. 

c. Pickup and Dropoff Locations (pickup_longitude, pickup_latitude, 

dropoff_longitude, dropoff_latitude): Geographical coordinates are used to identify 

the origin and destination of the trip for a spatial analysis of fare variation. 

d. Fare Amount (fare_amount): the target variable for dynamic pricing models is the 

fare amount for every single ride. 

e. Passenger Count (passenger_count): The number of passengers in the vehicle could 

affect the price, especially with regard to ride-sharing or group rides. 

• Volume and data types: Dataset comprises precisely 200,000 records and 9 variables. A 

dataset of this size applies to dynamic pricing research because large sets of data are needed 

to observe how demand and price are changing over time. A dataset with this magnitude in 

size, its dimensions, and arrangement allows for the implementation of proper statistical 

analysis and the application of machine learning algorithms; hence, detailed analyses can 

be carried out in fare trends and determinants. 

The dataset contains several kinds of variables, in which numeric variables consists of 

fare_amount, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude, and 

passenger_count, which are categorized in a category of float64 and int64. 

Categorical/object variables include key and pickup_datetime. A variable of this type 

requires parsing to do some more analysis; more so, the pickup_datetime may also be 

changed to datetime format. 

 
Figure 3.3: Dataset shape and variable types. 

• Time period of data: It contains data from January 1, 2009, through June 30, 2015. It was 

derived by first converting pickup_datetime into a datetime format and then finding the 

minimum and maximum date. This in turn could be useful later as basis for analysis of fare 

and other time dependent variables. 
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Figure 3.4: Time period of data. 

iii) Data analysis and quality checks: 

• Irrelevant columns: In the following figure 6, there are top five rows of dataset, along 

with variable names. The first step in data analysis and quality checks is to remove 

unwanted variables, that do not contribute to any analysis. In this data, column “Unnamed 

0” and “key” do not provide any information.  

 
Figure 3.5: Top five rows in dataset along with variable names. 

• Identifying missing values: In this dataset, missing values were identified by utilizing the 

isnull() function. Careful study showed that it had only one missing value in the 

dropoff_latitude and dropoff_longitude columns, which was further confirmed by 

segregating the row for further detailed study. This single missing value is very important 

since the latitude is one of the important features for identifying the location of drop off, 

and its presence or absence might affect the accuracy of fare prediction. 

 
Figure 3.6: Identifying missing values. 

• Identifying duplicate values: Verification of duplicate entries was essential to ensure that 

the quality data used for analysis is correct. Duplicate records may appear because of errors 

in data collection, repeated transactions, and many other problems related to data 

integration. This may further distort the analysis. For instance, where some rows are 
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duplicated, it increases the frequency of a particular data point, which is biased in drawing 

insight into specific analyses, especially in dynamic pricing data analysis. 

This problem was solved by implementing the function duplicated(), which can be used to 

find duplicated rows in a dataset. The function returns a Boolean series indicating whether 

each row is a duplicate; summing these thus gives the total number of duplicates present. 

Since the output of this operation returned that there were no duplicates in the dataset, 

nothing further was needed here. 

 
Figure 3.7: Identifying duplicate values. 

• Outliers’ detection: Generally, outliers in any given dataset are a subset of data values that 

lie considerably away from the other observed points. Outlier detection reaches anomalies 

and extreme values which may influence further data analysis or model performance. 

a. Longitude and latitude outlier detection: Since this information is on New York City, 

the longitude and latitude coordinates of pick-up and drop sites are supposed to fall 

within the geographical limits of New York City, that is, between 40.4774 to 40.9176 

in latitude and between -74.2591 to -73.7004 for longitude. Outliers were identified for 

values outside of this range. 

b. Passenger count: The passenger count normally varies within a range of 1 to 6 

passengers in one car. All the instances beyond this, that is 0 or more than 6, fall into 

outliers since they are not typical data for an Uber ride. 

c. Pickup and dropoff datetime: Though not in the numerical sense, any date anomalies 

or impossibilities were treated as outliers. For instance, all those rides which were taken 

outside the known timeframe of the dataset, that is, before 2009 or after 2015, are 

indicative of incorrect input of data. 

iv) Exploratory data analysis: 

 Exploratory data analysis had been performed at the Data Understanding stage to get 

the general view of the dataset and outline probable problems. EDA allows to discover patterns, 

trends, and anomalies in the data, which is fundamentally important for further preparation 

steps and modelling. For this, EDA involved a few steps: the preprocessing of data by feature 

engineering and transformation, in that the raw data lacked some of the basic variables 

necessary for thorough analysis. 

 Specifically, the ride distance variable was not included within the original dataset 

which is very important variable in describing the relationship of the distances driven with the 

fare prices. Thus, in the pre-processing stages, the ride distance was calculated using the 

Manhattan distance formula from the coordinates of pickup_longitude and dropoff_longitude. 

This derived feature allowed a more in-depth analysis of how distance influences fare pricing, 

directly addressing one of the key aspects of the research. 
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 Similarly, no meaningful temporal analysis could have been conducted on the raw 

variable of pickup_datetime; hence, from pickup_datetime, the year, month, day, hour, and 

weekday features were extracted to allow for time-based explorations. Such features would be 

required in explaining how the fares change during the day, particularly in identifying peak vs. 

off-peak hours, which is most relevant to the research questions on temporal variations in 

dynamic pricing. 

 Although all of the above steps fall technically under Data Preparation but had to be 

done for doing proper EDA. Otherwise, the relationships involving variables like fare, distance, 

and time would not be studied comprehensively, and derivation of meaningful insight would 

also be limited. 

 The key steps in EDA included: 

• Descriptive statistics: Basic summary statistics were calculated for important variables 

like fare_amount, ride_distance, and passenger_count. The summary statistics gave an 

overview of the structure of the data and allowed the identification of anomalies, such as 

extreme outliers or unusual distributions. 

• Data visualization: Visualizations were then used to explore the distribution of key 

variables: 

a. Histograms were used to visualize the distribution of fare amounts, emphasizing 

possible skewness or outliers. 

b. Scatter plots were created to study relationship between ride distance and fare to 

demonstrate the impact of distance on pricing. 

c. Box plots helped in finding some outliers in fare_amount and passenger counts that 

might potentially bias the analysis. 

• Correlation analysis: A correlation matrix was developed to study the relationships 

among key variables: fare_amount, ride_distance, and time-related attributes. It was 

necessary to understand how different variables interact with one another and impact fare 

pricing; it provided insights that directly supported the research questions. 

• Time-Based exploration: Temporal trends were explored by analysing the fluctuations in 

fare amount depending on the hour of the day and day of the week utilizing the time-based 

features extracted previously. This analysis allowed for the identification of possible 

differences between peak and off-peak hours, reinforcing the development of optimized 

dynamic pricing model. 

 Preliminary EDA was done during the Data Understanding phase to understand the 

dataset, identifying potential issues such as missing values or anomalies. Basic visualizations 

and summary statistics have been generated in an attempt to understand the distribution of key 

variables of interest, such as fare_amount and passenger_count. Though these initial 

observations were useful to detect the anomalies, deep analyses involving integration of 

correlation analysis and temporal exploration needed further cleaning of data that is thoroughly 

discussed in Data Preparation phase. This ensured that all the variables related to ride distance 

and time-related features are suitably prepared deeper analysis and model development. 

 The EDA process helped in understanding patterns, relationships, and anomalies in the 

data, hence laying a suitable foundation for data preparation and model development. With the 
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extraction of ride distance and time-based features,  EDA facilitated the suitability of the 

dataset in answering basic research questions on fare dynamics and pricing strategies. 

 

3.1.3 Data preparation 

 Data Preparation in CRISP-DM means the raw dataset will be transformed into a clean 

and structured format ready to go, which includes handling missing values, addressing outliers, 

and performing necessary feature engineering. In this respect, the data preparation was an 

important part of this research to ensure relevance and precision of the dynamic pricing model 

by refining key variables such as fare amount, ride distance, and time-based features. 

Procedures include cleaning the data, extracting features, their transformation to be appropriate 

for goals of research, and development of optimized pricing strategies. Several key steps were 

taken in this phase: 

 
Figure 3.8: Data preparation process in CRISP-DM for dynamic pricing of ride on demand 

service. 

i)  Dropping unnecessary columns: 

 Initially, the columns labelled Unnamed: 0 and key were recognized as nonessential for 

the analysis and subsequently eliminated. The removal of these unimportant columns was 

crucial for streamlining the dataset and focusing on relevant variables. 

ii) Handling missing values: 

 There was one missing value for which, instead of imputation, the record was removed. 

Given the size of the dataset, removing this row did not impact the overall dataset. This is 

decided as part of the approach to avoid the possible biases or inaccuracies that can result from 

imputation methods themselves and further affect the analyses, especially those on latitude and 

longitude as sensitive variables. 

iii) Outlier removal: 

 Several outlier detection and removal processes were performed: 

• Fare amount: Fare amounts ranging from 4 to 130 have been kept because values outside 

this interval could reflect extreme outliers or inaccuracies. This choice was based on an 

analysis of the distribution of fare amounts, where values outside this range were observed 

to be highly unusual or unrealistic for typical Uber rides. 

• Ride distance: Rides that have been measured at less than 1 km or over 80 km were 

excluded from use. This is based on the assumption that any ride below 1 km is quite 
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infrequent and might represent unusual or erroneous data points (e.g., rides not captured 

properly). Every ride longer than 80 km was excluded as well, which depicts outliers not 

characteristic of typical urban ride on demand service. 

• Geographical boundaries: Longitudes and latitudes were bounded within known 

geographic boundaries for New York City: the purpose being to make sure analyses 

considered valid pickup and drop-off locations only. Any points beyond these defined 

limits were considered invalid and hence removed. 

• Passenger count: The range of from 1 to 6 passengers was taken because this range 

precisely reflects the range that is possible for the number of passengers which typical ride 

on demand cars can carry. Rides having zero passengers and above six were treated as 

outliers, likely the result of data entry errors. 

iv)  Feature engineering: 

 New features were created to enhance the analysis of fare dynamics and temporal 

trends. 

• Ride distance calculation:  

a. One of the most important variables underlying the fare dynamic, ride distance, did not 

exist in the raw data. A function was used to calculate the distance between the pickup 

and drop-off points latitude and longitude coordinates using the Manhattan distance 

formula. 

b. Other options considered were Google Maps API, Here API, and OSRM (Open Source 

Routing Machine), but each came with some issues related to financial costs, rate limit, 

and complicated configuration for large amounts of data points. These methods were 

really quite accurate in the calculation of road-based distances, but scaling and financial 

demands make them impractical for this research. Simpler methods like the Haversine 

formula and Euclidean distance were also considered but were less accurate for New 

York City's grid-like layout. Hence, the Manhattan distance formula was used for its 

balance between simplicity and accuracy. This avoids the cost and complexity of API 

requests for a much more realistic approximation of real-world distances and thus 

making it the most efficient and scalable solution for the dataset. 

• Time-based feature extraction: Some temporal features were extracted from the variable 

pickup_datetime, which enabled the study of time-of-day and time-of-week temporal 

trends in fare prices. These features were useful to understand the changing fare rates as 

time of day and day of a week. Converting the pickup_datetime to a New York time zone 

was also important to accurately capture the local time dynamics, which also ensured that 

any temporal analysis aligns with real-world conditions. 

v)  Feature selection:  

 In addition to feature engineering, careful consideration was given to the selection of 

variables to be included in the modelling phase. 

• Target variable: The target variable for prediction is labelled as fare_amount, as it 

represents the pricing mechanism of ride on demand services and remains the main focus 

of this research. 

• Selected features: Selection of features in the list below has been based on its relevance 

to the research questions and their importance as a determinant of the fare dynamics: 
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a. Ride distance: The ride distance, one of the strongest predictors of fare, was key 

component for modelling. That is highly correlated to the fare amount, with a 

correlation coefficient of 0.89, which makes it essential for understanding the base 

pricing structure of ride on demand services. 

b. Passenger count: Although the feature passenger count was explored in exploratory 

analysis and did not relate to the fare, it was retained to verify its contribution within 

the model. In case there are subtle patterns or interaction in feature which might be 

influencing the price, even if the direct effect seems small. 

c. Time-based features: 

1- Hour: This feature depends on the time of day, that is, whether it is peak or off-

peak condition. Including this feature allows the model to capture these temporal 

variations, which are important for understanding dynamic pricing. 

2- WeekDay: Patterns of ride demand and pricing are influenced by both weekdays 

and weekends. Incorporating the day of the week allows the model to account for 

these behavioral variations. 

3- Month: This feature was included to capture potential seasonal variations in fare 

pricing, which may be relevant depending on the time span of the dataset. 

• Excluded Features: Geographical coordinates such as pickup_longitude and 

dropoff_latitude were excluded since already a feature represented the distance of the ride, 

and that provided enough information. Even though the dataset spanned several years, the 

feature Year was excluded because it cannot be useful in short-term fare prediction. This 

study is focused on the prediction of fares by relying more on the short-term temporal 

features: the hour and day of the week. 

 At this point, after all the above-mentioned steps, the data reduced from 200,000 rows 

to 173,557 rows. Although the reduction is significant, it retained massive data for meaningful 

analysis keeping records valid and representative of normal conditions for the ride on demand 

service. 

vi) Data Transformation: 

 Once the feature selections were made, the dataset had to undergo various steps of 

necessary transformation to meet the requirements of machine learning algorithms, assuming 

particular forms of distributions and feature formats. These transformations include scaling, 

encoding, and cyclical feature encoding. 

• Scaling of continuous variables (ride_distance, fare_amount): Scaling prevents features 

with large magnitudes/units/ranges from having an undue impact on the model. 

a. Why it was necessary: Some variables are of larger magnitudes like ride_distance and 

fare_amount, while most models are sensitive to large values if not normalized. 

b. Impact on the model: Without scaling, large values like that for ride_distance could 

dominate the learning process, making the models predict in a biased manner to not 

correctly reflect other feature's relative importance. 

• Cyclical encoding of temporal features (Hour, WeekDay): Time features like hours and 

days are fundamentally cyclic, and this cyclical nature is not captured by a standard 

encoding. 

a. Why it was necessary: Since time is not always a linear variable, treating it as such 

would distort proximity between successive periods such as hour 23 and hour 0. 
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b. Impact on the model: Transformed  sine and cosine features helps the model 

understand temporal patterns better to make improved fare predictions concerning peak 

and off-peak hours. 

• Encoding of categorical variables (Month): While months were in numeric format 

ranging from 1 to 12, it was critical not to treat them as ordinal. 

a. Why it was necessary: Ordinal treatment of the months would range from 1 to 12; 

implying that month 12 has an intrinsic value that is "greater" or "higher" than month 

1. This will create unwanted relationships, making December "larger" than January. 

b. Impact on the model: One-hot encoding allows the model to capture the pattern of 

each and every month without making any wrong numeric sequence. That kind of 

approach depicts the month-wise trend, capturing seasonality accurately without 

feeding the model with any numeric hierarchy. 

• Encoding of categorical variables (passenger_count): In the passenger_count feature, 

there was an obvious ordinal structure in the values that go from 1 to 6, representing 

increasing quantities 

a. Why it was not transformed: One-hot encoding would make each passenger count 

into a separate, unrelated category. It removes the indication of gradualness, and 

essentially tricks the model to take away the inherent hierarchy within the numbers of 

passengers themselves. 

b. Impact on the model: Leaving the passenger count in their raw format  also allowed 

the model to understand it correctly as an ordinal feature for the proper capture of a 

relationship between increasing passenger numbers and fare dynamics without 

overcomplicating it. 

 
Figure 3.9: Final features in the dataset after all previous steps. 

 

3.1.4 Modeling 

 The prime focus of this research was on providing a predictive model for dynamic 

pricing in a ride-on-demand service, where fare changes based on different contextual factors 

like demand-supply dynamics, time of day, ride distance, and other temporal patterns. 

Accurately predicting fares in such a dynamic environment required models capable of 

capturing both linear and non-linear relationships, as well as interactions between these 
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variables. Several machine learning models were selected based on their different capabilities 

in handling different natures of data and the relationship exist between the variables concerned. 

i) Models for dynamic pricing: 

 The four models selected for this study include Linear Regression, Random Forest, 

Multi-Layer Perceptron, and Gradient Boosting Regressor. Each model was chosen based on 

the potential to capture various aspects of the data and to provide a robust dynamic pricing 

model. 

• Linear regression: Linear regression is one of the basic models that assumes a direct and 

proportional relationship between predictors and target variables; though simple, it is a 

baseline model offering interpretability and allowed the validation of another more 

complex model with respect to it. The equation for a simple linear regression model is: 

𝑦 = 𝛽_0 + 𝛽_1 𝑥_1 + 𝛽_2 𝑥_2 + ⋯ + 𝛽_𝑛 𝑥_𝑛 + 𝜖 

Where 

a. y is the target variable (fare amount), 

b. 𝛽_0 is the intercept, 

c. 𝛽1, 𝛽2 and 𝛽𝑛are the coefficients for each feature 𝑥1,  𝑥2 and 𝑥𝑛 

d. 𝜖 represents the error term. 

 In ride-on-demand services, linear regression had its limitation in terms of handling 

nonlinear patterns, but it was helpful to model the general linear trend of fluctuation in 

fares, such as proportionality in increases of fare with longer ride distances. If this model 

performed well, that would mean the relationship between the features and fare amount 

was mostly linear - a situation unlikely in dynamic pricing. 

 
Figure 3.10: Illustration of linear regression in which θ1 = 𝜷_𝟎 and so on.   (Source: 

GeeksforGeeks, 2023) 

• Random forest: Random Forest is an ensemble method that builds multiple decision trees 

and averages their predictions. Each tree splits data based on the value of features to 

minimize impurity using the Gini impurity or entropy for classification or MSE (mean 

square error) for regression. The prediction from random forest is: 

𝑦̂ =
1

𝑀
∑ 𝑇𝑚(𝑥)

𝑀

𝑚=1

 

Where 

a. 𝑦̂ is the predicted fare, 

b. M is the total number of trees, 

c. 𝑇𝑚(𝑥) is the prediction from the mth tree. 
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 In ride-on-demand pricing, Random Forest helped capture complex nonlinear 

interactions between time variation  and variation in passenger count on fare. Each of the 

trees in the forest learned specific patterns in the variables, while aggregation of predictions 

over all trees actually resulted in a better overall prediction. However, given that the 

Random Forest did not account for sequential dependencies, it might fail to capture some 

of the temporal dynamics in the patterns of pricing. 

 
Figure 3.11: Illustration of random forest model with multiple decision trees. 

• Multiple layer perceptron: MLPs are neural network models that can learn any complex 

and nonlinear pattern in data. Because of their hidden layers with nonlinear activation 

functions such as the ReLU or sigmoid, MLPs can universally approximate a wide variety 

of functions, thereby making this a very flexible model to carry out prediction tasks. The 

equation for the output of each neuron is: 

𝑎(𝑙) = 𝜎(𝑤(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) 

Where 

a. 𝑎(𝑙) is the activation at layer l, 

b. 𝑤(𝑙) is the weight matrix, 

c. 𝑏(𝑙) is the bias term, 

d. σ is the activation function. 

 The network uses backpropagation to adjust weights, minimizing a loss function (e.g., 

mean squared error) to improve predictions. 

 For dynamic pricing, MLP had the advantage of complicated patterns in fare 

fluctuations caused by a combination of factors, such as time, distance, and passenger 

count.  That, however, requires more data and computational resources in order to converge 

to an optimal solution and is less interpretable compared to the tree-based model, which 

may restrict practical usage in this case. 

 
Figure 3.12: Structure of a multi-layer perceptron (MLP). (Source: Towards Data Science, 

2023) 
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• Gradient boosting regressor: Gradient Boosting Regressor combines boosting with 

gradient descent optimization so that it builds an ensemble of trees sequentially. This 

method aims to minimize the prediction error; thus, it constructs each tree so that it corrects 

the residuals of the previous ones, which works well enough to capture both linear and 

nonlinear patterns: 

𝑦̂(𝑚) = 𝑦̂(𝑚−1) + 𝛼𝑓𝑚(𝑥) 

Where 

a. 𝑦̂(𝑚) represents the prediction after the mth boosting step, 

b. 𝑦̂(𝑚−1)) is the prediction from the previous step, 

c. α is the learning rate controlling the contribution of each new tree, 

d. 𝑓𝑚(𝑥)is the mth tree fitted to the residuals of the previous ensemble. 

 Gradient Boosting was particularly suitable for dynamic pricing, as it captured those 

very small demand-driven shifts in price by building on previous errors. It did so through 

iterative model improvements and treated the fluctuations of fare, which depends on factors 

such as high demand and distances quite well. This iterative reduction of error rates ensured 

that each new tree in it targeted the difficult cases to predict, hence giving a much finer 

model responding to the variability of ride-on-demand services. 

 
Figure 3.13: Gradient Boosting process showing sequential trees (Source: Thorat, 2023) 

This selection strategy was designed to find the most suitable model for dynamic pricing, 

balancing accuracy, interpretability, and efficiency. 

ii) Hyperparameter tuning for gradient boosting regressor: 

 After initial model evaluation, Gradient Boosting Regressor was the most promising, 

since it could grasp the underlining complexity of the data and give correct predictions in the 

ever-dynamic environment. To further tune the Gradient Boosting model, Grid Search with 10-

fold Cross-Validation was performed to find the best hyperparameters. The following 

hyperparameters and ranges were selected based on common practices in gradient boosting and 

their impact on model performance: 

• Learning rate (learning_rate): The learning rate regulates the step size of each iteration 

and defines the speed at which the model gets adapted to residual errors. While a low 

learning rate enables gradual learning of the model with reduced chances of overfitting, a 

higher rate speeds up convergence. 

 The values tested for learning_rate were [0.01, 0.1, 0.2]. A value of 0.01 tests a 

conservative learning rate to prioritize generalization over quick adaptation, while 0.1, the 

default in gradient boosting, balances generalization and convergence speed. The value of 

0.2 represents a faster learning rate to see if quicker adaptation improves accuracy in 

dynamic pricing. 



 

23 
 

 

• Number of estimators (n_estimators): It controls the number of boosting rounds (trees) 

added to the ensemble. More trees available allow the model to capture finer detail but at 

the cost of a higher risk of overfitting. 

 The values tested for n_estimators were [50, 100, 200]. The value of 50 test how a small 

number of trees can influence the performance of the model and may help in preventing 

overfitting. The value of 100 being a moderate value has a good balance between 

computation efficiency and model complexity. The value of 200 allows for a larger number 

of trees to model finer relationships in data. 

• Max depth (max_depth): It limits the depth of each tree within the ensemble and, in turn, 

limits model complexity. Deep trees are able to capture more complex patters but at the 

expense of overfitting to training data. 
 Values tested for max_depth were [3, 5, 7]. A depth of 3 was used to favor shallow 

trees, which do not easily overfit and give better generalization. A depth of 5 allowed for 

moderately deep trees to model more interaction between variables, while a depth of 7 

tested the impact of deeper trees to see whether they might capture any useful pattern 

present in high variability fare predictions. 
 By applying 10-fold-cross-validation it was ensured that the best set of hyperparameters 

generalize well to random subsets of the data and avoid overfitting. This method allowed for a 

robust selection of parameters, focusing on those that minimized the mean absolute error 

(MAE) across different folds, aligning with the objective of minimizing fare prediction errors. 

iii) Final model selection: 

 Based on the hyperparameter tuning results, the Gradient Boosting Regressor with 

learning_rate = 0.1, max_depth = 5 and n_estimators = 100 was chosen as the final model. This 

gives a good balance between model complexity and adaptability, correctly predicting fares 

under dynamic conditions with no overfitting. 

 

3.1.5 Evaluation 

 For this study, three relevant metrics were considered to evaluate the predictive 

accuracy and robustness of the models by using the MAE, RMSE, and R². These three metrics 

have been chosen to fully understand model performance in the context of dynamic pricing for 

ride-on-demand services with regard to the accuracy of model. 

i) Mean absolute error (MAE): 

 MAE represents the average absolute difference between the predicted and actual fare 

amounts. It is calculated as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Where 

a. 𝑦𝑖 is the actual fare, 

b. 𝑦̂𝑖 is the predicted fare, 

c. n is the number of observations. 

 The main metric chosen here was the MAE, since it gave the average prediction error, 

which is quite relevant for dynamic pricing. In the case of pricing, the model errors had to be 
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smaller as that kept the pricing consistent with the real time and minimum dissatisfaction 

among the customers or losses in revenues from incorrect pricing. 

 It meant with a lower MAE, the model was consistent with its prediction of fares close 

to the actual amounts, hence it was stable in pricing adjustments. A model with a smaller MAE 

was better positioned to make accurate fare predictions, essential for optimizing ride-on-

demand pricing strategies. 

ii) Root mean squared error (RMSE): 

 RMSE is the square root of the average squared differences between the predicted and 

actual values, calculated as follows: 

RMSE = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)
2 

Where 

a. 𝑦𝑖 is the actual fare, 

b. 𝑦̂𝑖 is the predicted fare, 

c. n is the number of observations. 

 RMSE was added to handle the sensitivity of fare predictions for larger deviations. In 

dynamic pricing, seldom large errors can be very dangerous since the significantly mispriced 

fares may contribute to very dissatisfied customers or operational inefficiencies. 

 The lower values of the RMSE show that the model has accurate average predictions 

and also fewer chances of substantial mispredictions. This is particularly important for 

ensuring that fare adjustments remain consistent and reliable across a range of pricing 

scenarios, especially during peak or off-peak times. 

iii) R-Squared (R²): 

 R², or the coefficient of determination, represents the proportion of variance in the 

target variable (fare amount) that is explained by the model. It is calculated as follows: 

𝑅2 = 1 −
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)2

∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦‾)2

 

Where 

a. 𝑦𝑖 is the actual fare, 

b. 𝑦̂𝑖 is the predicted fare, 

c. 𝑦‾ is the mean of the actual fare, 

d. n is the number of observations. 

 R² was chosen to complement the MAE and RMSE metrics because it gives the overall 

fitness of the model. In this instance, for dynamic pricing, the high value of R² will mean that 

the model is therefore able to capture the variating factors such as time, distance, and demand 

pattern. 

 The larger the R², the more the model captures and explains the underlying trends in 

fare changes. This aligns with the goal of research of creating a dynamic pricing model that 

accurately reflects real-time conditions. 

 Together, MAE, RMSE, and R² were a good balance of metrics that worked well 

together. The MAE and RMSE were focused on prediction accuracy, with the RMSE providing 
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an indication of larger errors that the model produced. Meanwhile, R² served to confirm that 

the model captured the primary drivers of fare variability. This provided the guarantee that the 

selected model was not only accurate but also aligned with the practical requirements of 

dynamic pricing. 

 

3.1.6 Deployment 

 In this deployment phase, the primary objective was to determine the ability of the 

model in adaptability and efficiency in the prediction of fares, using simulated real-world 

dynamic pricing for ride-on-demand services. This phase did not involve a live production 

deployment; instead, it relied on hypothetical but realistic scenarios to investigate how 

well it was able to capture the variations in fare predictions according to different ride 

conditions. 

 To ensure accurate testing, different scenarios for testing were developed based on 

changing the attributes of the ride - time of day, day of the week, month, number of passengers, 

and distance. Each scenario was carefully designed to reflect typical factors affecting fare 

amounts, such as peak or off-peak hours and seasonal trends. For example, one scenario 

involved predicting the fare at 10:55 pm on a Tuesday in July for a 10-kilometer ride with five 

passengers. 

i) Data transformation for scenario testing: 

 A transformation function was created so that the real-life case data could fit what was 

expected by the model at the time of making a prediction. This function accepted raw attributes 

from each scenario (including ride distance, hour, weekday, month, and passenger count) and 

transformed them according to the steps followed during the pre-processing of the training of 

the model. 

ii) Input array construction and model prediction: 

 Once the above transformations were applied, these variables were then combined in a 

structured array format to match the expected input of the model. The array included the scaled 

distance, the passenger count, the sine and cosine transformations of hour and weekday, and 

the twelve one-hot encoded month features. This final input array was then used to generate a 

fare prediction from the trained model. 

iii) Model evaluation and analysis of predictions: 

 The predicted fare was then compared to expected patterns for the given scenario. The 

analysis was based on how well the model could dynamically react to major pricing drivers, 

such as temporal variations (e.g., peak vs. off-peak pricing), seasonal variations (e.g., possible 

fare increases in months of high demand), and distance sensitivity. This gave insight into the 

robustness and effectiveness of the model in reacting under real-world conditions. 

 The multi-scenario testing gave a broad view of how the model would perform under 

dynamic pricing conditions. This is a very critical phase, as it showed how well the model 

could react to different conditions—a very good assessment of its performance and dynamic 

price capability before any real deployment. 

 The following section presents the results and discussions, where in-depth detail on the 

findings acquired during exploratory data analysis and model performance evaluation is given. 

This chapter discusses how the results obtained by the exploratory data analysis and model 
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performance evaluation answer the research questions. In addition, it provides insight into 

dynamic pricing mechanisms and how effective the models are. 

 

4 Results and Findings 
 

 The findings presented in the following chapter represent the major results of the 

research, including exploratory data analysis and model performance evaluation. Furthermore, 

this section will elaborate on how the findings address the research question and objectives, 

pointing out positive and negative findings. Moreover, it highlights findings in terms of the 

existing literature to compare these with the existing study. 

4.1 Key insights from exploratory data analysis (EDA) 

 Important insight into the variable-variable relationship was obtained in the exploratory 

data analysis phase and hence the basis for the development of robust dynamic pricing models. 

The following key patterns and trends were identified: 

4.1.1 Fare trends and ride volume by hour analysis 

 The trend of fare throughout the day follows quite distinct patterns related to the supply 

and demand variability throughout the day. Figure 4.1 clearly illustrates that the average fare 

ranges very much throughout each hour of the day. 

 
Figure 4.1: Average fare amount by hour of the day. 

• We can see the trend of higher fares between 12 AM and 2 AM, where the average fare 

went up to approximately $14.98 at midnight. Of course, that would be seen with fewer 

driver availability, resulting in surge pricing to incentivise drivers. 

• Morning fares increase moderately from 9 AM onwards up to 10 AM because of 

commuting demand. However, the predictable demand and enough drivers mean that the 

fare spikes are less dramatic compared to late night. 

• Fares during evening commutes, 5 PM to 7 PM, do not change much and show a moderate 

increase similar to morning fares, as there is a good balance of supply and demand, which 

prevents any spike in fairs. 

 The number of rides varies throughout the day, influenced by daily habits and travelling 

needs. Looking at these patterns in Figure 4.2 we can see how the number of rides and fares 

are influenced by driver availability and demand. 
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Figure 4.2: Number of rides by hour of the day. 

• The number of rides between 2 pm and 4 pm are high. Though this is not the peak time of 

day,  it can be driven mostly by activities such as business trips, shopping, and personal 

errands. Since the supply of drivers is balanced with the demand for rides, high volumes 

do not force the fares up. 

• Low volumes of rides are seen in the late-night hours from 12 AM to 2 AM, but with much 

higher fares, indicating a high supply-demand imbalance in such hours. 

 These findings further indicate that dynamic pricing for ride-hailing services is more 

about the supply of drivers rather than the increase in demand. Increased fares during late 

nights, when volumes of rides are low, actually establish the fact that shortages in supply could 

be a stronger driver of increased fares compared to demand itself. On the other hand, peak-

hour pricing shows efficient demand and supply balance, with less severe dynamic pricing due 

to better resource allocation. 

 The much smaller fare variation between peak and off-peak periods would suggest that 

dynamic pricing applies mostly when a supply-demand mismatch is obviously large, which is 

during the late-night off-peak periods. In other words, compared to fluctuations in demand 

alone, the dynamic pricing systems normally would be much more sensitive with respect to 

fluctuations in driver availability. 

4.1.2 Weekly fare trends and ride volume analysis 

 The analysis of fare trends throughout the week also highlights some variation in prices, 

which is depicted in Figure 4.3 below. 

 
Figure 4.3: Average fare amount by weekday. 

• The Saturdays have the highest average fare, at $12.44, driven by increased weekend travel 

and fewer drivers, which results in surge pricing to equilibrate the demand-supply gap. 
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• The lowest fare days are Fridays, surprisingly, at $11.53, because of a higher driver supply 

anticipating weekend demand and with ride requests more uniformly distributed. 

• Midweek, it increases slightly to $12.08 on Wednesdays and to $12.01 on Thursdays, due 

to greater business travel and commutes. 

• On Sundays, it is also comparatively high at $12.00, reflecting leisure travel and lower 

driver supply. 

 The pattern of ride volume by weekday indicates that demand is far greater on the 

weekdays because of commuting and business travel demands. 

 
Figure 4.4: Average number of rides by weekday. 

• Thursdays have the maximum rides-28,705-which indicates the trend in the middle of the 

week. During weekends, however, rides decreased considerably, having a minimum of 

19,128 on Saturdays and 21,855 rides on Sundays because of the shift to leisure from home-

to-work travels. 

 These results further support the hypothesis of the weekday analysis: dynamic pricing 

in ride-on-demand service is more supply-side constrained than driven by a simple variation in 

demand. Although demand clearly drives the price of fares, data shows large increases in fares 

are much more likely to happen when there's a shortage of drivers, an observation given 

particular notice on weekends. In this regard, driver availability acts as one crucial determinant 

of price stability. 

4.1.3 Influence of ride distance and passenger count on fare 

 Ride distance is a key feature of pricing models in ride on demand service. Figure 4.5 

shows how ride prices depend on ride distance. 

 
Figure 4.5: Scatter plot of distance of ride vs fare amount of ride. 



 

29 
 

 

• A correlation coefficient of 0.89 implies a strong positive relationship between the ride 

distance and the fare amount, where with distance travelled, the amount of fare increases 

directly. 

 
Figure 4.6: Correlation coefficient between ride_distance and fare_amount. 

• This trend is visually confirmed by the scatter plot in Figure 4.5, with longer rides distinctly 

yielding higher fares. Such would make sense in standard pricing models, where distance 

is a major factor 

 The analysis demonstrates that the number of passengers exerts a nearly negligible 

influence on fare prices, as illustrated in Figure 4.7. 

 
Figure 4.7: Scatter plot of passenger count vs fare amount. 

• The relationship between the number of passengers and the fare amount is only 

0.0136, suggesting almost no relation among the variables. This is further supported by the 

scatter plot that shows no clear pattern between the variables. 

 
Figure 4.8: Correlation coefficient between passenger_count and fare_amount. 

• The ride-on-demand services do not charge per head but according to distance travelled 

and time of day. 

• This makes sense because operationally, more passengers do not cost the drivers much, nor 

does it cost much to the service. 

 These findings are in line with typical mechanisms of pricing in ride on demand 

services, whereby ride distance is a critical determinant of fare pricing, whereas passenger 

count is pretty irrelevant. The high correlation of distance to fare shows how well ride-hailing 

platforms optimize pricing for the effort and cost involved in longer trips. 

4.1.4 Average fare by hour for different distance categories 

 This analysis of fare variation at different times of the day, grouped by ride distance, 

serves as a basis for studying how ride distance and temporal factors jointly determine fare 

prices. As expected, this has shown clear trends in the adaptive pricing strategies of the ride-

hailing platforms. Table shown in figure 4.10 summarizes the average fares by hour of day 
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across the different classes of distance, giving a quantitative perspective to the trends shown in 

figure 4.9. 

 
Figure 4.9: Average fare by hour for different distance categories. 

 
Figure 4.10: Table of average fare by hour for different distance categories (km) 

• Short journeys (0-2 km) have constant prices throughout the day, ranging from $5.41 at 1 

AM to $6.37 at 4 AM. The rate increases because there are fewer drivers in the early 

morning. 

• Medium-distance rides show moderate fare variation, such as rides that are 2-5 km varies 

from $8.20 at 1 AM to $9.42 at 3 AM, while 5-10 km cruises vary from $14.60 at 2 AM to 

$16.13 at 4 AM. It shows marked growth during the early morning hours, such as from 3 

to 5 AM due to scarcity and stabilization in the daytime, from 6 AM to 7 PM. 

• Long-distance rides, both 10-20 km and over 20 km, have the most significant growth in 

fares during this time of the day. Fares for 10-20 km-long rides increase from $25.67 at 

midnight to $29.29 at 4 AM, while trips over 20 km are over $50, peaking at $52.13 at 3 

AM, reflecting increased operating costs and fewer drivers on the road. 

 Analysis also reveals that in all ranges, the fares tend to stabilize during the day-that is, 

between 6 AM and 7 PM-at which the fare structure balances driver supply against passenger 

demand and prevents sudden increases in fares. However, the fares for the above 20 km travel 

range always maintain their high value, reflecting the basic costs involved in longer travel. 

4.1.5 Average fare by weekday for different distance categories 

 The fare trend analysis against different days of the week conveys important 

information with respect to ride distance on how dynamic pricing works at different lengths of 

the ride. The results, visualized in figure 4.11, and summarized in figure 4.12 in tabular form 

show how ride distance influences fares and whether the variations on a daily basis will bring 

significant changes in pricing. 
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Figure 4.11: Average fare by weekday for different distance categories (km) 

 
Figure 4.12: Table of average fare by weekday for different distance categories (km) 

• Short rides are 0-2 km and throughout the week have fairly constant pricing, ranging from 

$6.18 on Sunday to a high of $6.43 on Tuesday, illustrated in Figure 4.12. This is because 

demand for short rides is relatively stable and driver supply is ample, so prices remain low 

across all days. 

• Medium-distance rides, between 2 to 5 km and 5 to 10 km also display consistent prices. 

The fares for rides between 2-5 km range from $8.98 on Sunday to a high of $9.45 on 

Tuesday. Rides from 5 to 10 km are similarly ranged from $15.58 to $15.88 during this 

timeframe. Figure 4.11 shows these consistent trends likely from predictable commutes. 

• The long-distance rides are a bit more varied: 10-20 km and 20+ km. For 10-20 km trips, 

Sunday fares begin at $28.50 and increase on Tuesday to $28.78. Rides of 20+ km peak on 

Tuesday to $51.05 from $49.64 on Sunday. This small variation perhaps might reflect 

shifting demand or supply on particular days for longer trips. 

 Results highlight how the length of a ride is the main basis of calculating fares, with 

very minimal influences of variability related to weekdays. Such stability suggests that 

dynamic pricing schemes have been more sensitive to other factors, such as time of the day or 

length of a ride, rather than to daily shifts in passenger demand. 

 

4.2 Evaluation of machine learning models 

 The machine learning models were evaluated in terms of the overall performance by 

three major metrics: Mean Absolute Error, Root Mean Squared Error, and R². These metrics 

provide insights regarding model accuracy, robustness, and explanatory power and therefore 

enable an in-depth assessment of models regarding their suitability for dynamic pricing. Every 

metric represents another predictive performance aspect; therefore, it allows more options to 

compare the comprehensive performances of different models. 

4.2.1 Based on mean absolute error (MAE) 

 The MAE has been used to evaluate the models because it calculates the average 

difference between the predicted and actual fares. Thus, low MAE values mean higher 
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accuracy, which is very important in fulfilling the goal of this research-reliable dynamic 

pricing. 

 
Figure 4.13: Comparison of machine learning models based on MAE 

 Gradient Boosting had a minimum MAE of 0.2550, hence is most accurate in predicting 

fares. This probably has an iterative refinement process that can best capture non-linear 

relationships within, making it most suitable for dynamic pricing. 

 MAE of the MLP was 0.2586, which is slightly higher than the gradient boosting. 

Although extremely powerful in modelling complex patterns, this performance suggests that it 

does not generalize as well as Gradient Boosting, partly because of its higher sensitivity to 

hyperparameter tuning. 

 The best MAE for the Random Forest was 0.2730, reflecting the poorest accuracy of 

all models. While very robust at handling nonlinearities, without the capability to refine 

residual errors, it can't be as effective in capturing dynamic relationships. 

 Linear Regression had an MAE of 0.2628 and, therefore, outperformed Random Forest. 

It has a linearity assumption that restricts capturing the higher-order nonlinear interactions of 

variables; hence, the model is of minimum suitability in dynamic pricing. 

 Gradient Boosting outperformed all other models in the lowest MAE to manifest its 

capability in modelling effective dynamic fare adjustments. MLP and Linear Regression came 

in as competitive but less accurate, while Random Forest underlined the limitation of ensemble 

models without sequential refinement on dynamic pricing tasks. 

4.2.2 Based on root mean square error (RMSE) 

 RMSE is the metric that represents the average magnitude of the prediction errors, but 

it puts greater emphasis on the bigger errors due to the squaring of the residuals. The smaller 

the value of RMSE is, the higher the capability of the model in reducing large deviations in 

prediction. It is thus an important metric in testing the robustness of fare predictions. 

 
Figure 4.14: Comparison of machine learning models based on RMSE 
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 The Gradient Boosting algorithm performed very well with an RMSE of 0.4411, 

showing how capable it is in keeping huge prediction errors at their lowest. It works iteratively 

to refine residuals and hence is very reliable for dynamic pricing tasks with huge fare changes. 

 MLP yielded an RMSE of 0.4518, relatively higher than that of Gradient Boosting. 

While it models nonlinear relationships quite well, the higher RMSE suggests it sometimes has 

more significant deviations, a likely consequence of its non-iterative settings. 

 Linear Regression gave an RMSE of 0.4539, indicating moderate performance. It 

represents the general trend well but cannot handle nonlinear interaction and hence can be 

prone to larger errors in dynamic conditions. 

 The random forest gave the highest RMSE-0.4639, showing lower effectiveness in 

minimizing big errors. Averaging across trees smooths the predictions but at a cost, limiting 

the ability to handle outliers or extreme values common in dynamic pricing. 

 Gradient Boosting had the lowest RMSE, reflecting that it provides more accurate and 

robust fare predictions. The moderate performance was by MLP and Linear Regression, while 

Random Forest had the largest errors. That also points to the necessity of using advanced 

ensemble approaches, such as Gradient Boosting, which helps to minimize high-value 

deviations in the predictions. 

4.2.3 Based on R2 score 

 The R² score, or coefficient of determination, gives a measure of the variability of the 

target variable explained by the model. The best performance is represented by a value of R² 

close to 1, where it means that the model can explain, with good approximation, the underlying 

pattern of data. 

 
Figure 4.15: Comparison of machine learning models based on R2 

 Among the different models, Gradient Boosting yielded the highest R² of 0.8036, 

indicating that it explains more than 80% of the variance in fare predictions. This points out an 

extraordinary capability in the modelling of complex and dynamic relations in the current 

dataset; hence, the best model for dynamic pricing. 

 The R² score of the MLP was 0.7940, hence strong performance in explaining the 

variability. Being able to handle nonlinear relationships makes it very apt at modeling complex 

trends in the data, for example, those arising from the temporal and distance-based effects. 

Still, with this excellent performance, Gradient Boosting outperformed MLP, due to the simple 

reason that the former handles residual errors in a much more sequential way. 

 Linear Regression is next at 0.7921 to explain most of the variance. This clearly 

indicates that it does well in the general capturing of trends, such as the linear relationship 

between the distance and fare. Its inability to capture nonlinear interactions, such as time-based 

demand fluctuations interacting with each other, makes it less effective for dynamic pricing. 
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 The lowest R² score obtained by the Random Forest model is 0.7828, indicating a 

limited explanatory capability compared to the other models. While it captures non-linear 

interactions well, averaging the effects over many trees can sometimes result in a loss of ability 

to model finely detailed variation in highly variable data like temporal impacts. Such failure to 

model detailed variance is probably one of the reasons for the lower R² score. 

 Gradient Boosting had the highest R², which explained the variance in fares very 

clearly. Next were MLP and Linear Regression: MLP because of its non-linear pattern grasping 

capability, and Linear Regression because of the representation of the overall trend. Random 

Forest came last, probably because it failed to capture the detailed variability required for 

dynamic pricing. From these observations, it follows that any effort dealing with dynamic and 

complex data has to be iteratively refined and nonlinear in nature. 

 Among them, Gradient Boosting has proved to be the most accurate and reliable model. 

It outperformed all other models in every metric: MAE, RMSE, and R². A 10-fold Grid Search 

Cross-Validation was done to optimize this model further by tuning its hyperparameters like 

the number of estimators, maximum depth, and learning rate. In this way, a very robust model 

was obtained, suitable for dynamic pricing. 

4.3 Results of hyperparameter tuning for gradient boosting regressor 

 Optimizing the hyperparameters of the Gradient Boosting Regressor was done using 

grid search supported by 10-fold cross-validation. Indeed, this made the model perform better 

for all metrics with the optimal parameters of learning rate = 0.1, max depth = 5, and 

n_estimators = 100. 

 
Figure 4.16: Heatmap of negative MAE for Gradient Boosting hyperparameter tuning. 

 The performance on the optimized model gave a MAE of 0.2544, a RMSE of 0.4408, 

and an R² score of 0.8039 which showed good accuracy and robustness. These results really 

underline that hyperparameter tuning was effective in further improving the performance of 

dynamic pricing tasks of the model. 

 A Mean Absolute Error of 0.2544 means that the model's fare predictions, on average, 

deviate about $0.25 per ride, which is very negligible and acceptable in most business 

scenarios. That would guarantee pricing accuracy which balances customer satisfaction and 

revenue optimization. 
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4.4 Simulated deployment and testing results of model on real-world 

scenarios 

 The following different types of analyses (table 4.1) were run, related to the efficiency 

of a dynamic pricing model for scenarios developed to answer the research question: How does 

dynamic pricing respond to variations in ride parameters, time factors, and exogenous factors 

such as seasonality or driver supply? All of these scenarios were developed with due care in 

order to shed sufficient light on how the model performs under realistic and variable conditions. 

Table 4.1: Fare Predictions Across Simulated Real-World Scenarios. 

Scenario Scenario A Predicted Fare (A) Scenario B Predicted Fare (B) 

1. Same Ride with 

Different Passengers 

Monday, 8:00 AM, 

10 km, 1 passenger 

$26.79 Monday, 8:00 AM, 

10 km, 4 passengers 

$27.15 

2. Off-Peak vs. Peak 

for the Same Ride 

Monday, 10:00 AM, 

5 km, 2 passengers 

$12.20 Monday, 6:00 PM, 5 

km, 2 passengers 

$11.04 

3. Weekday vs. 

Weekend Morning 

Thursday, 8:00 AM, 

10 km, 3 passengers 

$27.25 Saturday, 8:00 AM, 

10 km, 3 passengers 

$23.64 

4. Weekday vs. 

Weekend Late Night 

Thursday, 11:00 PM, 

10 km, 3 passengers 

$20.30 Saturday, 11:00 PM, 

10 km, 3 passengers 

$19.96 

5. Seasonal Pricing April, 10:00 AM, 7.5 

km, 1 passenger 

$17.69 December, 10:00 

AM, 7.5 km, 1 

passenger 

$18.36 

6. Supply-Driven 

Pricing 

Saturday, 1:00 AM, 

15 km, 3 passengers 

$29.94 Saturday, 3:00 AM, 

15 km, 3 passengers 

$30.98 

4.4.1 Same ride with different passengers 

• Scenario A: A ride with 1 passenger (Monday, 8:00 AM, 10 km) resulted in a predicted 

fare of $26.79. 

• Scenario B: Keeping all other parameters constant and increasing the passenger count to 4 

increased the fare to $27.15. 

 The minimal price increase would then suggest that the model does not give much 

weight to the number of passengers in determining the fares. This agrees with the industrial 

facts, as additional passengers are not always increasing the fare unless it reaches the limit 

capacity. The slight difference may, however, incorporate small operational costs such as 

vehicle wear or comfort adjustments. 

4.4.2 Off-peak vs. peak for the same ride 

• Scenario A: A ride during off-peak hours (Monday, 10:00 AM, 5 km, 2 passengers) costs 

$12.20. 

• Scenario B: At peak evening hours-6:00 PM on Monday, with the same parameters, the 

fare was slightly lower at $11.04. 

 The fare went down during peak hours, contrary to surprise. This unexpected outcome 

of a normally quite predictable trend might indicate either that the model fails to capture a rise 

in demand typical for peak hours, or it overcompensates for drivers' availability or efficiency 

of routes at peak hours. 

4.4.3 Weekday vs. weekend morning 
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• Scenario A: A ride that occurred on Thursday morning at 8:00 AM, 10 km long and with 

3 passengers, cost $27.25. 

• Scenario B: A similar ride on the weekend, for the same time and settings, cost a little 

cheaper, priced at $23.64. 

 The fare reduction on weekends corresponds to a drop in demand for commuting rides 

on non-working days. This is a suggestion that the model is appropriately incorporating 

weekday versus weekend effects. It raises, however, questions of whether the model might be 

undervaluing weekend demand for leisure or recreational trips through such a significant 

differential pricing. 

4.4.4 Weekday vs. weekend late night 

• Scenario A: For a weekday late-night ride, Thursday at 11:00 PM, traveling 10 km with 3 

passengers, the fare was $20.30. 

• Scenario B: During the weekend on Saturday, given the same timing and parameters, the 

price dropped slightly to $19.96. 

 The price structure for late-night hours showed minimal differences between weekdays 

and weekends. This might indicate that the model is not fully capturing the increased demand 

related to nightlife travel on weekends. Also, the persistence of this fare level might indicate 

homogenous late-night pricing without accounting for changes in demand or constraints in 

supply, particularly over weekends. 

4.4.5 Seasonal pricing 

• Scenario A: A spring ride in April, 10:00 AM, 7.5 km distance, with 1 passenger was 

$17.69. 

• Scenario B: The same ride in the holiday season-that is, in December under the same 

parameter-was priced slightly higher at $18.36. 

 This model fits really well to describe the small price increase around the holidays, 

presumably due to anticipated demand. The difference is such a small one that it raises 

questions as to whether or not this model accounts for large increases in demand, seen more 

normally over holidays. 

4.4.6 Supply-driven pricing 

• Scenario A: A late-night ride with moderate driver availability costs $29.94 for a Saturday 

at 1:00 AM for 15 km with 3 passengers. 

• Scenario B: Further shortening of driver supply (Saturday, at 3:00 AM, with the same 

parameters) gave a more-than-regular price increase: $30.98. 

 It reflects the supply constraint through the surge in fare, but that marginal increase is 

rather minute, reflecting cautious adjustment, and may not capture the urgency/willingness to 

pay when there is a severe driver shortage. 

4.5 General observations and critical insights 

 The model is sensitive to the parameters of passenger count, day of the week, and 

seasonality. Yet it makes rather conservative adjustments and thus cannot be sufficiently 

responsive in case of a sharp supply-demand imbalance. Price cuts during peak hours and late 

nights at weekends reflect the inadequacy of accounting for temporal surges of demand either 

for the lack of peak hour training data or over-compensation of driver supply. Moreover, minor 
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fare variations associated with differing passenger numbers suggest a diminished emphasis on 

this parameter, which is consistent with industry standards; however, this may neglect instances 

where the presence of extra passengers substantially impacts expenses or capacity. 

 Results have shown both strengths and weaknesses concerning the model's dynamic 

fare adaptation capabilities: it integrates some demand-related factors quite well, like 

differentiating between weekdays and weekends or capturing the seasonality of demand but 

does poorly on other factors like peak-hour demands or nightlife on weekends. These results 

underline further refinements that the model needs, especially in terms of capturing demand 

spikes and optimizing fare adjustments for real-world conditions. 

4.6 Comparative analysis with literature 

 This study presents the results that are consistent with the existing literature on dynamic 

pricing in ride-on-demand services and extends it. A detailed comparison is as follows: 

4.6.1 Dynamic pricing models 

 Guo et al. (2017) have stressed real-time information on dynamic pricing, considering 

location and temporal variables as critical variables. Likewise, the present study has established 

that peak and off-peak temporal variations create great impacts that bring about variation in 

fares; this therefore justifies their argument that dynamic pricing is multivariate and has to 

change in real time if it is to perform optimally. 

 Sun et al. (2020) added external factors such as traffic and environmental data in order 

to further refine the dynamic pricing models. While this study did not involve any traffic or 

environmental conditions variable, it also showed a strong dependence of fare on the distance, 

an essential parameter to improve dynamic pricing. 

4.6.2 Machine learning applications in dynamic pricing 

 Guo et al. (2018) have shown that neural networks are efficient for dynamic pricing 

predictions with remarkable precision using multi-source data from cities. Although this study 

found the most powerful model was Gradient Boosting Regressor, results support their 

conclusion that advanced machine learning methods can handle such complex and high-

dimensionality data to reach superior performance. 

 Nalamothu (2023) compared several machine learning models and obtained the best 

performance from Random Forest among KNN and SVM. Although this study determined 

Gradient Boosting Regressor to be the best model, both these works highlight the model 

selection strategy to be adapted depending on the problem at hand and data complexity. 

4.6.3 Insights on temporal and spatial dynamics 

 The study by Luo et al. (2017) established how dynamic pricing can reduce waiting 

times and hence improve service efficiency. This study further supports the previous 

conclusions on surcharges during peak hours and pricing based on distance, in the sense that 

these approaches guarantee the optimality of resource allocation with customer satisfaction 

4.7 Limitations and implications 

 This section highlights the key limitations that arose during the study and their broader 

implications for further research and practical application in dynamic pricing of ride-on-

demand services. 
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4.7.1 Limitations 

 The dataset used in this study ranges from 2009 to 2015; as such, there is a limitation 

in the data itself. Information on recent trends and developments within ride-on-demand 

services is not given, such as real-time incorporation of traffic, shifting consumer behaviors, 

and updated regulations, which are highly important for dynamic pricing today. 

 Also, the distance here is calculated using the Manhattan formula based on grid-like 

city layouts and doesn't consider real roads, which can blur the exact prediction of fares for 

those cities where road structures are disorganized. Besides, real factors such as live driver 

availability, traffic disruptions, or disturbances in weather conditions are not included in this 

dataset and hence shrink the scope of analysis. 

4.7.2 Implications 

 Despite these limitations, these findings set a very strong foundation upon which 

dynamic pricing models can be built. The results underline the high importance of the temporal 

and spatial variables, hence laying a foundation for incorporation into further studies of even 

more advanced features, real-time traffic data, and environmental factors. Applying this 

knowledge with real-time and full-scope datasets could extend the scope of pricing models and 

their robustness in order to arrive at more accurate fare predictions and closeness to the current 

market conditions. 

 The present study underlined certain limitations of traditional data and methods; 

therefore, it requires the development of new solutions such as hybrid models or simulations 

able to represent reality in all its complexity. This would also contribute to enhancing dynamic 

pricing strategies toward an optimum balance between profitability and customer satisfaction. 

 The findings are critically evaluated in the next chapter related to the research 

objectives and the existing literature. Furthermore, this chapter covers discussion related to the 

limitation of the study, practical implications, and future directions for research. 

 

5 Discussions 
 

 This study was focused on the application of machine learning in enhancing the pricing 

strategy of ride-on-demand services. Results have underlined important insights into fare 

determination strategies and showed some areas in which the methodologies of this study could 

be improved. This section evaluates the results of this work, discusses implications, and  relate 

it to previous research and literature. Finally, discussion of limitations in the present study is 

given, together with opportunities for further research. 

5.1 Evaluation of Results and Model Performance 

 The testing of various machine learning models provided enormous insight into how 

each of them performs in dynamic pricing, hence showing the accuracy and robustness of each. 

The best performance was from the Gradient Boosting Regressor, with the lowest MAE of 

0.2550, lowest RMSE of 0.4411, and highest R² score of 0.8036. These findings are thus in 

tune with various earlier studies such as El Youbi et al. (2023), that identified the Gradient 

Boosting to be more robust at uncovering nonlinear associations in dynamic environments such 

as e-commerce. The present study extends these insights to the ride-on-demand environment 
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and thus shows the adaptability of the model to different variables such as ride distance and 

peak-hour demand. 

 The performance of the MLP was also quite impressive: an MAE of 0.2586, an RMSE 

of 0.4518, and an R² score of 0.7940. This result supports the observations of Guo et al. (2018), 

where the efficiency of neural networks in high-dimensionality data was presented. However, 

probably the reason for the relatively lower performance compared with Gradient Boosting is 

the non-iterative refinement nature of MLP. 

 Linear Regression was a decent baseline model  with MAE, RMSE, and R² scores of 

0.2628, 0.4539, and 0.7921, respectively. It had modelled the linear trend in data-for example, 

the proportionality between the ride distance and its fare-which was observed by Arora et al. 

(2021). It could not model the complex relationships-for example, temporal demand-supply 

fluctuation-which was expected from any model designed for dynamic pricing. 

 The poorest performance was represented by Random Forest, which had the value of 

0.2730 MAE, 0.4639 RMSE, with a low R² score of 0.7828. Though very strong in the 

capturing of nonlinearities, lacking this sequential refinement, as identified by Nalamothu 

(2023), it is poorly positioned to handle dynamic patterns, especially those where temporal 

variations might play a key role. 

 The results highlight the importance of the iterative refinement mechanism intrinsic to 

Gradient Boosting in achieving accurate fare estimates. This ability to iteratively reduce 

residual errors makes the model particularly suited to dynamic pricing problems with rapidly 

shifting demand and supply conditions. Although hyperparameter tuning increased the model's 

accuracy, much future work can be done by using more variables to deal with this constraint. 

5.2 Strengths of the Methodology 

 The use of the CRISP-DM framework gave a proper flow to this study by ensuring that 

iterations comprehensively prepared the data, modelling, and evaluation. The major strengths 

in the methodology are the rigorous processes involved in data preparation, including handling 

missing values and removing outliers, that are part of feature engineering. Similarly, the 

derivation of ride distance and cyclical encoding of temporal features ensure models effectively 

capture the recurring patterns in fare dynamics. These steps thereby laid a very strong 

foundation for predictive models to be developed. 

 Although these are the benefits, there were limitations in terms of geographical and 

temporal dimensions. The data was on essentially Uber historical trips in New York City from 

2009 to 2015, which might not reflect today's market or regional variations. Such limitations 

may be avoided in future studies through the use of a set of diversified datasets, which may 

add further depth in insight into dynamic pricing mechanisms. 

5.3 Limitations and Opportunities for Improvement 

 The models captured many features of dynamic pricing, certain limitations arose. 

Passenger number had little impact on fare predictions, as would be expected from industry 

practices that focus on the distance and time taken rather than the number of passengers carried. 

However, this limits the applicability of the model in ride-sharing situations, where the 

passenger number could indirectly influence pricing. Besides, exogenous variables such as 

traffic and weather data were not considered, which again restricts the capability of the model 
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to adapt to the real world. These could be included further in the models for better precision 

and applicability. 

 The results show that the model cannot support high supply-demand gaps and 

especially during high demand periods. Further improvements can be done on the model by 

expanding the dataset with more recent and diversified information and adding real-time 

features that could make the model respond promptly to such fluctuations. Further, as much as 

the Gradient Boosting Regressor performed well, studying hybrid approaches might further 

improve the prediction performance. 

5.4 Contribution to the Field and Future Directions 

 This research contributes to the literature the potential of machine learning in 

optimizing dynamic pricing strategies for ride-on-demand services. It also contributes to basic 

insights from a theoretical and practical point of view by focusing on the relevance of a set of 

variables and using state-of-the-art machine learning approaches. Nevertheless, observation of  

fare adjustments in some extreme cases and limitations of the dataset used in this research 

suggest further research is needed. 

 Future research should be directed more toward real-time data, inclusions of exogenous 

variables, geographical diversification of data, and studies related to the implementation of 

hybrid modelling techniques. This will surely enhance adaptability and robustness in dynamic 

pricing models for an optimum balance between profitability and customer satisfaction. 

 Hence, the current study demonstrated very clearly the feasibility of using machine 

learning methods in developing dynamic pricing models for ride-on-demand services. While 

the results provide a good starting point for improvements in pricing strategies, at the same 

time, they highlight areas for further refinement, particularly regarding real-time variations and 

addressing constraints due to the scope of data. 

 

6 Conclusion 
 

 In this research following research question was addressed: “How can optimized multi-

variable dynamic pricing strategies be developed using machine learning for the ride-on-

demand industry, where demand and supply fluctuate rapidly due to factors like time of day, 

ride distance, passenger count, and competition?” This research was based on historical ride 

data analysis for the identification of major features that influence dynamic pricing and 

developing predictive models. The research followed the CRISP-DM approach, involving data 

preparation and feature engineering, comparing machine learning models. Among them all, 

Gradient Boosting Regressor worked out to be the best one that returned an MAE of 0.2550 

with a good R² value of 0.8036. The key takeaways include the fact that ride distance remains 

the paramount determinant, the negligible role played by the number of passengers, and time 

variations with surcharging at late-night hours. Such results expose the potential of machine 

learning in developing more advanced pricing methodologies and give useful suggestions to 

ride-on-demand industry. 

 While the research was efficient in achieving its objectives, certain limitations remain 

that could be the start for further investigation. The dataset, which falls within historic Uber 
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rides in New York City, prohibits generalization to different locations or today's current market 

position. Further research should incorporate current traffic and other weather conditions into 

the model for improved adaptability and accuracy in predictions. Also, enhancing the models 

to handle demand spikes at peak times and exploring hybrid approaches might significantly 

improve their performance. The economics implications for this study are also significant; this 

could give a great opportunity for ride-on-demand companies to consider adaptive price 

strategies which will maximize profitability without sacrificing customer satisfaction. Such 

strategies may create scope for the development of much more efficient and responsive 

dynamic pricing systems and enhance competitiveness within the industry. 

 

References 
 

Arora, K., Kaur, S., and Sharma, V., 2020. Prediction of Dynamic Price of Ride-On-Demand 

Services using Linear Regression. International Journal of Computer Applications and 

Information Technology, 13(1), pp.376-389. 

 

Ashlagi, I., et al. (2018). Pricing in ride-hailing services: Matching and dispatch optimization. 

Uber Research. 

 

Banerjee, S., Riquelme, C. and Johari, R. (2015) ‘Pricing in Ride-Share Platforms: A 

Queueing-Theoretic Approach’, SSRN Electronic Journal [Preprint]. Available at: 

https://doi.org/10.2139/ssrn.2568258. 

 

Battifarano, M. and Qian, Z. (2019) 'Predicting real-time surge pricing of ride-sourcing 

companies', Transportation Research Part C, 107, pp. 444–462. Available at: 

https://doi.org/10.1016/j.trc.2019.08.019. 

 

Chen, M.K. and Sheldon, M. (2015) ‘Dynamic Pricing in a Labor Market: surge Pricing and 

Flexible Work on the Uber Platform’, UCLA Anderson School of Management and University 

of Chicago. Available at: 

https://www.anderson.ucla.edu/faculty_pages/keith.chen/papers/uberpricing.pdf 

 

Chai, T. and Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error 

(MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model 

Development, 7(3), pp.1247-1250. Available at: https://doi.org/10.5194/gmd-7-1247-2014. 

 

Chen, X., Zheng, H., Ke, J., and Yang, H., 2020. Dynamic optimization strategies for on-

demand ride services platform: Surge pricing, commission rate, and incentives. Transportation 

Research Part B: Methodological, 138, pp.23-45. Available at: 

https://doi.org/10.1016/j.trb.2020.05.006. 

 

Chicco, D., Warrens, M.J., and Jurman, G., 2021. The coefficient of determination R-squared 

is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis 

evaluation. PeerJ Computer Science, 7, e623. Available at: https://doi.org/10.7717/peerj-

cs.623. 

 

El Youbi, R., Messaoudi, F. and Loukili, M. (2023) 'Machine Learning-driven Dynamic 

Pricing Strategies in E-Commerce', 14th International Conference on Information and 

https://doi.org/10.2139/ssrn.2568258
https://doi.org/10.1016/j.trc.2019.08.019
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.trb.2020.05.006
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.7717/peerj-cs.623


 

42 
 

 

Communication Systems (ICICS). IEEE, pp. 1–10. Available at: 

https://doi.org/10.1109/ICICS60529.2023.10330541. 

 

Faghih, S., Shah, A., Wang, Z., Safikhani, A., and Kamga, C., 2020. Taxi and Mobility: 

Modeling Taxi Demand Using ARMA and Linear Regression. Procedia Computer Science, 

177, pp.186-195. Available at: https://doi.org/10.1016/j.procs.2020.10.027. 

 

Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge Discovery and Data 

Mining: Towards a Unifying Framework. Proceedings of the Second International Conference 

on Knowledge Discovery and Data Mining. 

 

GeeksforGeeks. (2023). ML - Linear Regression. Retrieved from 

https://www.geeksforgeeks.org/ml-linear-regression/. 

 

Guo, S., Chen, C., Wang, J., Liu, Y., Xu, K., and Chiu, D.M., 2018. Dynamic Price Prediction 

in Ride-on- demand Service with Multi-source Urban Data. In: Proceedings of the 15th 

International Conference on Mobile and Ubiquitous Systems: Computing, Networking and 

Services (MobiQuitous '18). ACM, New York, NY, USA, pp.1-10. Available at: 

https://doi.org/10.1145/3286978.3286992. 

 

Guo, S., Liu, Y., Xu, K., and Chiu, D.M., 2017. Understanding Ride-on-demand Service: 

Demand and Dynamic Pricing. In: Proceedings of the First International Workshop on 

Pervasive Smart Living Spaces (PerLS). IEEE, pp.1-8. Available at: 

https://doi.org/10.1109/PerLS.2017.7946784. 

 

Hodson, T.O., 2022. Root-mean-square error (RMSE) or mean absolute error (MAE): when to 

use them or not. Geoscientific Model Development, 15(14), pp.5481-5487. Available at: 

https://doi.org/10.5194/gmd-15- 5481-2022. 

 

Luo, Q., and Saigal, R., 2017. Dynamic Pricing for On-Demand Ride-Sharing: A Continuous 

Approach. SSRN Electronic Journal. Available at: https://ssrn.com/abstract=3056498. 

 

McGuire, K. (2015) Hotel Pricing in a Social World. 1st edn Wiley. Available at: 

https://www.perlego.com/book/997049/hotel-pricing-in-a-social-world-driving-value-in-the-

digital- economy-pdf. 

 

Nalamothu, P.P., 2023. Comparative Analysis of Regression Models for Price Prediction of 

Ride-On- Demand Services. International Journal for Research in Applied Science & 

Engineering Technology (IJRASET), 11(V), pp.1687-1700. Available at: 

https://doi.org/10.22214/ijraset.2023.51770. 

 

Rathore, B. et al. (2024) ‘Predicting the price of taxicabs using Artificial Intelligence: A hybrid 

approach based on clustering and ordinal regression models’, Transportation Research Part E: 

Logistics and Transportation Review, 185, p. 103530. Available at: 

https://doi.org/10.1016/j.tre.2024.103530. 

 

Saadi, I., Wong, M., Farooq, B., Teller, J. and Cools, M. (2022) 'An investigation into machine 

learning approaches for forecasting spatio-temporal demand in ride-hailing services', 

Transportation Research Part C. Available at: https://arxiv.org/abs/1703.02433. 

 

https://doi.org/10.1145/3286978.3286992
https://doi.org/10.1109/PerLS.2017.7946784
https://ssrn.com/abstract=3056498
https://doi.org/10.22214/ijraset.2023.51770
https://doi.org/10.1016/j.tre.2024.103530


 

43 
 

 

Saltz, J., 2021. CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps. 

In: 2021 IEEE International Conference on Big Data (Big Data), 2021. IEEE, pp.2337-2344. 

Available at: https://doi.org/10.1109/BigData52589.2021.9671634. 

 

SAS Institute. (2008). SEMMA Methodology. Retrieved from [https://support.sas.com/]. 

 

Sun, Z., Xu, Q., and Shi, B., 2020. Dynamic Pricing of Ride-Hailing Platforms considering 

Service Quality and Supply Capacity under Demand Fluctuation. Complexity, 2020, Article 

ID 836434. Available at: https://doi.org/10.1155/2020/836434. 

 

Thorat, P., 2023. Mastering Gradient Boosting: A Machine Learning Guide. Available at: 

https://www.linkedin.com/pulse/mastering-gradient-boosting-machine-learning-guide-pratik-

thorat/. 

 

Towards Data Science, 2023. Multi-Layer Perceptrons. Available at: 

https://towardsdatascience.com/multi-layer-perceptrons-8d76972afa2b. 

 

Yamuna, G., Dhinakaran, P., Vijai, C., Kingsly, J., Raynukaazhakarsamy, R. and Devi, S.R. 

(2024) 'Machine Learning-Based Price Optimization for Dynamic Pricing on Online Retail', 

9th International Conference on Science Technology Engineering and Mathematics 

(ICONSTEM). IEEE. DOI: 10.1109/ICONSTEM60960.2024.10568763. 

 

Yan, C., Zhu, H., Korolko, N., & Woodard, D. (2020). Dynamic pricing and matching in ride-

hailing platforms. Naval Research Logistics, 67(8), 705-724. 

 

Willmott, C.J. and Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the 

root mean square error (RMSE) in assessing average model performance. Climate Research, 

30, pp.79-82. Available at: https://doi.org/10.3354/cr030079. 

https://doi.org/10.1109/BigData52589.2021.9671634
https://doi.org/10.1155/2020/836434
https://doi.org/10.3354/cr030079

