ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Harisankar
Student ID: x22247564

School of Computing
National College of Ireland

Supervisor. Jorge Basilio

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Harisankar
Student ID: x22247564
Programme: Msc Data Analytics Year: 2024-2025
Module: Research Project
Lecturer: Jorge Basilio
Submission Due
Date: 29-01-2025
Project Title: Enhancing image caption quality using an ensemble of deep

learning models
Word Count: 552 Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Harisankar

Date: 29-01-2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Harisankar
Student ID: x22247564

1 Overview

This configuration manual guides on running the project and testing the results of established
model for the research project “Enhancing image caption quality using an ensemble of Deep
Learning models”.

2 System requirements

2.1 Hardware Requirements

¢ RAM - 8GB or more

e Storage — 500 GB SDD or HDD with 50gb available space
e Processor — Intel i7 or AMD Ryzen7 or equivalent

e GPU - 4GB or more

2.2 Software requirements

Programming language — Python 3

IDE — Jupyter notebook, VS code or Google colab
Operating system — Windows 11, MacOS or Linux
Browser — Google chrome

3 Installed versions

Python 3.11.2
Numpy 1.26.0
Tqdm 4.64.1
Tensorflow 2.18.0
Keras 3.6.0

NItk 3.7
Matplotlib 3.7.0
Pillow 9.4.0

Ipip install numpy
Ipip install tgdm

Ipip install tensorflow
Ipip install keras

Ipip install nltk

Ipip install matplotlin
Ipip install pillow

The given pip commands can be used to install the packages required for the project.
The required libraries and its functionalities are imported in the beginning of the project.

import os # For handling files

import pickle # For storing numpy features/image feature

import numpy as np # For data manipulation

from tqdm.notebook import tqdm # For the UI howmuch data is processed till now, Goed for getting estimation of overall process

Tensorflow & keras moduls

from tensorflow.keras.applications.vggl6 import VGG16, preprocess_input

from tensorflow.keras.applications.resnet50 import ResNet5@

from tensorflow.keras.applications.xception import Xception

from tensorflow.keras.preprocessing.image import load_img, img_to_array

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences # For even out whole text representation of features, EX: some
from tensorflow.keras.models import Model # For change the configuration of model, restructure the model

from tensorflow.keras.utils import to_categorical, plot_model # For clear representation of whole model in terms of img, easy to
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout, add # For creating Layers

import tensorflow as tf

from keras.models import load_model

from nltk.translate.bleu_score import corpus_bleu

from nltk.translate.bleu_score import sentence_bleu

from nltk.translate.meteor_score import meteor_score

from PIL import Image

import matplotlib.pyplot as plt

import nltk

nltk.download(wordnet")

import warnings
warnings.filterwarnings('ignore")

4 Dataset

The dataset was downloaded from Kaggle using the link:
https://www.kaggle.com/datasets/adityajn105/flickr8k?resource=download

After downloading the dataset, which will be a zipped file, the zip is extracted to get an
Image folder which contains 8091 images. A caption.txt file is also available which contains
the captions corresponding to the image id/name. The unzipped file can be stored in the
working directory of code.

5 Preprocessing

The captions are loaded from captions.txt file. The captions are then mapped into a dictionary
along with its image id and captions.

Load the captions

with open('Dataset/captions.txt’, 'r') as file:
next(file)
captions_doc = file.read()

Create mapping of image to captions
mapping = dict()

process Llines
for line in tgqdm(captions_doc.split(‘n")):
Split Line by °,°
tokens = line.split(’,")
if len(tokens) < 2:
continue
img_id, caption = tokens[@], tokens[1:]
Remove extention from img_id
img_id.split(’.")[e]
caption List to string
* '.join(caption)
te List if needed
if img_id not in mapping:
mapping[img_id] = list()
Store the caption
mapping[img_id].append(caption)

100% [40456140456 [00-00<00:00, 493193 67its]

print{f"Length of mapping: ",len(mapping))

Length of mapping: 8091

https://www.kaggle.com/datasets/adityajn105/flickr8k?resource=download

The captions are then cleaned using clean_captions function where the special characters, and
extra spaces are removed. All the characters are changed to lower case and a token startseq
and endseq is added at the beginning and end of each caption.

Pre-process the captions
def clean_captions(text):
for key, captions in text.items():
for i in range(len(captions))

Take one caption at a time
caption = captions[i]
Pre-processing steps
Conver to Lowercase
caption = caption.lower()
Removing all the special characters
caption = caption.replace(’'["a-z]', ")
Replace multiple spaces with single space

caption = caption.replace('\s+', ' ')

Remove single character

caption = ' ".join([word for word in caption.split() if len{word)>1])
Adding start and end sequence

caption = 'startseq ' + caption + ' endseqg’

captions[i] = caption

Before pre-process text

print(“Before pre-process text: ", mapping[’1800268281_693b8schee’])

Pre-process of text

clean_captions(mapping)

After pre-process text

print("After pre-process text: ", mapping[1888262201 693b83chae’])

Before pre-process text: ['A child in a pink dress is climbing up a set of stairs in an entry way .°, 'A girl going into a woo
den building .', 'A little girl climbing into a wooden playhouse .', 'A little girl climbing the stairs to her playhouse .", 'A
little girl in a pink dress going into a wooden cabin .']

After pre-process text: ['startseq child in pink dress is climbing up set of stairs in an entry way endseq', 'startseq girl go

ing into wooden building endseq®, ‘startseq little girl climbing into wooden playhouse endseq’, "startseq little girl climbing
the stairs to her playhouse endseq’, 'startseq little girl in pink dress going into wooden cabin endseq’]

Tokenizer is used to represent the words as integers. The dataset is then split into 90 percent
for training and 10 percent for testing.

6 Model

Pre-trained models VGG16, ResNet50 and Xception are used for the model. The feature
extraction process which extracts the features in each images is time consuming and would
take 1-2 hours depending on the system. To save time for running the code, the extracted
features are stored as pickle file from all the three models. The extracted features in pickle
file can be used directly for using the features in all models respectively.

Extract features from image
vggl6_features = {}
directory = 'Dataset/Images’

for img_name in tqdm(os.listdir(directory)):
Load the img from file
img_path = directory + '/ + img_name
image = load_img(img_path, target_size = (224,224))
Convert img pixels to numpy array
image = img_to_array(image)
Reshape the data for model in order to extract the features
image = image.reshape(l, image.shape[©], image.shape[1], image.shape[2])
Pre-process image for vgglé
image = preprocess_input(image)
Extract features
vgglt feature = vgglb.predict(image, verbose=8)
img_id = img_name.split('.")[8]
Store feature
vggle features[img_id] = vggls_feature

Store features in pickle
pickle.dump(vggle_features, open(os.path.join('image_caption_generator_features_vggl6.pkl'), ‘wb'))

Load Features from Pickle
with open('image_caption_generator_features vgglé.pkl', 'rb') as file:
vggls features = pickle.load(file)

The CNN-LSTM model is trained for 8 epochs. Data_generator function is used to train the
model in batches of size 64. The trained model is saved as keras file, which can be used to
load the trained model to save the code running time.

Train the model

epochs = &

batch_size = 64

steps = len(train) // batch_size # After each step do the back prapogation and fetch the next data

for i in range(epochs):
Create data generator
vggl6_generator = data_generator(train, mapping, vgglé features, tokenizer, max_length, vocab size, batch_size)
Fit for one epoch
vggle_model.fit(vggl6d_generator, epochs=1, steps_per_epoch=steps, verbose=1)

113/113 ——————— 3525 3s/step - loss: 6.1813
113/113 — — 387s 3s/step - loss: 4.5889
113/113 ——————— 3925 3s/step - loss: 3.8176
113/113 ————————— 308s 4s/step - loss: 3.5861
113/113 ———————— 4165 4s/step - loss: 3.2919
113/113 ———————— 4455 4s/step - loss: 3.1251
113/113 ———————— 414s ds/step - loss: 2.9911
113/113 ————————— 483s 4s/step - loss: 2.8784

Save the model
vggl6_model.save(image_caption_generator VGG16_epochs8 new.keras')

Load the saved model

vggl6_model = load_model(’image_caption_generator VGGl6_epochs8 new.keras')
Verify the model by checking its summary

vggl6_model.summary ()

Using the pickle file and keras file saved for each model, these can be used for easiness when
rerunning the files.

7 Evaluation and Testing

The models are evaluated using BLEU scores and METEOR scores which are imported from
nltk library.

xceb:b3 = corbus:bleuiactual; xcebtiun:bredicted; weights:i9.4: 6.3; B:B,.é))
xcep_b4 = corpus_bleu(actual, xception_predicted, weights=(8.25, ©.25, 0.25, 8.25))

100% [10810 [25:28<00:00, 1.80sii]

: | # Calcualte BLEU score for VGG16
print(“BLEU-1 for VGG16: %f" % vgg bil)
print(“BLEU-2 for VGG16: %f" % vgg b2)
print("BLEU-3 for VGG16: %f" % vgg b3)
print(“BLEU-4 for VGG16: %f" % vgg b4)
print(™\n")

Colcualte BLEU score for ResNet5e
print(“BLEU-1 for ResNet5@: Xf" % res_bl)
print("BLEU-2 for ResNet58: %f" % res_b2)
print(“BLEU-3 for ResNet5@: Xf" % res_b3)
print(“BLEU-4 for ResNet5@: Xf" % res_b4)
print(™\n")

Colcualte BLEU score for Xception
print(“BLEU-1 for Xception: %f" % xcep_bl)
print("BLEU-2 for Xception: %f" % xcep_b2)
print(“BLEU-3 for Xception: Xf" % xcep_b3)
print(“BLEU-4 for Xception: X%f" % xcep_b4)
print(™\n")

BLEU-1 for VGG16: @.555213
BLEU-2 for VGG16: @.336577
BLEU-3 for VGG16: @.234788
BLEU-4 for VGG16: @.131214

BLEU-1 for ResNetS@: @.558090
BLEU-2 for ResNetSe: 8.339444
BLEU-3 for ResNetSe: @.236814
BLEU-4 for ResNetS@: @.132585
BLEU-1 for Xception: @.477946
BLEU-2 for Xception: 8.234424
BLEU-3 for Xception: @.147368
BLEU-4 for Xception: @.87@195

Some of the captions generated from the models are given below.

boy jumps from the top of blue plastic slide

child jumps over the slide portion of playground equipment shaded by trees
little boy in striped shirt jumps from blue slide

little boy is jumping off the top of slide

young boy jumps on slide in backyard

VGG16: child in red shirt slides down playground slide
ResNet5@: boy in green shirt is riding down the playground
Xception: two people are sitting on bench in front of building

150 A
200 4
250 4

300 4

350

0 100 200 300 400

brown and white dog is running through the snow

dog is running in the snow

dog running through snow

white and brown dog is running through snow covered field

the white and brown dog is running over the surface of the snow

VGG16: dog runs through the snow
ResNet58: dog runs through the snow
Xception: two dogs are playing in the snow

50

100

350 A

400 A

0 100 200 300 400

Bagging and boosting techniques are used to combine the base models. The base models and
the extracted features from base models are passed as a list to the ensemble models. The
ensemble technique then chooses the most common word for making predictions in bagging.
For boosting method, the predictions is made by assigning weights for each methods and
calculating its BLEU scores. The predictions of Bagging and boosting ensemble models are
given below.

girl dressed in pink sweatshirt and pink and white striped skirt plays in the waves at the beach
girl dressed in pink and white runs along the beach

girl dressed in pink runs from the ocean to the beach

girl in pink runs away from wave coming onto the shore

girl is walking next to the small waves that crash in the ocean

Bagging: young dogs pink playing is the pink the is running on the

Boosting: young girl in red shirt and pink shorts is running on the beach

climber stops to take drink while climbing snow covered mountain
man holding cup on snow mountain

man in yellow suit is holding up cup while standing in snow
mountain climber stops for drink

mountaineer in yellow jacket is drinking from thermos cup

Bagging: two children are skiing is snowy in front of an orange

Boosting: two people are skiing on snowy ice

0

50

100

150

200

250

300

