

Enhancing Network Security Using

Machine Learning Model-Agnostic

Approach on Diverse Datasets

Configuration Manual

MSc Research Project

Data Analytics

Muhammad Zaeem

Student ID: x23108088

School of Computing

National College of Ireland

Supervisor: Arjun Chikkankod

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Muhammad Zaeem

………

Student ID:

X23108088

………..……

Programme:

MSc Data Analytics

………………………………………………………………

Year:

2024

…………………………..

Module:

MSc Research Project

…….………

Lecturer:

Arjun Chikkankod

…….………

Submission

Due Date:

12th August, 2024

…….………

Project Title:

Enhancing Network Security Using Machine Learning Model-Agnostic

Approach on Diverse Datasets

…….………

Word Count:

2500+ 22

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Muhammad Zaeem

……

Date:

12th August, 2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Enhancing Network Security Using Machine Learning
Model-Agnostic Approach on Diverse Datasets

Muhammad Zaeem

X23108088

1 Introduction
It is a mode-agnostic project for the in-depth analysis of different network traffic

classifications and intrusion datasets to address challenges like class imbalance, feature

importance, and hyperparameter tuning aiming to find the best-performing environment for

model to improve their accuracy and efficiency. Another goal is to find an inference model

that can be suggested to be implemented in real-life intrusion detection systems and firewalls

to enhance network security. This configuration manual is designed to provide all the details

that can help anyone recreate this research.

2 System Requirements
For the efficient execution of this research artefact, the following hardware and software

requirements should be considered beforehand

2.1 Hardware requirements

Table 1. shows the needed hardware requirements to run the code artefact

Operating System (OS) Windows 10 or similar OS

Processor Intel i5 8th Gen or above

RAM 16 GB DDR4

Storage 50 GB available space

Table 1: Hardware Specifications

2.2 Software Requirements

Microsoft Excel is used for the early exploration of datasets. For the implementation of

the project, the Jupyter Notebook IDE from Anaconda Environment is used which has

Python kernel preinstalled in it.

• Python Kernel version: 3.11.4

• Jupyter Notebook version: 7.0.0

3 Dataset Collection
Three datasets are used in this research. The first one is the network traffic classification

dataset taken from the UCI Machine Learning repository1 named as Internet Firewall Dataset.

The second Dataset is the UNSW NB15 dataset taken from Kaggle2, which was published by

the Cyber Security Department of the University of New South Wales, Canberra, Australia

(Moustafa and Slay, 2015).

1 https://archive.ics.uci.edu/dataset/542/internet+firewall+data
2 https://www.kaggle.com/datasets/dhoogla/unswnb15

https://archive.ics.uci.edu/dataset/542/internet+firewall+data
https://www.kaggle.com/datasets/dhoogla/unswnb15

2

The third dataset, NF-UQ-NIDS-v2 Network Intrusion Detection Dataset made by the

combination of small datasets and is available on Kaggle3 with a usability rate of 10 points.

4 Project Development
Before diving into the working of specific datasets, the following Python libraries and

their specific versions are essential for running the code efficiently in this project. Ensure you

install these versions to avoid compatibility issues:

• Pandas – For data manipulation and analysis.

Version: 1.5.3

• NumPy – For numerical computations.

Version: 1.24.3

• Scikit-learn – For machine learning model development, feature scaling,

evaluation metrics, and hyperparameter tuning.

Version: 1.5.3

• XGBoost – For implementing XGBoost models.

Version: 1.5.3

• Scikeras – For interfacing Keras with Scikit-learn.

Version: 1.5.3

• TensorFlow – As the backend for Keras.

Version: 2.16.1

• Matplotlib – For visualising data and results.

Version: 3.7.1

• Seaborn – For statistical data visualisation.

Version: 0.12.2

• Imbalanced-learn (Imblearn) – For handling imbalanced datasets using

techniques like random oversampling.

Version: 1.5.3

These are needed for the development and smooth working of project functions. If any

package is not available, it can be installed using the “pip install package_name” command in

jupyter notebook. Import these into all three notebooks for three datasets as shown in the

Figure 1.

3 https://www.kaggle.com/datasets/aryashah2k/nfuqnidsv2-network-intrusion-detection-dataset

https://www.kaggle.com/datasets/aryashah2k/nfuqnidsv2-network-intrusion-detection-dataset

3

Figure 1: Libraries to be Imported

4.1 Internet Firewall Dataset (IFD)

Import the Internet Firewall dataset into Jupyter Notebook IDE using the pandas

function to read a CSV file as shown in Figure 2.

Figure 2: Read the CSV file for IFD

After an exploratory data analysis, such as checking shape, data types, missing values,

and outliers, we found some duplicate values, we dropped them using

‘df.drop_duplicates(inplace=True)’ function. After that, we performed label encoding of the

target variable as shown in Figure 3.

Figure 3: Encoding Target Variable

Data is split into train and test sets with a split ratio of 0.3, meaning the training set

has 70% data and the training set with 30% data as shown in Figure 4.

4

Figure 4: Splitting Dataset into Train and Test Sets

Upon initial implementation of models, errors were analyzed due to the presence of

some infinite values in the dataset. The mean imputation method shown in Figure 5. is used

to replace all such outliers, infinite and nan values in the dataset.

Figure 5: Mean Imputation for Nan, Infinite values and Outliers

After this initial data preprocessing, the model-agnostic pipeline is created following

the steps shown in Figures 6, 7 and 8. All models are implemented except for ANN as it is

implemented separately. Feature scaling and model evaluation are also performed within this

pipeline and results are saved into a data frame.

Figure 6: Defining Models and Class Names for Pipeline

5

Figure 7: Model Agnostic Pipeline

Figure 8: Displaying best model, confusion matrices and results

ANN is applied following the same steps as other models; it is applied separately as

shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs.

6

Figure 9: ANN implementation in the same pipeline

After the initial implementation of models on an imbalanced dataset with all the

features in it, we will perform feature selection to check its effect on model performance. For

this purpose, a random forest is used to create a feature importance plot as shown in Figure

7

10. to check features that are important and which features can be removed due to their lesser

contribution to the prediction.

Figure 10: Feature Importance using Random Forest

After checking feature importance, we found only one feature that was not

contributing to the output, so it was removed as shown in Figure 11.

Figure 11: Feature Elimination

Data imbalance is handled in Figure 12. using random oversampling that oversampled

the minority class instances and made the dataset balanced.

Figure 12: Oversampling Minority classes using Random Oversampling

After data balance, Figure 13 shows the balanced data set is again split into train, and

test sets. The same model pipelines from Figures 6, 7, 8 and 9 are applied to the balanced

dataset again. However, this time their results are saved into the new ‘results_df2’ data frame

to separate balanced data results from imbalanced ones.

Figure 13: Train Test Split after data balance

8

For the final Analysis, hyperparameter tuning of all models is performed as shown in

Figures 14 and 15 to find the best parameter for each model and their results are saved into a

third data frame.

Figure 14: Hyperparameter Tuning Using Grid Search

9

Figure 15: Grid Search Tuning for ANN

10

For the comparative evaluation of results from all three model pipeline

implementations, their saved results are combined and a bar plot of F1-scores of these models

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the

effect of data oversampling, feature selection and hyperparameter tuning on model

performances as shown in Figure 16.

Figure 16: Displaying results from all three model Implementations

4.2 UNSW NB15 dataset

Some steps for this dataset are the same as the previous one, so instead of putting the

code snippets again, figures from the IFD section will be referred to here again. Import the

UNSW NB15 into Jupyter Notebook IDE using the pandas function to read a CSV file as

shown in Figure 17.

Figure 17: Read the CSV file for IFD

One column is removed during EDA as it is a column containing just index values in

it, as shown in Figure 18.

Figure 18: Dropping index column

After exploratory data analysis and dropping irrelevant columns, we performed label

encoding of all the categorical variables in the dataset as shown in Figure 19.

Figure 19: Encoding Categorical Variables

Data is split into train and test sets with a split ratio of 0.3, meaning the training set

has 70% data and the training set with 30% data as shown in Figure 20.

11

Figure 20: Splitting Dataset into Train and Test Sets

This dataset also had some infinite values and Nan values. The mean imputation

method shown in Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite

and nan values in the dataset.

After this initial data preprocessing, the model-agnostic pipeline is created following

the steps shown in Figures 21, 22 and 23. All models are implemented except for ANN as it

is implemented separately. Feature scaling and model evaluation are also performed within

this pipeline and results are saved into a data frame.

Figure 21: Defining Models and Class Names for Pipeline

12

Figure 22: Model Agnostic Pipeline

Figure 23: Displaying best model, confusion matrices and results

13

ANN is applied following the same steps as other models and previous dataset; it is

applied separately as shown in Figure 24. to get clearer output as it runs on many epochs

creating longer outputs.

Figure 24: ANN implementation in the same pipeline

After the initial implementation of models on an imbalanced dataset with all the

features in it, we will perform feature selection to check its effect on model performance.

Random forest is used to create a feature importance plot as shown in Figure 10. of

Subsection 4.1 to check features that are important and which features can be removed due to

their lesser contribution to the prediction.

14

Since it is a large dataset, in Figure 25 for the oversampling of data we have taken

fewer instances by importing the dataset again with a defined number of rows and dropped

irrelevant columns as well. A full dataset can also be imported as well depending on the

computation resources of a system.

Figure 25: Importing dataset again with less rows

Based on the feature importance plot of the random forest, the following features in

Figure 26 are dropped as they do not contribute to model training for making predictions.

Figure 26: Feature Elimination

Class imbalance is handled by the oversampling of minority classes using the Random

Over sampler as shown in Figure 27.

Figure 27: oversampling of minority classes

Figure 12: Oversampling Minority classes using Random Oversampling

After data balancing, Figure 28 shows the balanced data set is again split into train,

and test sets. Since we had imported the data again, the mean imputation method is shown in

Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite and nan values in

the dataset and the same model pipelines from Figures 21, 22, 23 and 24 are applied to the

balanced dataset again. However, this time their results are saved into the new ‘results_df2’

data frame to separate balanced data results from imbalanced ones.

Figure 28: Train Test Split after data balance

15

For the final Analysis, hyperparameter tuning of all models is performed as shown in

Figures 29 and 30 to find the best parameter for each model and their results are saved into a

third data frame.

Figure 29: Hyperparameter Tuning Using Grid Search

16

Figure 30: Grid Search Tuning for ANN

For the comparative evaluation of results from all three model pipeline

implementations, their saved results are combined and a bar plot of F1-scores of these models

17

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the

effect of data oversampling, feature selection and hyperparameter tuning on model

performances as shown in Figure 31.

Figure 31: Displaying results from all three model Implementations

4.3 NF-UQ-NIDS-v2 Dataset

Import the NF-UQ-NIDS-v2 Dataset into Jupyter Notebook IDE using the pandas

function to read a CSV file as shown in Figure 32. For this dataset, 300,000 rows are taken

since it contains millions of records, which would be difficult to process with the resources

we have.

Figure 32: Read the CSV file for IFD

After importing the CSV, EDA is done and the following columns in Figure 33 are

dropped as they consist of the IP addresses, which are better to remove to avoid any ethical

concerns. Also dataset column is removed, which names different small datasets, combined

to make this big data.

Figure 33: Dropping IP address and irrelevant columns

After that, we performed label encoding of the target variable as shown in Figure 34.

Figure 34: Encoding Categorical Variables

Data is split into train and test sets with a split ratio of 0.3, meaning the training set

has 70% data and the training set with 30% data as shown in Figure 35.

18

Figure 35: Splitting Dataset into Train and Test Sets

This dataset also gave errors due to the presence of some infinite values in the dataset.

The mean imputation method shown in Figure 5. of section 4.1 is used to replace all such

outliers, infinite and nan values in the dataset.

 After that dependent class names and models are defined to create the models pipeline

as shown in Figure 36.

Figure 36: Defining Models and Class Names for Pipeline

After defining models and class names, the steps from Figures 22 and 23 of section

4.2 are applied to iterate models in the model's agnostic pipeline and save their evaluation

into the defined data frames. Similarly, ANN is applied following the code from Figure 24 of

section 4.2

ANN is applied following the same steps as other models; it is applied separately as

shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs.

After checking the models on the imbalanced dataset with all the features in it, we

will perform feature selection to check its effect on model performance. For this purpose, a

random forest is used to create a feature importance plot as shown in Figure 37.

19

Figure 37: Feature Importance using Random Forest

For balancing the dataset, it is imported again in Figure 38 with fewer rows as after

oversampling it would take a lot of time to process

Figure 38: Importing Data for balancing

In figure 39, noncontributing features identified by the feature importance plot of

random forest are removed to avoid data redundancy and reduce the code execution time.

Figure 39: Feature Elimination

After that label encoding of the target variable is done again and data imbalance is

handled in Figure 40. using the random oversampling technique that oversampled the classes

with fewer instances and makes the dataset balanced.

Figure 40: Oversampling Minority classes using Random Oversampling

After data balance, the balanced data set is again split into train, and test sets, infinite, Nan

and outliers are removed from the newly imported partial dataset following Figure 5 of

Subsection 4.1. The same model and class name from Figure 36 are defined again and

20

executed using the standard scaler pipelines from Figures 22 and 23 along with the ANN

pipeline from Figure 24 are applied to the balanced dataset again. However, this time their

results are saved into the new ‘results_df2’ data frame to separate balanced data results from

imbalanced ones.

Figure 41: Hyperparameter Tuning Using Grid Search

21

For the final Analysis, hyperparameter tuning of all models is performed as shown in

Figures 41 and 42 to find the best parameter for each model and their results are saved into a

third data frame.

Figure 42: Grid Search Tuning for ANN

For the comparative evaluation of results from all three model pipeline

implementations, their saved results are combined and a bar plot of F1-scores of these models

22

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the

effect of data oversampling, feature selection and hyperparameter tuning on model

performances as shown in Figure 16.

Figure 43: Displaying results from all three model Implementations

For the final analysis of these model agnostics pipelines on the three datasets, you can

compare the results obtained from Figure 16 of section 4.1, Figure 31 of section 4.2 and

Figure 43 of section 4.3.

References
Moustafa, N. and Slay, J., 2015. UNSW-NB15: A Comprehensive Data Set for

Network Intrusion Detection Systems (UNSW-NB15 Network Data Set). Proceedings of the

2015 Military Communications and Information Systems Conference (MilCIS). [online] IEEE

Xplore. Available at: https://doi.org/10.1109/MilCIS.2015.7348942.

https://doi.org/10.1109/MilCIS.2015.7348942

