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Enhancing Network Security Using Machine Learning 
Model-Agnostic Approach on Diverse Datasets 

 

Muhammad Zaeem 

X23108088 
 
 

 

1 Introduction 
It is a mode-agnostic project for the in-depth analysis of different network traffic 

classifications and intrusion datasets to address challenges like class imbalance, feature 

importance, and hyperparameter tuning aiming to find the best-performing environment for 

model to improve their accuracy and efficiency. Another goal is to find an inference model 

that can be suggested to be implemented in real-life intrusion detection systems and firewalls 

to enhance network security. This configuration manual is designed to provide all the details 

that can help anyone recreate this research. 

 

2 System Requirements 
For the efficient execution of this research artefact, the following hardware and software 

requirements should be considered beforehand 

2.1 Hardware requirements 

Table 1. shows the needed hardware requirements to run the code artefact 

 

Operating System (OS) Windows 10 or similar OS 

Processor  Intel i5 8th Gen or above 

RAM  16 GB DDR4 

Storage  50 GB available space 

Table 1: Hardware Specifications 

2.2 Software Requirements 

Microsoft Excel is used for the early exploration of datasets. For the implementation of 

the project, the Jupyter Notebook IDE from Anaconda Environment is used which has 

Python kernel preinstalled in it. 

 

• Python Kernel version: 3.11.4 

• Jupyter Notebook version: 7.0.0 

 

3 Dataset Collection 
Three datasets are used in this research. The first one is the network traffic classification 

dataset taken from the UCI Machine Learning repository1 named as Internet Firewall Dataset. 

The second Dataset is the UNSW NB15 dataset taken from Kaggle2, which was published by 

the Cyber Security Department of the University of New South Wales, Canberra, Australia 

(Moustafa and Slay, 2015). 

 
 
1 https://archive.ics.uci.edu/dataset/542/internet+firewall+data 
2 https://www.kaggle.com/datasets/dhoogla/unswnb15 

https://archive.ics.uci.edu/dataset/542/internet+firewall+data
https://www.kaggle.com/datasets/dhoogla/unswnb15
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The third dataset, NF-UQ-NIDS-v2 Network Intrusion Detection Dataset made by the 

combination of small datasets and is available on Kaggle3 with a usability rate of 10 points. 

4 Project Development 
Before diving into the working of specific datasets, the following Python libraries and 

their specific versions are essential for running the code efficiently in this project. Ensure you 

install these versions to avoid compatibility issues: 

 

• Pandas – For data manipulation and analysis. 

Version: 1.5.3 

• NumPy – For numerical computations. 

Version: 1.24.3 

• Scikit-learn – For machine learning model development, feature scaling, 

evaluation metrics, and hyperparameter tuning. 

Version: 1.5.3 

• XGBoost – For implementing XGBoost models. 

Version: 1.5.3 

• Scikeras – For interfacing Keras with Scikit-learn. 

Version: 1.5.3 

• TensorFlow – As the backend for Keras. 

Version: 2.16.1 

• Matplotlib – For visualising data and results. 

Version: 3.7.1 

• Seaborn – For statistical data visualisation. 

Version: 0.12.2 

• Imbalanced-learn (Imblearn) – For handling imbalanced datasets using 

techniques like random oversampling. 

Version: 1.5.3 

These are needed for the development and smooth working of project functions. If any 

package is not available, it can be installed using the “pip install package_name” command in 

jupyter notebook. Import these into all three notebooks for three datasets as shown in the 

Figure 1. 

 

 
 
3 https://www.kaggle.com/datasets/aryashah2k/nfuqnidsv2-network-intrusion-detection-dataset 
 

https://www.kaggle.com/datasets/aryashah2k/nfuqnidsv2-network-intrusion-detection-dataset
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Figure 1: Libraries to be Imported 

 

4.1 Internet Firewall Dataset (IFD) 

Import the Internet Firewall dataset into Jupyter Notebook IDE using the pandas 

function to read a CSV file as shown in Figure 2. 

 

 
Figure 2: Read the CSV file for IFD 

 

After an exploratory data analysis, such as checking shape, data types, missing values, 

and outliers, we found some duplicate values, we dropped them using 

‘df.drop_duplicates(inplace=True)’ function. After that, we performed label encoding of the 

target variable as shown in Figure 3. 

 

 

 
Figure 3: Encoding Target Variable 

 

Data is split into train and test sets with a split ratio of 0.3, meaning the training set 

has 70% data and the training set with 30% data as shown in Figure 4. 
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Figure 4: Splitting Dataset into Train and Test Sets 

 

Upon initial implementation of models, errors were analyzed due to the presence of 

some infinite values in the dataset. The mean imputation method shown in Figure 5. is used 

to replace all such outliers, infinite and nan values in the dataset. 

 

 
Figure 5: Mean Imputation for Nan, Infinite values and Outliers 

 

After this initial data preprocessing, the model-agnostic pipeline is created following 

the steps shown in Figures 6, 7 and 8. All models are implemented except for ANN as it is 

implemented separately. Feature scaling and model evaluation are also performed within this 

pipeline and results are saved into a data frame. 

 

 
Figure 6: Defining Models and Class Names for Pipeline 
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Figure 7: Model Agnostic Pipeline  

 

 
Figure 8: Displaying best model, confusion matrices and results  

 

ANN is applied following the same steps as other models; it is applied separately as 

shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs. 
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Figure 9: ANN implementation in the same pipeline 

 

After the initial implementation of models on an imbalanced dataset with all the 

features in it, we will perform feature selection to check its effect on model performance. For 

this purpose, a random forest is used to create a feature importance plot as shown in Figure 
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10. to check features that are important and which features can be removed due to their lesser 

contribution to the prediction. 

 
Figure 10: Feature Importance using Random Forest 

After checking feature importance, we found only one feature that was not 

contributing to the output, so it was removed as shown in Figure 11. 

 
Figure 11: Feature Elimination 

 

Data imbalance is handled in Figure 12. using random oversampling that oversampled 

the minority class instances and made the dataset balanced. 

 

 
Figure 12: Oversampling Minority classes using Random Oversampling 

 

After data balance, Figure 13 shows the balanced data set is again split into train, and 

test sets. The same model pipelines from Figures 6, 7, 8 and 9 are applied to the balanced 

dataset again. However, this time their results are saved into the new ‘results_df2’ data frame 

to separate balanced data results from imbalanced ones. 

 

 
Figure 13: Train Test Split after data balance 
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For the final Analysis, hyperparameter tuning of all models is performed as shown in 

Figures 14 and 15 to find the best parameter for each model and their results are saved into a 

third data frame. 

 

 
Figure 14: Hyperparameter Tuning Using Grid Search 



9 
 

 

 
Figure 15: Grid Search Tuning for ANN 
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For the comparative evaluation of results from all three model pipeline 

implementations, their saved results are combined and a bar plot of F1-scores of these models 

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the 

effect of data oversampling, feature selection and hyperparameter tuning on model 

performances as shown in Figure 16. 

 

 
Figure 16: Displaying results from all three model Implementations 

4.2 UNSW NB15 dataset 

Some steps for this dataset are the same as the previous one, so instead of putting the 

code snippets again, figures from the IFD section will be referred to here again. Import the 

UNSW NB15 into Jupyter Notebook IDE using the pandas function to read a CSV file as 

shown in Figure 17. 

 

 
Figure 17: Read the CSV file for IFD 

 

One column is removed during EDA as it is a column containing just index values in 

it, as shown in Figure 18. 

 
Figure 18: Dropping index column 

 

After exploratory data analysis and dropping irrelevant columns, we performed label 

encoding of all the categorical variables in the dataset as shown in Figure 19. 

 

 
Figure 19: Encoding Categorical Variables 

 

Data is split into train and test sets with a split ratio of 0.3, meaning the training set 

has 70% data and the training set with 30% data as shown in Figure 20. 
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Figure 20: Splitting Dataset into Train and Test Sets 

 

This dataset also had some infinite values and Nan values. The mean imputation 

method shown in Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite 

and nan values in the dataset. 

After this initial data preprocessing, the model-agnostic pipeline is created following 

the steps shown in Figures 21, 22 and 23. All models are implemented except for ANN as it 

is implemented separately. Feature scaling and model evaluation are also performed within 

this pipeline and results are saved into a data frame. 

 

 
Figure 21: Defining Models and Class Names for Pipeline 
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Figure 22: Model Agnostic Pipeline  

 

 
Figure 23: Displaying best model, confusion matrices and results  
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ANN is applied following the same steps as other models and previous dataset; it is 

applied separately as shown in Figure 24. to get clearer output as it runs on many epochs 

creating longer outputs. 

 

 
Figure 24: ANN implementation in the same pipeline 

 

After the initial implementation of models on an imbalanced dataset with all the 

features in it, we will perform feature selection to check its effect on model performance. 

Random forest is used to create a feature importance plot as shown in Figure 10. of 

Subsection 4.1 to check features that are important and which features can be removed due to 

their lesser contribution to the prediction. 
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Since it is a large dataset, in Figure 25 for the oversampling of data we have taken 

fewer instances by importing the dataset again with a defined number of rows and dropped 

irrelevant columns as well. A full dataset can also be imported as well depending on the 

computation resources of a system. 

 
Figure 25: Importing dataset again with less rows 

 

Based on the feature importance plot of the random forest, the following features in 

Figure 26 are dropped as they do not contribute to model training for making predictions. 

 
Figure 26: Feature Elimination 

 

Class imbalance is handled by the oversampling of minority classes using the Random 

Over sampler as shown in Figure 27.  

 

 
Figure 27: oversampling of minority classes 

 

Figure 12: Oversampling Minority classes using Random Oversampling 

 

After data balancing, Figure 28 shows the balanced data set is again split into train, 

and test sets. Since we had imported the data again, the mean imputation method is shown in 

Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite and nan values in 

the dataset and the same model pipelines from Figures 21, 22, 23 and 24 are applied to the 

balanced dataset again. However, this time their results are saved into the new ‘results_df2’ 

data frame to separate balanced data results from imbalanced ones. 

 

 
Figure 28: Train Test Split after data balance 
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For the final Analysis, hyperparameter tuning of all models is performed as shown in 

Figures 29 and 30 to find the best parameter for each model and their results are saved into a 

third data frame. 

 

 
Figure 29: Hyperparameter Tuning Using Grid Search 
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Figure 30: Grid Search Tuning for ANN 

 

For the comparative evaluation of results from all three model pipeline 

implementations, their saved results are combined and a bar plot of F1-scores of these models 
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from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the 

effect of data oversampling, feature selection and hyperparameter tuning on model 

performances as shown in Figure 31. 

 

 
Figure 31: Displaying results from all three model Implementations 

 

4.3 NF-UQ-NIDS-v2 Dataset 

Import the NF-UQ-NIDS-v2 Dataset into Jupyter Notebook IDE using the pandas 

function to read a CSV file as shown in Figure 32. For this dataset, 300,000 rows are taken 

since it contains millions of records, which would be difficult to process with the resources 

we have. 

 
Figure 32: Read the CSV file for IFD 

 

After importing the CSV, EDA is done and the following columns in Figure 33 are 

dropped as they consist of the IP addresses, which are better to remove to avoid any ethical 

concerns. Also dataset column is removed, which names different small datasets, combined 

to make this big data. 

 

 
Figure 33: Dropping IP address and irrelevant columns 

 

After that, we performed label encoding of the target variable as shown in Figure 34. 

 

 
Figure 34: Encoding Categorical Variables 

 

Data is split into train and test sets with a split ratio of 0.3, meaning the training set 

has 70% data and the training set with 30% data as shown in Figure 35. 
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Figure 35: Splitting Dataset into Train and Test Sets 

 

This dataset also gave errors due to the presence of some infinite values in the dataset. 

The mean imputation method shown in Figure 5. of section 4.1 is used to replace all such 

outliers, infinite and nan values in the dataset. 

 After that dependent class names and models are defined to create the models pipeline 

as shown in Figure 36. 

 
Figure 36: Defining Models and Class Names for Pipeline 

 

After defining models and class names, the steps from Figures 22 and 23 of section 

4.2 are applied to iterate models in the model's agnostic pipeline and save their evaluation 

into the defined data frames. Similarly, ANN is applied following the code from Figure 24 of 

section 4.2 

ANN is applied following the same steps as other models; it is applied separately as 

shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs. 

After checking the models on the imbalanced dataset with all the features in it, we 

will perform feature selection to check its effect on model performance. For this purpose, a 

random forest is used to create a feature importance plot as shown in Figure 37. 
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Figure 37: Feature Importance using Random Forest 

 

For balancing the dataset, it is imported again in Figure 38 with fewer rows as after 

oversampling it would take a lot of time to process 

 

 
Figure 38: Importing Data for balancing 

In figure 39, noncontributing features identified by the feature importance plot of 

random forest are removed to avoid data redundancy and reduce the code execution time. 

 
Figure 39: Feature Elimination 

 

After that label encoding of the target variable is done again and data imbalance is 

handled in Figure 40. using the random oversampling technique that oversampled the classes 

with fewer instances and makes the dataset balanced. 

 

 
Figure 40: Oversampling Minority classes using Random Oversampling 

After data balance, the balanced data set is again split into train, and test sets, infinite, Nan 

and outliers are removed from the newly imported partial dataset following Figure 5 of 

Subsection 4.1. The same model and class name from Figure 36 are defined again and 
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executed using the standard scaler pipelines from Figures 22 and 23 along with the ANN 

pipeline from Figure 24 are applied to the balanced dataset again. However, this time their 

results are saved into the new ‘results_df2’ data frame to separate balanced data results from 

imbalanced ones. 

 
Figure 41: Hyperparameter Tuning Using Grid Search 
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For the final Analysis, hyperparameter tuning of all models is performed as shown in 

Figures 41 and 42 to find the best parameter for each model and their results are saved into a 

third data frame. 

 

 
Figure 42: Grid Search Tuning for ANN 

 

For the comparative evaluation of results from all three model pipeline 

implementations, their saved results are combined and a bar plot of F1-scores of these models 
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from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the 

effect of data oversampling, feature selection and hyperparameter tuning on model 

performances as shown in Figure 16. 

 

 
Figure 43: Displaying results from all three model Implementations 

 

 

For the final analysis of these model agnostics pipelines on the three datasets, you can 

compare the results obtained from Figure 16 of section 4.1, Figure 31 of section 4.2 and 

Figure 43 of section 4.3. 
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