-—

National
Collegeof

Ireland

Enhancing Network Security Using
Machine Learning Model-Agnostic
Approach on Diverse Datasets

Configuration Manual

MSc Research Project
Data Analytics

Muhammad Zaeem
Student ID: x23108088

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

Student
Name:

Student ID:
Programme:
Module:
Lecturer:

Submission
Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing
Muhammad Zaeem

Enhancing Network Security Using Machine Learning Model-Agnostic
Approach on Diverse Datasets

... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Muhammad Zaeem

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhancin? Network Security Using Machine Learning
Model-Agnostic Approach on Diverse Datasets

Muhammad Zaeem
X23108088

1 Introduction

It is a mode-agnostic project for the in-depth analysis of different network traffic
classifications and intrusion datasets to address challenges like class imbalance, feature
importance, and hyperparameter tuning aiming to find the best-performing environment for
model to improve their accuracy and efficiency. Another goal is to find an inference model
that can be suggested to be implemented in real-life intrusion detection systems and firewalls
to enhance network security. This configuration manual is designed to provide all the details
that can help anyone recreate this research.

2 System Requirements
For the efficient execution of this research artefact, the following hardware and software
requirements should be considered beforehand

2.1 Hardware requirements
Table 1. shows the needed hardware requirements to run the code artefact

Operating System (OS) | Windows 10 or similar OS
Processor Intel i5 8™ Gen or above
RAM 16 GB DDR4

Storage 50 GB available space

Table 1: Hardware Specifications

2.2 Software Requirements
Microsoft Excel is used for the early exploration of datasets. For the implementation of
the project, the Jupyter Notebook IDE from Anaconda Environment is used which has
Python kernel preinstalled in it.

e Python Kernel version: 3.11.4
e Jupyter Notebook version: 7.0.0

3 Dataset Collection

Three datasets are used in this research. The first one is the network traffic classification
dataset taken from the UCI Machine Learning repository! named as Internet Firewall Dataset.
The second Dataset is the UNSW NB15 dataset taken from Kaggle?, which was published by
the Cyber Security Department of the University of New South Wales, Canberra, Australia
(Moustafa and Slay, 2015).

L https://archive.ics.uci.edu/dataset/542/internet+firewall+data
2 https://www.kaggle.com/datasets/dhoogla/unswnb15

1

https://archive.ics.uci.edu/dataset/542/internet+firewall+data
https://www.kaggle.com/datasets/dhoogla/unswnb15

The third dataset, NF-UQ-NIDS-v2 Network Intrusion Detection Dataset made by the
combination of small datasets and is available on Kaggle® with a usability rate of 10 points.

4 Project Development
Before diving into the working of specific datasets, the following Python libraries and
their specific versions are essential for running the code efficiently in this project. Ensure you
install these versions to avoid compatibility issues:
e Pandas — For data manipulation and analysis.
Version: 1.5.3
e NumPy — For numerical computations.
Version: 1.24.3
e Scikit-learn — For machine learning model development, feature scaling,
evaluation metrics, and hyperparameter tuning.
Version: 1.5.3
e XGBoost — For implementing XGBoost models.
Version: 1.5.3
e Scikeras — For interfacing Keras with Scikit-learn.
Version: 1.5.3
e TensorFlow — As the backend for Keras.
Version: 2.16.1
e Matplotlib — For visualising data and results.
Version: 3.7.1
e Seaborn — For statistical data visualisation.
Version: 0.12.2
e Imbalanced-learn (Imblearn) — For handling imbalanced datasets using
techniques like random oversampling.
Version: 1.5.3

These are needed for the development and smooth working of project functions. If any
package is not available, it can be installed using the “pip install package name” command in
jupyter notebook. Import these into all three notebooks for three datasets as shown in the
Figure 1.

3 https://www.kaggle.com/datasets/aryashah2k/nfugnidsv2-network-intrusion-detection-dataset

https://www.kaggle.com/datasets/aryashah2k/nfuqnidsv2-network-intrusion-detection-dataset

import warnings

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer

from sklearn.model_selection import trainm_test_split,cross wval_score,GridSearchiV, stratifiedkrFold
from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KMeighborsClassifier

from xgboost import XGBClassifier

from sklearn.svm import SvC, Linearscv

from sklearn.linear_model import LogisticRegression

from sklearn.maive_bayes import Gaussianng

from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import RandomOversampler
from sklearn.metrics impert accuracy_score, recall score, precision_score, f1_score, confusion_matrix

import tensorflow as tf

from tensorfleow.keras.models import Seguential
from tensorflow.keras.layers import Dense

from scikeras.wrappers import KerasClassifier

warnings.simplefilter{action="ignore", category=FutureWarning)

Figure 1: Libraries to be Imported

4.1 Internet Firewall Dataset (IFD)

Import the Internet Firewall dataset into Jupyter Notebook IDE using the pandas
function to read a CSV file as shown in Figure 2.

df = pd.read_csv("C:\\Wsersi\\hp'\\Downloads\\log2.csv"™)
df.shape

Figure 2: Read the CSV file for IFD
After an exploratory data analysis, such as checking shape, data types, missing values,
and outliers, we found some duplicate values, we dropped them using

‘df.drop_duplicates(inplace=True)’ function. After that, we performed label encoding of the
target variable as shown in Figure 3.

label encoder = LabelEncoder()
df["Action"”] = label encoder.fit transform(df["Action™])

Figure 3: Encoding Target Variable

Data is split into train and test sets with a split ratio of 0.3, meaning the training set
has 70% data and the training set with 30% data as shown in Figure 4.

X = df .drop("Action”,axis=1)
y = df["Action™]
X train, X test, y train, y test = train test split(X,y, test size = 0.3, random state = 88)

print("X¥_train shape:", X_train.shape)
print("y_train shape:", y_train.shape)
print("X_test shape:", X test.shape)
print("y_test shape:", y_test.shape)

Figure 4: Splitting Dataset into Train and Test Sets

Upon initial implementation of models, errors were analyzed due to the presence of
some infinite values in the dataset. The mean imputation method shown in Figure 5. is used
to replace all such outliers, infinite and nan values in the dataset.

Replaced infinite with NaW
X _train = np.where(np.isfinite(X train}), X train, np.nan)
X _test = np.where(np.isfinite(X test), X test, np.nan)

Replace too large outliers values with NaN
max_allowed value = np.finfo(np.float3i2).max
X train[X train > max_allowed walue] = np.nan
X test[X test » max_allowed wvalue] = np.nan

Impute NaNs with column means

imputer = SimpleImputer(strategy="mean")
X _train = imputer.fit transform(X_train)
X _test = imputer.transform(X_test)

Figure 5: Mean Imputation for Nan, Infinite values and Outliers

After this initial data preprocessing, the model-agnostic pipeline is created following
the steps shown in Figures 6, 7 and 8. All models are implemented except for ANN as it is
implemented separately. Feature scaling and model evaluation are also performed within this
pipeline and results are saved into a data frame.

List of models
models = [
{"Logistic Regression", LogisticRegression(random state=38, max_iter=10002)),
{"Maive Bayes™, GaussianNB()),
{"Random Forest", RandomForestClassifier(random state=8E8)),
{"¥GBoost™, X@BClassifier(random state=8E)),
{"KNN", KNeighborsClassifier()})},
("sWM", SVC({random_state=88))

]

List of class names
class_names = ['allow', 'drop', 'deny’, 'reset-both’]

Initialize best model to None
best_model = MNone
best_accuracy = 2.8

List to store results
results = []

Figure 6: Defining Models and Class Names for Pipeline

4

Iterate over models and evoludte their performance
for name, model in models:
¥ pipeline for feature scaling
pipeline = Pipeline([
["scaler”, StandardScaler(}},
["model”, mddel)
I
Fittinmg pipeline to troin
pipeline . Fit(X_train, y_train}
¥ prediction on training daota
¥_pred = plpeline.predict(X_train)
¥ prediction on test dato
y_pred = pipeline.predict(X_test)
¥ gocurgcy sSCore
train_accuracy = accuracy_scorely_trainm, X_pred)
gLcuracy = acfuracy_score(y_test, y_pred)
¥ recall score
recall = recall_score(y_test, y_pred, average='macro')
¥ precision score
precision = precision_score(y_test, y pred, average='macro”)
¥ F1 score
1l = fl_score(y_test, y_pred, average='macro’)
¥ confusion matrix
tm = confuslion_matrix(y_test, y pred}
¥ Colculate class-specific accuracy
class specific_accuracy = cm.diagonal() f r_n.sunr.a:-:is.=11|
Printing evolwetion melrics
print(#"Model: {name}"}
print(f"Training Accuracy: {traln_accuracy}”}
print(#"Test Accuracy: {accuracyj}”)
print(#"Recall (Macro): {recall}”™)
print(f"Precision [(Macro): {precision}”)
print(#"F1 Score (Macro): {f1}")
for i, class_name in enumerate(class_names):
print(f Class {class npame}: {class specific_accuracy[i]}")
print(}

¥ Appending resulls o bhe List
results. appendi{
"Madel™: name,
“Training Accuracy”: train_accurady,
"Test Accuracy™: ACCUracy,
"Recall [Macro)l™: recall,
“Precision (Macro)”: precision,
"Fl Score (Macro)": f1,
==t Clase {class neme}”: class specific_accuracy[i] for 1, class_name in enumerate(class names)}

)]
Figure 7: Model Agnostic Pipeline

8 checking the besl madel

if accuracy » best accuracy:
best_accuracy = acCuracy
best_model = pipeline

¥ Plot confusion motrix
plt.figure(figsize=(12, 6))
sns. heatmapl(cm, annot=True, fmt="d", cmaép="Blues', cbar=False, xticklabels=clazs_names, yticklabels=class_names)
plt.xlabel("Predicted labels”)
plt.ylabel("True labels®)
plt.title(f "Confusion Matrix for {name}')
plt.show()
print{"Best Model:", besit_model)
results_df = pd.DataFrame(results)
results_df|

Figure 8: Displaying best model, confusion matrices and results

ANN is applied following the same steps as other models; it is applied separately as
shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs.

model = Sequential()

model . add(Densef 54, input_shape={X_train.shape[1],}, activation="relu'}}
model . add(Dense{&4, activation="relu"})

model . add(Dense(32, activation="relu"})

model .. add(Dense{ len{np.uniquefy_train}), activation='softmax')}

model compiling
model.compile(optimizer="'adam', loss="sparse_categorical crossentropy', metrics=["accuracy'])

Training model
history = model.fit{X train, v_train, epochs=58, batch_size=32, validation_split=2.2, verbose=1)

Evalugte on testset

test_loss, test accuracy = model.evaluate(X test, y_test, werbose=8)
predictions

y_pred = model.predict(X_test)

y_pred_classes = np.argmax(y_pred, axis=1)

evalugtion metrics

accuracy = accuracy_score(y_test, v pred_classes)

recall = recall_score(y_test, y_pred_classes, average="macro')

precision = precision_score(y_test, y_pred classes, average='macro'}

f1 = f1_score(y_test, y_pred_classes, average='macro'}

conf_matrix = confusion_matrix(y_test, v _pred_classes)
class_specific_accuracy = conf_matrix.diagonalf) / conf_matrix.sum{axis=1)

Printing metrics
primt{f"Model: ANNT)
primt{f"Training Accuracy: {history.history[accuracy'][-1]13}")
primt{f"Test Accuracy: {test accuracy}")
primt{f"Recall (Macro): {recall}"”)
primt{f"Precision (Macro): {precision}")
primt{f"F1 Score (Macro): {f1}"}
for i, class_name in enumerate(class_names):
primt(f"Class {class_name}: {class_specific_accuracy[i]}")
primt()

store results to df
new_row = {
"Model®: "AMN',
"Training Accuracy': history.history["accuracy'][-1],
"Test Aaccuracy': test_accuracy,
'Recall (Macro}': recall,
'"Precision (Macro)': precision,
"F1 Score {(Macro)': f1,
#=Lf'Class {class_name}”: class specific_accuracy[i] for i, class_name in enumerate(class_names)}

1
results df = results_df.append(new_row, lgnore_index=True)

Plot comfusion matrix

plt.figure(figsize=(18, 8))

sns.heatmap{conf_matrix, annot=True, fmit="d', cmap='Eluez'}
plt.xlabel{ 'Predicted’}

plt.ylabel{ 'Trus')

plt.title(Confusicn Matrix"}

plt.show(}

results_df]

Figure 9: ANN implementation in the same pipeline

After the initial implementation of models on an imbalanced dataset with all the
features in it, we will perform feature selection to check its effect on model performance. For
this purpose, a random forest is used to create a feature importance plot as shown in Figure

10. to check features that are important and which features can be removed due to their lesser
contribution to the prediction.

model = RandomForestClassifier(random_state=28)

pipeline = Pipeline{[
("scaler”, Sstandardscaler{)},
("model", model)

1)
pipeline.fit(X_train, y_train}

Extracting feature importances

importances = pipeline.named_steps['model’].feature_importances_
feature_names = np.array{X.columns)

indices = np.argsort{importances)[::-1]

plt.figure{figsize=(12, &))

plt.title("Feature Importances (Random Forest)™)
sns.barplot{x=importances[indices], y=feature_nmames[indices], palette='cclorblind®)
plt.xlabely{'Relative Importance®)

plt.ylabel{'Features')

plt.xticks{rotation=28}

plt.show(}

Figure 10: Feature Importance using Random Forest

After checking feature importance, we found only one feature that was not
contributing to the output, so it was removed as shown in Figure 11.

X = X.drop{columns=['pkts_sent'])

Figure 11: Feature Elimination

Data imbalance is handled in Figure 12. using random oversampling that oversampled
the minority class instances and made the dataset balanced.

over_sampler = RandomOvercampler{random_ state=22)
¥_resampled, y_resampled = over_sampler.fit_resample(X, v}

closs distribution after oversampling

class_distribution = pd.Series(y_resampled).value_counts()
primt{"Class distribution after oversampling:")
primt{class_distribution)

Figure 12: Oversampling Minority classes using Random Oversampling

After data balance, Figure 13 shows the balanced data set is again split into train, and
test sets. The same model pipelines from Figures 6, 7, 8 and 9 are applied to the balanced
dataset again. However, this time their results are saved into the new ‘results df2’ data frame
to separate balanced data results from imbalanced ones.

¥_train, X_test, y_train, y_test = train_test _split(

¥_resampled, y_resampled, test_size = 8.3, random_state = 23
b}
4

primt{"¥_train shape:", ¥ train.shape)
primt("y_train shape:", y_train.shape)
primt{"x_test shape:", X test.shape}
primt("y_test shape:", y_test.shape)

Figure 13: Train Test Split after data balance

7

For the final Analysis, hyperparameter tuning of all models is performed as shown in
Figures 14 and 15 to find the best parameter for each model and their results are saved into a
third data frame.

models = {
‘Logistic Regression”: (LogisticRegression(random_state=E8, mex_iter=18@88), {'C": [8.1, 1, 18]}),
'Maive Bayes": (GaussianMB(}, {}).
‘Random Forest': (RandemForestClassifier(random state=88), {'n_estimators": [18, 188], "max_depth”: [Neme, 18, 28]},
'MGBoopst' @ (XGBClassifier(random_state=EE), {'n_estimators": [18, 18@], ‘max_depth’': [3, 5, 7]1}).
'KMNT: (KNelghborsClassifier(), {"n_neighbors’: np.arange(3, 38, 2)}}}.
'SWMT: (SWC(random state=BB), {'kernel’: ["rbF', "poly’'], "C': [B8.1, 1, 18]}),
}

class_names = ['dllcw'. “drop”, "deny”, '|"::|:-1.-Llu|‘.||']

& storing results

results_dfl = pd.DataFrame(colunns=[
‘Model’, "Training Accuracy”, 'Test Accuracy’, 'Recall (Macro)', "Precision (Macro)}', "F1 Score (Macra)®,
*[f'Class {elass_name}’ for class_pame im class_panes |

¥

Iterote models
for name, (model, parans) in models.items():
EStanderdScaler
pipeline = Pipeline([
("scaler”, StandardScaler()),
("model™, model)
i}

find best hyperparamelers
grid search = GridSearchiV(pipeline, paran_grid={ nodel_

"+ k: v for k, v in params.items{)}, cv=5; n_jobs=-1}
Fit on train dato
grid_search fit{X¥_train, y_train)

¥ prediction on test dala
y_pred = grid_search.predict(X_test)

evalugtion melrics

test_adcuracy = accuracy_score(y_test, y_pred)

recall = recall score(y test, y_pred, average='macro')

precision = precision_score(y_test, y pred, average='macro”}

1 = fl1_score(y_test, y_pred, average='macro’)

train_accuracy = accuracy_scorely_train, grid_search.predict{X_train})
cm = confusion_matrix(y test, y pred}

tlass_specific_accuracy = cm.diagonal() / em.sum{axis=1)

Print

print(#"Model: {name}")

print(f"Best Parameters: {grid_search.best_params_}"}

print(f"Training Accuracy: {train_accuracy}”)

print(#"Test Accuracy: {test_accuracy}")

print(#"Recall (Macro): {recall}”)

print(f"Precision (Macro): {precision}”)

print(f"F1 Score (Macro): {f1}"}

for 1, class _name in enumerate{class_names):
print{f"Class-specific accuracy for {class_name}: {class_specific_sccuracy[L]}")

print(})

¥ szave to DataFrome
neW_row = {
"Model” @ name,
"Training Accuracy’: train_accuracy,
"Test Accuracy’: test accuracy,
"Recall (Macro)™: recall,
“Precizion (Macro)}': precision,
"Fl Score (Macro)': F1,
==ff'Class {class_name}": class_specific_accuracy[i] for i, class_name in enumerate(class_pames)}

results df3 = results_dfi.append(new_row, ignore_index=True})

dconfusion matrix
plt.figure(figsize=(12, 6))
sns. heatmap(cm, annot=True, fmt="d", cmap="Blues’, cbar=False, xticklabeli=clas:i names, yticklabels=class names)
plt.xlabel("Predicted labels"})
plt.ylabel(" True labels')
plt.title(f Confusion Matrix for {name}')
plt.show()
Sresul LS
print{“"Results DataFrame:"}
print{results_df3})

Figure 14: Hyperparameter Tuning Using Grid Search
8

& ANN model

def create_annfoptimizer="adam’, init="glorct_uniform’, neurons=32, layers=X, **kWargs):
model = Sequential()
model . add(Dense(neurons, Lnput_dim=X_train.shape[1], kernel_initializer=init, activation='relu’})
for _ in range(layers - 1):

model . add (Dense(neurons, kernel_initializer=init, activatisn="ralu’]})

model_add(Dense(len(class names), kernel initializer=init, activation="softmax"])
model. compile(loss="sparse_categorical crossentropy’, optimizersoptimizer, metrics=['accuracy’])
return model

¥ Wrop model using KerasClassifier
ann = KerasClassifier{model=create_ann, verbose=2)

& hyperporaeeter grid

param_grid = {
‘model_ optimizer': ['adem’, 'rmsprop’],
‘model__ init": ['glorot_uniform', "“normal®],
‘model_ neurons': [32, 64, 128],
‘model__ layers': [2, 3],
‘model_ epochs’: [58, 188],
‘model_ batch_size': [32, 64]

}

GridfearchlV finding hyperparameters
kfold = StratifiedkFold(n_splits=3, shuffle=True, random_state=42)
grid_search = GridsearchCV(estimator=ann, param_grid=param_grid, n_jobs=-1, cv=kfold)

¥ training data
grid_search.fit(X_train, y_train}

& Prediction
y_pred = grid search. predict(d_test)

Evgluation melrics

test_accuracy = accuracy_score(y_test, y_pred)

recall = recall score(y_test, y pred, average="macro’)

precision = precision_score(y_test, y_pred, average="macro')

fl = f1_score(y_test;, y_pred, average="macro”)

train_accuracy = accuracy_scorely_train, grid_search.predict(X_train})
cn = confusion_matrlx(y_test, y_pred)

class_specific_accuracy = ¢m.diagenal() / cm.sumfaxis=1}

& Printing

print{f Hodal: ANN")

print{f"Best Parameters: {grid search.best_params_}")

print{f " Training Accuracy: {train_accuracy}")

print{f "Test Accuracty: {test_accuracy}™)

print{f"Recall [Macro): {recall}”)

print{f"Precision (Macro): {precision}~)

print{f"F1 Score (Macro): {f1}")

for i, class_nane in enunerate(class_names):
print({#"Class-specific accuracy for {class_name}: {class_specific_accuracy[1]}7)

printi)

Saving resull
new_row = {
‘Model’: "ANNT,
‘Training Accuracy’: btrain_accuracy,
‘Test Accuracy’! test_accuracy,
'Recall (Macro)': recall,
'‘Precisien (Macre)': precision;
‘F1 Scare (Macro)": 1,
##{f"Class {class_name}': class_specific_accuracy[i] for i, class name in enumerate(class_names)}

results_dfl = reswlts _dfi.append(new_row, ignore_index=True)

confusion matrix

plt.figure(figsire=({12Z, G})

ins.heatmap{cn, annot=True, fmt="d', cmap='Blues’, cbar=False, xticklabels=class_names, yticklabels=class_names’
plt.xlabel('Predicted labals®)

plt.ylabel(' True labals®)

plt.title(' Confusion Matrix for ANN')

plt.show()

8 DataFrames
print{"Results DataFrame:"})
print{results_df3}

Figure 15: Grid Search Tuning for ANN

9

For the comparative evaluation of results from all three model pipeline
implementations, their saved results are combined and a bar plot of F1-scores of these models
from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the
effect of data oversampling, feature selection and hyperparameter tuning on model
performances as shown in Figure 16.

combined df = pd.concat([results df, results_df2, results_df3], keys=[Imbalanced', "Balanced®, 'Gridssarch Tuned®])
combined _df = combined df.reset_index{level=8).renamecolumns={"'level &': "Dataset’})

ins.set_palette(~colorblind”)

plt.figure(figsize={14, 8))

ins.barplot{x="Hodel', y='Fl Score (Macro)', hue='Dataset’, data=combined_ df, ci=Nene)
plt.title('Conparison of Fl Score Imbalanced, Balanced, and Tuned Datasets', fontsize=1&)
plt.xlabel('Model’, fontsize=14)

plt.ylabel('Fl Score (Macro)', fontsize=14})

plt.xticks(rotation=45)

plt.legend(title="Dataset")
plt.show()

Figure 16: Displaying results from all three model Implementations

4.2 UNSW NB15 dataset

Some steps for this dataset are the same as the previous one, so instead of putting the
code snippets again, figures from the IFD section will be referred to here again. Import the
UNSW NB15 into Jupyter Notebook IDE using the pandas function to read a CSV file as
shown in Figure 17.

df = pd.read_csv("C:\\Wsershhpd\Downloads\WUNSKH_NB1S testing-set.csv™)
df .shape
Figure 17: Read the CSV file for IFD

One column is removed during EDA as it is a column containing just index values in
it, as shown in Figure 18.

droping becouse it is just an index
df .drop{columns=['id"], inplace=True}

Figure 18: Dropping index column

After exploratory data analysis and dropping irrelevant columns, we performed label
encoding of all the categorical variables in the dataset as shown in Figure 19.

label_encoders = {}
for columm in df.select diypes{include=['cbject']).columns:
label encoders[column] = LabelEncoder()
df[coluen] = label encoders[column].fit_transform({df[column])

Figure 19: Encoding Categorical Variables

Data is split into train and test sets with a split ratio of 0.3, meaning the training set
has 70% data and the training set with 30% data as shown in Figure 20.

10

Vertical Splitting

X
¥

df .drop("attack_cat™,axis=1)
df ["attack_cat"]

Horizontal Splitting

¥_train, ¥ test, y_train, y_test = train_test_split{X,y, test _size = 2.3, random_state = 32}

print("X_train shape:", X _train.shape}
print("y_train shape:", y_train.shape}
print("X_test shape:", X_test.shape)
primt("y_test shape:", y_test.shape)

Figure 20: Splitting Dataset into Train and Test Sets

This dataset also had some infinite values and Nan values. The mean imputation
method shown in Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite
and nan values in the dataset.

After this initial data preprocessing, the model-agnostic pipeline is created following
the steps shown in Figures 21, 22 and 23. All models are implemented except for ANN as it
is implemented separately. Feature scaling and model evaluation are also performed within
this pipeline and results are saved into a data frame.

models
models = [
(“Logistic Regressicn", LogisticRegression{random_state-=32, max_iter-=1008a3)),
(“"Maive Bayes", GaussianMB()},
(“Random Forest™, RandomForestClassifier(random_state=32}),
(“¥eBoost", XeBClassifier({random_state=32)},
(“KMNN", KNeighborsClassifier(}),
(“=wM", swC{random_state=22))

1

rlass nomes

class_names = ["Mormal’, 'Backdoor', ‘Amalysis®, 'Fuzzers', ‘Shellcode’,
"Reconnaissance’, "Exploits', "Dos", 'Worms', "Generic']

Initiaglize best model to None

best_model = Mone

best_accuracy = 8.8

List to store results
results = []

Figure 21: Defining Models and Class Names for Pipeline

11

¥ Iterate over models and ewoluate their performance
for name, model in models:
¥ pipeline for feature scaling
pipeline = Pipeline([
["scaler™, StandardScaler()),
["model™, modeal)
)
¥ Fitting pipeline to train
pipeline.Fit(X_train, y_traln}
¥ prediction on training dota
¥_pred = plpeline.predict(X_train)
¥ prediction on test data
y_pred = pipeline. predict(X¥_test)
¥ gocurdcy SCore
train_accuracy = accuracy_score(y train, X_pred)
BLCUracy = accuracy score(y test, y_pred)
¥ recall score
recall = recall score(y_test;, y_pred, averages'macra’)
¥ precision Score
precision = precision_score(y_test, y_pred, average='macro’)
¥ F1 score
fl = fl_score(y_test, y pred, average='macro’)
¥ confusion matrix
tm = confusion_matrix(y_test;, y_pred)
¥ Calcuwlote class-specific accuracy
class_specific_accuracy = cm.diagonal() / em.sum(axis=1)
8 Printing evalwotion metrics
print(#"Model: {name}")
print(f"Tralning Accuracy: {brain_accuracy}™)
print(#"Test Accuracy: {accuracy}”)
print(#"Recall (Macro): {recall}")
print(f"Precision {(Macro): {precision}”)
print(f"F1 Score [Macra): {f1}")
for 1, class name in enumerate{clas< names):
print(f Class {class npame}: {class specific_accuracy[i]}")
primt(}

¥ Appending reswlls Co the List
results . appendi{
"Hodel™: name,
"Training Accuracy”: traln_accuracy;
"Test AcCuracy™: ACCUracy,
"Recall [(Macro)™: recall,
"Precision (Macro)": precision,
"Fl Score (Macro)™: 1,
==ff"[lass {class_name}™: clasi specific_accuracy[i] fer i, class_name in enumerate(class_pames)}

13
Figure 22: Model Agnostic Pipeline

Append results to list
results.append({
"Model": name,
"Training Accuracy": train_accuracy,
"Test Accuracy"”: accuracy,
"Recall {Macro)”: recall,
"Precision (Macro)": precision,
"F1 Score {(Macro}": 1,
*2{f"Class {class_name}": class_specific_accuracy[i] for i, class_name in enumerate{class_names}}

)

best model

if accuracy > best_accuracy:
best_accuracy = accuracy
best_model = pipeline

confusion matrix
plt.figure(figsize=(12, &)})
sns.heatmap{cm, annot=True, fmt="d', cmap="Blues', char=False, xticklabels=class_names, yticklabels=class_names})
plt.xlabel('Predicted labels')
plt.ylabel{'True labels'}
plt.title(f'confusion Matrix for {name}')
plt.show()
print("Best Model:", best model)
results_df = pd.DataFrame(results)
results_df

Figure 23: Displaying best model, confusion matrices and results

12

ANN is applied following the same steps as other models and previous dataset; it is
applied separately as shown in Figure 24. to get clearer output as it runs on many epochs
creating longer outputs.

¥ mogel
model = Sequential()
model. add(Dense(128, LInput_shape=({¥_tralin.shape[l],), activation="relu’})}
model . add(Dense(128, activation="relu’})
nodel . add(Dense(64, activation="relu”))
nodel . add(Dense(len{np.unique(y_train)}, activation="softmax’})
¥ compiling
model. compilefoptimizer="adam", loss="sparse categorical crossentropy”, metrics=|'accuracy’]}
¥ Training
history = model.fit{X¥ train, ¥ _train, epochs=58, batch_size=32, wvalidation split=8.2, werbose=1)
¥ testset
Ltest_loss, test_accuracy = model.evaluate(d test, y_test, verbose=8)
¥ Predictions
y_pred = model.predict(x_test)
y_pred classes = np.argnaxi(y_pred; axis=1)
Evaluation metrics
acCuracy = accuracy_score(y_test, y_pred_classes)
recall = recall score(y_test, y_pred_classes, average="macro’}
precision = precision_score(y_test, y_pred_classes, average='macro’
fl = Ff1_score(y_test, y_pred classes, averages macro”)
conf_matrix = confusion_matrix(y_test, y_pred_classes)
class_specific_accuracy = conf_matrix.diagonal() / conf_matrix.sum{axis=1)
¥ Print metrics
print{f Hodel: ANN")
print{f"Training Accuracy: {history.history] accuracy” |[-1]}"}
print{f Test Accuracy: {test_accuracy}™)
print{f Recall [(Macro): {recall}l”)
print{f*Precision (Macro): {precision}”)
print{f"F1l Score (Macro): {f1}"}
for 1, class name in enumerale(class names):

if i < len{class specific_accuracy):

print{f "Class {class_name}: {class_specific_accuracy[i]}")
else:
print{f Class {class_name}: WNSA (index out of bounds)™)

print()
& Store resulls
new_row = 4

‘Model’: "ANN',

'Training Accuracy’: history.history['accuracy'][-1];

"Test Accuracy': test_accuracy,

'Recall (Macro)': recall,
'‘Precision (Macro)': precision;
'F1 Scaore [(Macra)': 1,

#a{f"Class {class_nane}': class_specific_accuracy[i] if I « len(class_specific_accuracy) else None for 1,
class_name in enunerate(class_pames)}
H
results_df = results_df.append{new_row, ignore_index=True)
¥ confusion malrix
plt.figure{figsize=({18, B))
ins. heatmapg{conf_matrix, annct=True, fat="d', cmap="Blues'; xticklabels=class names, yticklabels=class_names)
plt.xlabel('Predicted”)
plt.ylabel(' True"}
plt.title(Confusion Matrix')
pli.show()

Figure 24: ANN implementation in the same pipeline

After the initial implementation of models on an imbalanced dataset with all the
features in it, we will perform feature selection to check its effect on model performance.
Random forest is used to create a feature importance plot as shown in Figure 10. of
Subsection 4.1 to check features that are important and which features can be removed due to
their lesser contribution to the prediction.

13

Since it is a large dataset, in Figure 25 for the oversampling of data we have taken
fewer instances by importing the dataset again with a defined number of rows and dropped
irrelevant columns as well. A full dataset can also be imported as well depending on the
computation resources of a system.

nrows = 128888

df2 = pd.read_csw("C:\0Us

Again dreopping coluens

ersh\vhph\hDownloads '\ UNSW_MBL1S testing-sel.csw™, nrowsS=nrows)
Trrelevant

df 2. drop(celuans=] "id" |, inplace=True)

df2. shape

Figure 25: Importing dataset again with less rows

Based on the feature importance plot of the random forest, the following features in
Figure 26 are dropped as they do not contribute to model training for making predictions.

df2 = df2.drop(columns=["is ftp_login®, "ct_ftp_cmd®, "is_sm_Lps_ports’; 'trans_depth”, 'dwin’, 'swin’'; 'ct_flw_http_mthd"
‘response_body len®, ‘"state”; ‘stepb’; “dtepb’; "dpkts', "djitt, "slesst, ‘spkts”, ‘dlosst)

Figure 26: Feature Elimination

Class imbalance is handled by the oversampling of minority classes using the Random
Over sampler as shown in Figure 27.

X = df2.drop{~attack_cat™,axis=1})
y = df2["attack_cat”]

over_sampler = RandomOverSampler(random_state=32})
X_resampled, y_resampled = over_sampler.fit_resamgle(X, y)

closs dgistribution after oversamgling

class distribution = pd.Series(y_resampled).walue counts()
print{"Class distribution atter oversampling:"}
print{class_distribution}

Figure 27: oversampling of minority classes
Figure 12: Oversampling Minority classes using Random Oversampling

After data balancing, Figure 28 shows the balanced data set is again split into train,
and test sets. Since we had imported the data again, the mean imputation method is shown in
Figure 5. Subsection 4.1 is used again to replace all such outliers, infinite and nan values in
the dataset and the same model pipelines from Figures 21, 22, 23 and 24 are applied to the
balanced dataset again. However, this time their results are saved into the new ‘results df2’
data frame to separate balanced data results from imbalanced ones.

X train, X_test, y train, y_test = traln_test split(

i _resampled, v _resampled, Test size = 8.3, random_state = 312)
W_train shape:"; X_train.shape)
W_train shape:®, y_traln.shape)
"H_test shape:", K _test.shape)
"y_test shape:", y_test.shape)

T T T
) ;- ;- ;-
= e
|.' |.l |.l |.l
A . T

Figure 28: Train Test Split after data balance

14

For the final Analysis, hyperparameter tuning of all models is performed as shown in
Figures 29 and 30 to find the best parameter for each model and their results are saved into a
third data frame.

nodels = {
'Logistic Regression®: (LoglsticRegression(randon_state=32, max_iter=18688), {'C": [8.1, 1, 1&]}).
‘Nalve Bayes": (GaussianMB(), {}).
‘Random Ferest': [RandemForestClassifier(random_state=32), {'n_estimators": [18, 188], 'max_depth": [None, 18, 28]}).
'NGBoost' s (MGBClassifier(random _state=32), {'n_estimstors": [18, 188], "max_depth': [3, 5, 7]1}).
'KMN = (KNelghborsClassitier(), {'n_neighbors': np.arange(3, 38, 2}}),
YEWMT: (LinearSVC(random_state=12, max_iter=18888), {'C': [8.1, 1, 18]},

class_names = ['Nul'mdl'. ‘Backdoor', "Analysis®, "Fuzzers'; "Shellcode’,
"Reconnaissance’, ‘Exploits', "Do5S', 'Worms', "Generic”)]

results_dfl = pd.DataFrame(colunns=[
‘Model’; "Training Accuracy’, 'Test Accuracy’; 'Recall (Macro)', "Precision (Macro}'; "F1 Score (Macro)®,
*[f'Class {class_npame}' for class name in class_pames)

1

for neme, (model, parans) in models. items():
StandardScaler
pipeline = Pipeline([
("scaler™, StandardScaler());
(“model™, model)
n

GridSearch find best porameters
grid search = GridSearchiV(pipeline, param_grid={"model_ " + k: v for k, v in params.items()}, cv=5, n_jobs=-1}

Croining data
grid_search fit{¥_train, y_train)

rest data
y_pred = grid_search.predict(X_test)

evalugtion metrics

test_accuracy = accuracy_score(y_test, y_pred)

recall = recall score(y_test, y_pred, average='macro')
precision = precision_score(y_test, y_pred, average='macro”)
1 = f1_score(y _test, v _pred, average='macra')

train_accuracy = accuracy_scoref(y_train, grid_search.predict(X_train})

cm = confusion_matrix{y_test, y pred})
class_specific_accuracy = en.diagonal() / cm.sum{axis=1)

print({#"Model: {name}”)
print(+"Best Parameters: {grid_search.best_params_}"}
print(+"Training Accuracy: {Urain_accuracy}™})
print(#"Test Accuracy: {test_accuracy}")
print(#"Recall (Macro): {recall}")
print{f"Precision (Macro): {precision}")
print(f"F1 Score (Macro): {f1}")
for 1, class _name in enumerate(class_names):
print(f Class-specific accuraey for {class_name}: {class_specific_accuracy[L]}"}
print()

new_row = {
"Hodel®: name,
"Training Accuracy': traln_accuracy,
"Test Accuracy': test_accuracy,
"Recall (Macro)": recall,
"Precision {Macro}': precision,
"Fl1 Score (Macro)': F1,
==f+'[lazs {class_name}" : class_specific_accuracy[i] fer 1, class_name in enumerate(class_names)}

results df3 = results_df3.append(new_row, ignore index=True})

§ confusion matrix

plt.figure(figsize=(12;, €))

sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False, xticklabeli=class names, yticklabels=class_mames)
plt.xlabel("Predicted labels®)

plt.ylabel(True labels')

plt.title(f Confusion Matrix for {name}')

plt.show()

print{“"Results DataFrame:"})
print{results_df3)

Figure 29: Hyperparameter Tuning Using Grid Search

15

ANN model

def create_annfoptimizer="adam’, init="glorot_uniform’, neurons=32;, layers=2, **kwargs):
model = Sequentialf()
model . add(Dense{neurons, Enput_dim=X_train.shape[1], kernel_initializer=init, activetlon='relu")})
for _ in range(layers - 1):

nodel . add(Dense(neurons, kernel_initializer=init, activation="relu”)}

model. add(Dense{len(class_names), kernel_initializer=init, activation="softmax’))
model . compilefloss="sparse_categorical_crossentropy’, optimizersoptimizer, metrics=['accuracy’])
return model

Wrap KergsClassifier
ann = KerasClassifier{model=create_ann, verbose=2})

parameters

param_grid = {
‘model_ optimizer®: [‘adam’, ‘rmsprop'],
‘model__init": ['glorot_uniform', "normal’],
‘model_ neuwrons': [32, &4, 128],
‘model_ layers': [2, 3],
‘model_epochs®: [58, 18],
‘model_ batch_size®: [32, 64)

}

GrigdSegrch for best paramelers
kfeld = StratifiedkFeld(n_splits=3, shuffle=True, random_state=421})
grid_search = GridiearchCViestimator=ann, param_grid=param_grid, n_jobs=-1, cv=kfold)

training data
grid_search.Fit(¥_train, y_train)

test data
y_pred = grid_search.predict(¥_test)

Evaluation melrics

test_accuracy = accuracy score(y_test, y_pred)

recall = recall score(y_test, y_pred, average="macro’)
precision = precision score(y_test, ¥ _pred, average='macro’)
fl = f1_score(y_test; y_pred, average="macro’)

train_accuracy = accuracy_score(y_train, grid_search.predict(X_train})

cm = confusion_matrix(y_test, y_pred)
class_specific_accuracy = cm.diagenal() / cm.sum{axis=1})

print{f "Model: ANN"})
print{f "Best Parameters: {grid search.best_params_}")
print{f"Training Accuracy: {train_accuracy}")
print{f "Test Accuracy: {test_accuracy}”}
print{f"Recall [HMacro): {recall}”})
print{f"Precision (Macro): {precision}”)
print{f"Fl1 Score (Macro): {fl1}"}
for 1, class_name in enumerate(class_names):
print(f "Class-specific accuracy for {class_name}: {class_specific_accuracy[1]}™)
print()

Save resull
Mew_row = 4

‘Model’: "ANN',

‘Training Accuracy’: Urain_accuracy,

‘Test Accuracy': test_accuracy,

'Recall (Macro}': recall,

‘Precision (Macre)': precision,

'F1 Score [Macro)': f1,

**[f"Class {class_pame}': class_specific_accuracy[i] for LI, class_name in enumerate(class_names)}
}

results_dfl = results_dfi.append(new_row, ignore_index=True)

¥ confusion matrix

plt.figure(figsize={12, G})

sns.heatmap{cn, annot=True, fmt="d', cmap='Blues’', cbar=False, xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted labels')

plt.ylabel(' True labels®)

plt.title('Confusion Matrix for ANN')

plt.show()}

print{"Results DataFrame:"}
print{results df3})

Figure 30: Grid Search Tuning for ANN

For the comparative evaluation of results from all three model pipeline
implementations, their saved results are combined and a bar plot of F1-scores of these models

16

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the
effect of data oversampling, feature selection and hyperparameter tuning on model
performances as shown in Figure 31.

combined _df = pd.concat([results_df;, results df2;, results_df3], keys=['Imbalanced’', "Balanced®', 'GridSearch Tuned®]}
combined_df = combined_df.reset_index(level=8).renane(columns=4"level &': "Datasel’})

ins.set palette(”colorblind™)
plt.figure(figsize={14, 8})
ins.barplot{x="Hodel' , y="F1 Score (Macro)', hue='Datasel’'; data=combined_df, ci=None})

plt.title(Comparison of Fl Score Imbalanced, Balanced, and Tuned Datasets', fontsize=1&)
plt.xlabel(' Model’, fontsize=14)
plt.ylabel('Fl Score (Macro)', fontsize=14)

plt.xticks(rotation=45)
plt.legend(title="Datasel"}
plt.show(}

Figure 31: Displaying results from all three model Implementations

4.3 NF-UQ-NIDS-v2 Dataset

Import the NF-UQ-NIDS-v2 Dataset into Jupyter Notebook IDE using the pandas
function to read a CSV file as shown in Figure 32. For this dataset, 300,000 rows are taken
since it contains millions of records, which would be difficult to process with the resources
we have.

nrows = 302088

first 309,000 rows

df = pd.read_csv("C:\\Users'\hp\\Downloads \\NF-UQ-NID5-v2Z.csv", nNrows=nrows)
df .shape

Figure 32: Read the CSV file for IFD

After importing the CSV, EDA is done and the following columns in Figure 33 are
dropped as they consist of the IP addresses, which are better to remove to avoid any ethical
concerns. Also dataset column is removed, which names different small datasets, combined
to make this big data.

drop these columns as they are just IP addresses
df .drop{columns=["IPV4 SRC ADDR', 'IPV4 DST ADDR', ‘"Dataset’],inplace=True)

Figure 33: Dropping IP address and irrelevant columns

After that, we performed label encoding of the target variable as shown in Figure 34.

label encoder = LabelEncoder()
df["Attack"] = label encoder.fit transform{df["Attack™])

Figure 34: Encoding Categorical Variables

Data is split into train and test sets with a split ratio of 0.3, meaning the training set
has 70% data and the training set with 30% data as shown in Figure 35.

17

X = df.drop("aAttack"”,axis=1)
y = df["aAttack™]
Horizontal Splitting

¥_train, X_test, y_train, y_test = train_test_split{ X,y, test_size = 8.3, random_state = 32)

"X_train shape:", X_train.shape)
"y_train shape:", y_train.shape)
"X_test shape:", X _test.shape)

"y_test shape:", y_test.shape)

primt
primt
print
primt

e —,—

Figure 35: Splitting Dataset into Train and Test Sets

This dataset also gave errors due to the presence of some infinite values in the dataset.
The mean imputation method shown in Figure 5. of section 4.1 is used to replace all such
outliers, infinite and nan values in the dataset.

After that dependent class names and models are defined to create the models pipeline
as shown in Figure 36.

models
models = [
{“Logistic Regression”, LoglisticRegressicn(random_state=32, max_iter-12e08)),
("Naive Bayes", GaussianMB{}),
{"Random Forest"™, RandomForestClassifier{random_state=32)),
{"XGBoost®, XGBClassifier{random_state=32)),
{"KNN", KNeighborsClassifier()),
("svM", svC{random_state=32})

]

class names

class_names = ['Dos", 'Benign', 'scannimg', "DDos", 'xss', 'Bot’,
'Reconnaissance’, 'password’, 'Fuzzers', "injectiom', °"Theft®,
'Brute Force', "Imfilteration’, 'Exploits®, 'Generic®, ‘'Anmalysis’,
'Backdoor®, 'mitm", 'Shellcode’, ‘ransomsare’]

Imitialize best _model to mome

best_model = None

best_accuracy = 2.8

store results
results = []

Figure 36: Defining Models and Class Names for Pipeline

After defining models and class names, the steps from Figures 22 and 23 of section
4.2 are applied to iterate models in the model's agnostic pipeline and save their evaluation
into the defined data frames. Similarly, ANN is applied following the code from Figure 24 of
section 4.2

ANN is applied following the same steps as other models; it is applied separately as
shown in Figure 9. to get clearer output as it runs on many epochs creating longer outputs.

After checking the models on the imbalanced dataset with all the features in it, we
will perform feature selection to check its effect on model performance. For this purpose, a
random forest is used to create a feature importance plot as shown in Figure 37.

18

nodel = RandomForestClassifier(random_state=32)

pipeline = Pipeline(|
("scaler”, Standardscaler()},
{("model”, model)
1]
pipeline.fit{¥ _train, y_train)
¥ fFeature imporfdmce
Iinportances = pipeline.named steps| 'model’ | . feature_ importances_
feature_names = np.array(X.colunns)
indices = np.argsort{inportances] ::-1]

¥ PLot

plt.figure(figsize={16, 9})

plt.title("Feature Importances [Random Forest)™)
ins.barplot{x=importances|indices), y=featwre_names|indices], palette="colorblind')
plt.xlabel('Relative Importance”)

plt.ylabel('Features')

plt.xticks(rotation=58)

plt. show()

Figure 37: Feature Importance using Random Forest

For balancing the dataset, it is imported again in Figure 38 with fewer rows as after
oversampling it would take a lot of time to process

nrows = legsea

df2 = pd.read_csv{"C:V\Wsers\\hp\\Downloadsh \NF-UQ-NIDS-v2.C5v", NrOWS=Nrows)
Again dropping columns Irrelevant

df2.drop{columns=["IPV4_SRC_ADDR', "IPW4 DST_ADDR', 'Dataset'],implace=True)
df2.shape|

Figure 38: Importing Data for balancing

In figure 39, noncontributing features identified by the feature importance plot of
random forest are removed to avoid data redundancy and reduce the code execution time.

df2 = dfz.drop(columns=['DST_TO_SRC_SECOND_BYTES', 'SRC_TO_DST_SECOND EYTES', 'FTP_COMMAND_RET_CODE', 'RETRANSMITTED_IN_FKTS',
'RETRAMSMITTED_QUT_PKTS', "ICMP_TYPE', 'ICMP_LPV4_TYPE', 'RETRANSMITTED_OUT_BYTES',
'RETRAMSMITTED_IN_BYTES', "NUM_PKTS_1@824 TO 1514 BYTES', 'DNS_TTL_ANSWER', 'NUM_PKTS_256_TO_512_BYTES',
'NUM_PKTS_512_TC_1824 BYTES'])

Figure 39: Feature Elimination

After that label encoding of the target variable is done again and data imbalance is
handled in Figure 40. using the random oversampling technique that oversampled the classes
with fewer instances and makes the dataset balanced.

over_sampler = RandcmOversampler({random_state=32)
¥_resampled, y_resampled = over_sampler.fit_resample(x, ¥)

distribution after oversompling

class_distribution = pd.Series{y_resampled}.value_counts()
print{"Class distribution after cversampling:")
print{class_distribution}

Figure 40: Oversampling Minority classes using Random Oversampling
After data balance, the balanced data set is again split into train, and test sets, infinite, Nan
and outliers are removed from the newly imported partial dataset following Figure 5 of
Subsection 4.1. The same model and class name from Figure 36 are defined again and

19

executed using the standard scaler pipelines from Figures 22 and 23 along with the ANN
pipeline from Figure 24 are applied to the balanced dataset again. However, this time their
results are saved into the new ‘results_df2’ data frame to separate balanced data results from
imbalanced ones.

models = {
“logistic Regressien’: (LogisticRegression{random_state=131, max_iter=18888), {'C': [8.1, 1, 18]}),
"Maive Bayes': [(GaussianMB(), {}).
“Random Forest”: (RandomForestClassifier(random_state=32), {"n_estimators®: [18, 188], ‘max_depth’: [Mone, 18, 28]1),
“KGBopst': (MGBClassifier(random _state=32), {"n_sestimators®: [18, 188]), ‘max_depth": [3, 5, 71}),
“ENNT: (KMeighborsClassifier(), {'n_neighbors™: np.arange(3, 38, I)}),
TEVM: (SWCO{random_state=32), {'kernel’: ['rbf’, ‘poly’], "C°: [8.1, 1, 18]},

+

class _names = ['DoS°, 'Benign’', "scanning®, ‘DDo5°, ‘xss", ‘Bot",
‘Reconnalissance’ ; "password”; ‘Fuzzers'; “Injection®; 'Theft®,
'Brute Force®, 'Infilteration’; "Exploits’, 'Generic’; "Analysis’;
‘Backdoor®, "mitm", ‘Shellcode’; ‘ransomware']

store resulls

results_df3 = pd.DataFreme(colunns=|
"Model”, 'Training Accuracy', "Test Accuracy’, 'Recall (Macro)', 'Precision [Macro)®, 'F1 Score (Macro)',
=[+'Class {class_peme}” for class_name in class_names)

I

for name, (model, params) in models.items():
StandardScaler
pipeline = Pipeline(|
{"scaler”, StamdardScaler(}},
{"model", model)
I

GridSearchCV find best hyperparamelers
grid_search = GridSearch{V{pipeline, param _grid={'model ' +# k: v fer k, v in params.items(}}, cv=5, n_jobs=-1)

grid_search.fit(X_train, y_train}
y_pred = grid search.predict(X_test)

¥ evaluation metrics

test_accuracy = accuracy_scorel(y_test, y_pred)

recall = recall score(y_test, y pred, average="macro”)
precision = precision_score(y_test, y_pred, average="macro”)
fl = f1_score(y_test, y_pred, average='macro”)

dgccurdcy wsing the best estimator
traln_accuracy = accuracy_scorel(y_train, grid_search.predict(¥_train)}

confusion matrix
cm = confusion_matrix(y_test, y_pred)
class specific_accuracy = em.diagonal() / em.sum{axiz=1})

print{f Model: {name}"™)
print{f Best Parameters: {grid_search.best_params_}" }
print{f*Training Accuracy: {train_accuracy}”}
print{f Test Accuracy: {test accuracy}™}
print{f"Recall (Macro): {recall}l"})
print{f*Precision (Macro): {precision}™})
primt{f*Fl Score (Macro): {f1}"}
for L, class_name in enumerate(class_names):
print{f"Class-specific accuracy for {class_name}: {class_specific_accuracy[i]}")
primt{}
i save resulls
new_row = {
"Modal': name,
"Training Accuracy”: train_accuracy,
"Test Accuracy': test_accuracy,
"Recall (Macre)': recall,
"Precision (Macro)®: precizion,
"F1 Score (Macma)': F1,
#xff'Class {class_name}': class_specific_accuwracy[i] for 1, class_neme in enumerate{class_names)}

results_dfl = results_dfi.append(nes_row, Ignore_index=True)

¥ confusion matrix

plt.figure{figaize={12, &))

ins. heatmap{cn, annot=True, fat="d', cmap="Blues', cbar=False, xticklabels=clacs names, yticklabels=class names)
plt.xlabel{'Predicted labels")

plt.ylabel{ ' True labels"}

plt.title{+' Confusien Matrix for {name}’}

plt.show(}

print{"Results DataFrame:"})
print{results_df3)

Figure 41: Hyperparameter Tuning Using Grid Search
20

For the final Analysis, hyperparameter tuning of all models is performed as shown in
Figures 41 and 42 to find the best parameter for each model and their results are saved into a
third data frame.

def create_ann{optimizer="adam', init='glorol_uniform’', newrons=32, **Kwargs):
nodel = Seguential()
nodel. add{Dense(neurons, Input_dim=X_train.shape[l], kernel_initializer=zinit, activation="relu'})

nodel. add{Pense(neurons, kernel_initializer=init, activation='relu'})
nodel. add{Dense(len{class_names), kernel_ initializer=init, activation='"softmax’))
nodel.compile(loss="sparse categorical crossentropy’ . optimizer-optimizer, metrics=['accuracy"])

return model

¥ Wrop KerosClassifier
ann = KerasClassiflier{model=-create_ann, verbose=0)

¥ hyperparameter grid
paran_grid = {
model [fadam’, "rmsprop”],
model init': ['glorot_uniform’, 'noreal’],
ons": [3Z2, 64, 18],
: [58, 1a@8],
[3z, &4)

5

Gridsearch

grid_search = GridSearchCV(estimator=ann, paran grid=paran_grid, n_jobs=-1, cw=5)
grid_search.fit{X_train, y_train)
y_pred = prid_search.predict(X_test})

test_accuracy = accuracy scorefy_test, y_pred)
recall = recall_score(y_test, y_pred, average="macro')

precision = precislion_score(y_test, y_pred, average='macro'}
1 = Ff1_score(y_test, y_pred, averages macro’)
traln_accuracy = accuracy_score(y_train, grid_search.predict{X_train}))

Confusion malrix
cn = confuslon_matrix(y_ test, y pred})
class_specific_accuracy = cm.diagonal() / cm.sum(axis=1)

print{+"Modal: ANNT™)
print{f"Best Parameters: {grid_search.best_params_}")
print{f"Tralning Accuracy: {train_accuracy}”)
print(f"Test Accuracy: {test_accuracy}")
print{+"Recall (Macro}: {recall}"}
print{f"Precision (Macro): {precisient”)
print{f"F1 Score (Macra): {f1}")
for 1, class_name in enumerate{class_names):
print{f Class-specific accuracy for {class_name}l: {class_specific accuracy[i]}”)
print()

Sagve resulls
newW_row =
Model®: "AMN®,
Training Accuracy': train_accuracy,
Test Accuracy”: test_accuracy,
Recall (Macro)l”: recall,
Precizslon (Macro}': precision,
F1 5core (Macro)': 1,
=#lf"Class {class_name}': class_specific_accuracy[i] for i, class_name in enumerate(class_names)}

results_df3 = results_df3.append({new_row, ignore_index=True}

confusion malrix

plt.figure(figsize=(12, 6))

sns.heatmap(cm, annot=True, fmt="d", cmap='Bluesi’, cbar=False, xticklabels=clazsi nemes, yticklabels=class names)
plt.xlabel("Predicted labels')

plt.ylabel("Tr labels')

plt.title(" Confusion Matrix for ANN')

plt.show()

& updated OF
print{"Results DataFrame:"}
print{results_d4+3)

Figure 42: Grid Search Tuning for ANN

For the comparative evaluation of results from all three model pipeline
implementations, their saved results are combined and a bar plot of F1-scores of these models

21

from Imbalanced, balanced and Grid Search Tuned datasets is displayed to conclude the
effect of data oversampling, feature selection and hyperparameter tuning on model
performances as shown in Figure 16.

combined_df = pd.concat{|[results df, results_d+2, results_df31], keys=["Imbalanced’'; "Balanced', 'GridSearch Tuned'])

combined df = combined_df.reset_index{level=8).rename|columns={"level 8": "Datasel’'})
sns.set_palettef"colorblind™})

plt.figure(figsize=(14, E)]

sns.barplot(x="Model", y="F1 Score (Macro)', hue="Dataset”, data=combined_df, ci=None)

plt.title("Fl S¢
plt.xlabel(" Mod
plt.ylabel("Fl Score (Macro)'; fontsize=14})

plt.xticks(rotation=45)

plt.legend(title="Dataset", loc="center left’, bbox_to_anchor=(1, &.5))
plt.show()

e for Imbalanced, Balanced & Tuned-Model Datasets', fontsize=16})
., Tontsize=14)

Figure 43: Displaying results from all three model Implementations

For the final analysis of these model agnostics pipelines on the three datasets, you can
compare the results obtained from Figure 16 of section 4.1, Figure 31 of section 4.2 and
Figure 43 of section 4.3.

References

Moustafa, N. and Slay, J., 2015. UNSW-NB15: A Comprehensive Data Set for
Network Intrusion Detection Systems (UNSW-NB15 Network Data Set). Proceedings of the
2015 Military Communications and Information Systems Conference (MilCIS). [online] IEEE
Xplore. Available at: https://doi.org/10.1109/MilCI1S.2015.7348942.

22

https://doi.org/10.1109/MilCIS.2015.7348942

