
 
 

 
 
 
 
 
 
 
 
 
 

 

Transfer Learning and Fine-Tuned Faster R-CNN for 

Improved Insect Detection in Agriculture 
 
 
 

 

MSc Research Project 
 

Data Analytics 
 
 

 

Jeseema Farhath Vesakkar Ansari 
 

Student ID: x23129557@student.ncirl.ie 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Vladimir Milosavljevic 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student Name: 

 

Jeseema Farhath Vesakkar Ansari………………………………… 

 

Student ID: 

 

……x23129557@student.ncirl.ie……………………………… 

 

Programme: 

 

……Data Analytics…………………………………… 

 

Year: 

 

…2023-2024 

 

Module: 

 

……MSc Research Project…………………………………………….……… 

 

Supervisor: 

 

……Vladimir Milosavljevic ………………………………………………………….……… 

Submission Due 

Date: 

 

……12/08/2024………………………….……… 

 

Project Title: 

 

……Transfer Learning and Fine-Tuned Faster R-CNN for Improved 

Insect Detection in Agriculture………………………………………………….……… 

Word Count: 

 

………10813. Page Count…………30………. 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

………Jeseema Farhath Vesakkar Ansari…………………………… 

 

Date: 

 

………………………12/08/2024………………………………………… 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 
 

Transfer Learning and Fine-Tuned Faster R-CNN for 

Improved Insect Detection in Agriculture 
 

Jeseema Farhath Vesakkar Ansari  

x23129557@student.ncirl.ie  
 

 

Abstract 

 

Over the years, various insect pests have posed challenges to the agricultural sector 

with serious off-takers to the losses. Correct identification of insects and pests are 

important steps in pest control, while existing solutions for this problem can be 

imprecise and inhibit scalability. Traditional methodologies are gradually losing its 

effective role in terms of identification of insects due to its incapability in processing 

large amount, and versatility of data and real time detection. To this end, this research 

seeks to apply the advanced deep learning method to improve insect detection in 

agricultural environments where the pest issue is prevalent. In particular, the examined 

architecture is based on the Faster R-CNN model, which follows the transfer learning 

approach where the base networks are trained on the pre-collected datasets, and then 

adapted to the authors’ custom collection of dangerous farm insects sourced on Kaggle. 

Various species of insects and temperature conditions are incorporated in this dataset 

making it rich for any training and testing of models. The primary innovation of this 

study lies in the development of a custom training pipeline that incorporates detailed 

accuracy calculations tailored for object detection tasks. This approach ensures the 

evaluation metrics accurately reflect the model's performance in detecting and localizing 

insects. The methodology also involves significant data augmentation to address the 

class imbalance inherent in the dataset, thereby improving the model's generalizability 

and robustness. Upon implementation, the fine-tuned Faster R-CNN model achieved a 

detection accuracy of 91%, demonstrating significant improvements compared to 

baseline models such as ResNet50V2, ResNet152V2, MobileNetV2, Xception which 

achieved accuracies of 72%, 63%, 70% and 53% respectively. Also after hyperparameter 

tuning efficiently, the best baseline model emerged to be the Xception model with an 

impressive accuracy of 78% on the validation data. These results highlight the superior 

performance of the Faster R-CNN and the Xception model in real-time pest monitoring 

and management. This enhanced detection capability can lead to more targeted pest 

control interventions, thereby reducing pesticide usage and promoting sustainable 

farming practices. This research contributes to the field of agricultural technology by 

providing a scalable and efficient solution for insect detection.  

 

1 Introduction 
 

According to FAO projections, there will be almost 33% more mouths to feed by 2050. It is 

recognized, therefore, that food production cannot sustainably provide ever-increasing 

amounts of food to feed the world's expanding population. This problem is made worse by 



2 
 

 

the fact that humans need a steady and sustainable supply of food all year round but crops 

only grow during certain seasons. Especially in tropical countries, agricultural crops are one 

of the world's most important sources of food. It also keeps individuals prosperous globally 

and offers conveniences for economic impartiality. As a result, there has been a lot of focus 

on protecting agricultural crops in terms of both quantity and quality. Many scientific 

techniques have been applied in this area as a result to accomplish the previously specified 

goals. Insect infestation is the primary source of damage to agricultural crops. According to 

certain research, insects and diseases can directly harm healthy plants by spreading a variety 

of disorders. Many techniques are used all over the world to eradicate pests from farms. 

However, not all approaches are effective. Furthermore, using common insecticides to keep 

insects away has a lot of drawbacks. Overuse of pesticides reduces the effectiveness of 

prevention and increases the risk of immunotoxicity in workers and consumers, as well as 

domestic animal fatalities and transmission, pesticide resistance, and a lack of intrinsic 

antagonists to pests. Additionally, pesticides have the potential to contaminate the air, 

fertilized soil, and groundwater on a farm.  

Beyond simply producing food, there are other ways to attain food security. Using proper 

food preservation and storage methods can help prevent food waste and ensure that food is 

available for a longer period. There are unique challenges to growing high-quality food, like 

integrating new technologies and satisfying the growing demand. Farmers still face 

difficulties long after the crops have been harvested. Activities carried out after harvest have 

similar significance and may determine whether consumers receive food of a high calibre. 

10% to 20% of the world's grain production is thought to be lost worldwide, according to an 

FAO report. Additionally, the Food and Agriculture Organization of the United Nations 

(FAO) estimates that 17% of the world's food supply is lost during storage (10% by insects 

and 7% by mites, rats, and illnesses). Insect infestation of stored agricultural products results 

in significant quantitative damage. However, the products suffer from both quantitative and 

qualitative degradation due to the presence of insects or their body parts (legs, wings, 

molting, etc.) that are undesirable for food. Due to their activity in food and the production of 

their metabolic products, insects also alter the chemical composition of stored goods, 

lowering the product's quality. 

The agricultural industry may be able to solve its present insect infestation issues by 

employing Internet of Things (IoT) based smart wireless technology to remotely spot early 

insect activity in crop development, storage, processing, handling, and transportation. The 

technology uses cloud computing, and a unique device called SmartProbe, which Pan and his 

colleagues built using wireless sensors and cameras, to identify and predict bug occurrences. 

This could reduce the amount of food lost, the necessity for fumigants in contemporary 

agricultural products, and insect pest control1. 

Automated insect monitoring systems are still required for food production and for the 

storage of both raw and processed food. But the current generation of technology either can't 

identify significant pests well enough or require human assistance in order to do so. Insect 

 
 
1 https://caes.ucdavis.edu/news/new-smart-technology-developed-uc-davis-professor-may-help-early-
detection-insects-food-and 
 

https://caes.ucdavis.edu/news/new-smart-technology-developed-uc-davis-professor-may-help-early-detection-insects-food-and
https://caes.ucdavis.edu/news/new-smart-technology-developed-uc-davis-professor-may-help-early-detection-insects-food-and
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identification and counting using artificial intelligence (AI) is a potentially efficient means of 

satisfying the need for quick, precise, and timely insect information to improve integrated 

pest management (IPM) methods. Advances in computer vision technology coupled with 

deep learning algorithms enable artificial intelligence (AI) to identify insects. Continuous 

observations can be made using non-invasive devices like cameras. Deep learning models can 

be trained using photos to estimate insect biomass, diversity, and abundance. Near-infrared 

(NIR) spectroscopy and machine vision are two of the most recent techniques for fast, non-

destructive, and effective insect detection and classification. NIR spectroscopy is accurate 

and dependable, however it cannot detect low infestation levels or distinguish between live 

and dead insects.  

Recent work has merged machine vision and machine learning to increase the accuracy of 

stored insect grain identification and classification. One of the most widely used machine 

learning techniques is convolutional neural networks (CNNs), which have an intricate 

network topology and are capable of performing convolution operations. A deep neural 

network was utilized to recognize and identify six species of stored grain insects that were 

mixed with grain and dockage materials. They utilized different models for different insects 

and ran into issues such as categorizing one species as two, even though they achieved a high 

mean average precision (mAP) of 88%. Only one species of bug could be identified at a time 

by a deep CNN-based system in another insect identification system that was focused on a 

range of insect sizes and achieved mAP of up to 95%(Mendoza et al., 2023). 

 

1.1 Motivation 

 

According to the Food and Agriculture Organization, insects cause up to 40% of the world's 

crop production to be destroyed annually (FAO). In addition to jeopardizing food security, 

this startling loss severely strains farmers and the world food supply network2. Pest insects 

account for 20% to 40% of global agricultural production losses annually, necessitating the 

use of insecticides in agricultural practices. With the advent of intensive agriculture, applying 

these chemical components has emerged as the most profitable crop protection strategy. Due 

to the chemical makeup of pesticides and their widespread use over decades, there has been a 

rise in resistant bugs, organism poisoning, air and water pollution, poisoning and other health 

issues. Some of the essential steps include insect monitoring through which pest 

identification is done to avoid misuse of chemicals. Technologically advanced Integrated Pest 

Management (IPM) programs that have been formulated in the recent past seek to use small 

quantities of pesticide only when a pest outbreak is identified. Thus, the overall objective of 

insect monitoring is to equip the farmer with tools that will help in decision making to 

increase on crops, have better and quality yields with regarding to the environment. 

Historically it entails counting the number of insects trapped within fields from where 

monitoring specialists regularly deliver traps. However, this process is rather a time-

consuming method as well as not free from errors and individual approbation since each trap 

can contain a large number of insects of different species within it(Teixeira et al., 2023). 

Artificial intelligence algorithms improve data applicability and provide hypothesis for better 

decision making. Machine learning uses algorithms and statistical models to enhance the 

performance of tasks it has been assigned over time on the other hand, Deep learning applies 
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the use of neural networks with more than one layer to extract patterns, which is more 

beneficial when it comes to image tasks such as classification, segmentation, and detection. 

Insect detection and crop disease recognition have suggested highly developed deep learning 

models to improve proficiency and reliability. The model which is YOLOv3 in which the 

backbone network was CSPDarknet-53 and regression prediction was Complete Intersection 

over Union (CIOU) which yielded an accuracy of 90.62%, while improving 3% compared to 

the original YOLOv3 model(Li, Zhu and Li, 2021). Another one, ResNet v2, Mask R-CNN, 

and YOLOv7 algorithms for pests and diseases on the tomato crop(Yang, Chen and Sonza, 

2024).  

This research seeks to use a fine-tuned Faster R-CNN model to overcome the traditional 

challenges by having transfer learned a pre-trained network on a dangerous farm insects’ 

dataset. The data is collected from Kaggle containing various insect species which will serve 

the purpose of model training and validation properly. Training a custom pipeline that 

includes fine-grained accuracy measures specific to the object detection problem guarantees 

that it reflects the model’s capabilities in recognizing the bugs. This method’s benefit is 

especially noticeable when there is a scarcity of labeled data, as it is more effective than 

training a model from scratch, as seen in the YOLOv3 and YOLOv7 cases. And also makes 

the model less prone to overfitting and increases detection performance as compared with the 

comparative studies, adding to the model’s redundancy and internal validity of the results. 

1.2 Research Question 

A research topic has been established for this study based on the subject presented above 

 

• How does the employed transfer learning techniques, when improved by 

hyperparameter tuning, along with the proposed fine-tuned Faster R-CNN model, 

improve insect detection performance and accuracy in agriculture, making farming 

methods more sustainable? 

 

 

2 Related Work 

2.1 Grain Storage Techniques and Insect Management in Agricultural 

Crops for Food Security 
 

The lack of enough food to feed the world's expanding population has become a major 

challenge. Since arable land areas cannot be greatly extended, almost all of the world's fertile 

land is currently occupied. Securing high-quality harvests while making agricultural 

production environmentally sustainable is a global challenge (Jankielsohn, 2018). 

The Sustainable Development Goal 2 (ending hunger and achieving food security) is a high 

priority set forward by the United Nations. However, in 2021, there were between 702 and 

828 million hungry people in the world, and approximately 2.3 billion people worldwide 

suffered from moderate-to-severe food insecurity. Climate change is a serious issue because 

the Food and Agriculture Organization (FAO) has noted that adversely affect everyone's 

access to food because of its effects on agriculture. As a result, there will be more financial 
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strain on food access. Based on simulations using the International Model for Policy 

According to analysis, the three most important staple cereals in the world—rice, wheat, and 

maize—should face price hikes of between 31 and 106% by 2050, adjusted for inflation. 

Food loss during storage is seen to be the most important stage of food value chain losses, 

especially in developing countries where the majority of losses occur during this period. But 

there are losses all the way from manufacture to distribution. However, food storage can 

improve food security and ensure that there is enough food accessible for customers provided 

adequate effort is done to encourage efficient food storage techniques and the use of 

improved storage buildings (Afriyie et al., 2023). 

People's nourishment is met on a fundamental level by crop cultivation. Crop production in 

increasingly large-scale, intense, and simple agricultural settings is frequently threatened by 

several factors, including a lack of pollinators and pest damage from weeds, rodents, 

pathogenic microorganisms, nematodes, and insect pests. While crop pests can result in 

significant losses during crop production and food storage, efficient pest management helps 

to lower crop loss and misuse of pesticides. To ensure good yields and quality, insect 

pollination is also necessary for most of the vegetable and fruit tree crops. For sustainable 

crop production, research on pest management tactics and methods and their possible effects 

on pollination and pest control in agricultural landscapes is crucial(Ouyang et al., 2022).  

Grain is the essential material that keeps humans alive, and both the sustainability of human 

expansion and our future are inextricably related to it. First, this crop provides the body with 

the nourishment and energy required to maintain regular physiological functions. It is high in 

lipids, proteins, and carbs, dietary fibre, vitamins, and minerals are essential for sustaining 

human health and life. Low-temperature grain storage technology primarily uses natural or 

artificial cooling during the storage process in order to keep grain in the depot at a lower 

temperature and prevent or slow down the invasion of harmful organisms and the 

deterioration in quality. Depending on the climatic circumstances of the grain storage 

locations, solutions for reducing the temperature of grain piles include covered and closed 

grain storage, mechanical or natural refrigerator cooling, and rebuilt warehouse thermal 

insulation. Grain storage system with a regulated atmosphere stops dangerous insects from 

growing by altering the air quality in the grain storage facility by hand. This delays the 

deterioration of grain quality, inhibits the growth of mildew and pests, and slows down the 

rate at which grain respiration and physiological metabolism occur(Zhao, Lv and Li, 2023). 

Crop pests can be controlled in two different ways: "top down," where pests are controlled by 

natural enemies and biodiversity, and "bottom up," where pests are controlled by plant 

defensive mechanisms. Frontier areas in research and technology for crop disease prevention 

and insect pest management are always crucial, and ecological regulation and control of pests 

in agricultural landscapes are no exception(Fang, XingYuan and Feng, 2020). 

The following section details the detrimental effects that bug infestations on product have on 

farmers and how this forces them to maintain appropriate storage conditions, in addition to 

the increased global efforts to battle hunger through various food storage strategies. 
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2.2 Effects of Insect Infestation on Crop Growth and Commodity Storage 

 

The modernization of the agricultural production system resulted in a significant annual rise 

in food output to fulfil the continuously expanding demand from customers. In many 

countries, the majority of food grains produced are stored for regular and emergency usage. 

Security and safety of food are at risk because major grain destruction and storage losses 

result from these grains' frequent direct or indirect insect infestation. Many bug species that 

cause significant damage to commodities stored in storage account for between 10 and 20 % 

of all storage losses. Insects that commonly cause losses of stored objects of agricultural and 

animal nature include more than 600 different species of beetles, 70 species of moths, and 

355 species of mites. Both the quantity and quality of the stored goods are severely lost as a 

result of this massive pest arena. Insect pests that harm storage products usually originate in 

the field and become established at the storage location due to the favourable 

environment(Guru et al., 2022).  

One of the main causes of agricultural loss that occurs annually throughout the world is pests. 

Chemical pesticides have long been the primary means of agricultural pest prevention and 

control. Nevertheless, there is never a single pesticide that works for every type of pest, and 

the number (as well as their distribution and categories) of agricultural pests in the field 

greatly influences the performance of pesticides, even though these factors are necessary for 

precision pest management. Because of this, chemical pesticide overdosage is widespread, 

leading to high insecticidal costs and issues with food safety resulting from pesticide residues 

in actual use.  

Across the globe, agricultural pests seriously reduce food yields in both developed and 

developing nations. Recent studies reveal that agricultural diseases and insect infestations 

cause about half of the world's crop production to be lost. Real-time monitoring of the types 

and distributions of agricultural pests has become essential with the introduction of precision 

agriculture in recent years, since it enables effective and precise management of agricultural 

pests in the field. Traditionally, manual counting and visual inspection have been the main 

methods used to gather data on the population of pests. However, because of worker 

exhaustion and skill deficiencies, this task requires a lot of labour and takes a long time with 

inconsistent accuracy(Li et al., 2020).  

An Insect infestation of stored agricultural products results in significant quantitative 

damage. However, in addition to causing quantitative harm, the inclusion of insects or their 

bodily parts—legs, wings, molting, etc.—degrades the items' quality. In food, these 

components are also undesirable. Because they produce metabolic products and are active in 

food, insects also contribute by changing the chemical composition of preserved things, 

degrading their quality. A portion of the commercial and nutritional value of foods and raw 

materials is lost, which may have negative health effects on consumers. Jood et al. 

investigated the possibility that the insect infestation of T. granarium (Everts) and R. 

dominica (Fabricius) would change the proteins in cereals. It was discovered that a 50:50/0 

mixed population infestation of these insects resulted in a decrease in the amount of 

important amino acids present in wheat, maize, and sorghum. In particular, the results 

indicate a drop in methionine per wheat of 38.9%, in isoleucine per maize of 30.8%, and in 

lysine per sorghum of 32.9%. When it comes to cultivating crops, insects primarily do two 
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kinds of harm. First, the plant is harmed directly by the feeding insect, which burrows in 

stems, fruit, or roots and eats on leaves. This kind of pest includes hundreds of species of 

adult and larval orthopterans, homopterans, heteropterans, coleopterans, lepidopterans, and 

dipterans. An indirect damage occurs when an insect does little to no harm to a crop but 

instead disperses a bacterial, viral, or fungal illness(Stathas et al., 2023). 

 

2.3 Conventional Techniques for identifying Insects in Agricultural Food 

Storage 

The management of grains after harvest mostly entails treating the grains in a scientific 

manner and storing them in safer ways. The field-harvested commodity also features their 

stored food grain which is attacked by the following insect pests. Mating behaviour, feeding 

habits, life cycle, effect on plants and harm they cause are different in each case of an insect. 

In management, it is therefore important that the presence of insects or signs of insect damage 

is detected as early as possible. Both the visual examination and observation of insects at 

different stages represent the core of all assessment methods. Among the novel strategies 

covered in this course and structure are techniques that have allowed researchers to pinpoint 

the insects infesting products that are being stored. For instance, Hagstrum et al. (1996) used 

acoustical detection to successfully separate one contaminated kernel from 650 g of wheat 

grains. In order to find unseen interior insect hideouts in wheat kernels, Pearson et al. (2003) 

used electrical conductivity. The results were somewhat successful; 88% of large-sized larvae 

and 87% of pupae were found. Moreover, Brabec et al. (2017) used electrical conductivity 

and a lab roller mill to find Sitophilus zea- mais larvae inside popcorn kernels. Additionally, 

the detection accuracy varied between 75% and 81% for pupae and between 80% and 91% 

for medium larvae., and 43–47% of the tiny larvae; depending on the roller 

speed(Ranganathan et al., 2022). 

 

Traditional Insect classification has for a long time been an important element for agricultural 

practice especially for food crops and storage facilities. Identifying insects based on their 

shape still remains, the primary method of classifying insects. This method entails the 

observation of physical characters namely: size, color, shape, and those of some body 

appendages like wings, antennae, and genitalia. The first major benefit of morphological 

identification is that in most cases, it is the simplest method and it relies on a tool such as 

microscopes. Also, it is non-destructive in a way that after a test, the specimens are left intact 

for further use. Nevertheless, this method has some major disadvantages. It demands 

comprehensive familiarity with entomology and is frequently limited to the adults especially 

the males because of the diagnostic physical characteristics. A dichotomous key is a tool for 

the identification of insects, where it offers the user a way of reaching the species of an insect 

beginning with a series of decisions. Every move in the key offers two statements concerning 

a feature of the insect that are opposite in meaning. This method is sort of standardized 

therefore the process is well outlined and can be greatly used in teaching new entomologists. 

However, dichotomous keys may be somewhat difficult and time consuming to work with, 

particularly if the users are not professional entomologists and the variation in traits of the 

insects may pose some sort of challenge(Banga et al., 2020).  
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There is another traditional method That is the pheromone and light traps, whereby insects 

are drawn to light traps in order to be captured. Pheromone traps utilise species-specific 

chemicals to attract the insects hence are efficient in pest surveillance. There is light traps that 

take advantage of the ultraviolet light to lure the insects. Once trapped, the insects are 

generally Sorted out by entomologist who has better understanding of insects. These are 

commonly used in monitoring and early detection techniques in pest infested areas although 

they have some shortcomings in that they cannot be specialized for a certain species and may 

not be very efficient in capturing the pests. Furthermore, the identification process still 

depends on a manual inspection and experience that can cause a problem in terms of 

processing volume(Abbas et al., 2019). Next, as a further step to address the issues raised by 

the current control system, the Sunlight Trap is created. Using electronic devices like 

hormone spray traps and photo taxis—light rays connected to a high-voltage power 

network—these pests are eradicated and harvested within chambers. Insects favor solar LEDs 

due to their ability to increase consumer convenience. Here, the solar panel's daytime energy 

is stored in the battery to power the pest control LED light circuit at night(Jose and U P, 

2023). 

Despite their negative effects on farmland, crop quality, human health, and the biodiverse, 

chemical pest treatments are widely utilized because the problem of agricultural pests poses a 

danger to world food security. SILs, or solar-powered insecticidal lamps, are a physical 

control strategy that doesn't include chemicals to protect agricultural from pests. As a result, 

the assimilation of agricultural Internet of Things (IoTs) in the recent past means that the 

integration of SILs and IoTs creates a brand-new overall concept, which is subtitled as solar 

insecticidal lamps Internet of things (SIL-IoTs). Regarding the current research projects of 

the team regarding the SIL – IoTs domains, it was pointed out that they relate to pest 

counting and transmission until the fast information on the pest can be acquired and pest-

concentrated areas, as well the fixed-point pest control is made target. Li et al. (2023). 

2.4  Agricultural insect identification using deep learning technique 

There are traps that use cameras and traps that use sensors in the insect pest monitoring 

techniques. Camera-taught traps use cameras and computers to detect digital pests using 

sensors and sticky surfaces that pheromones adhere to. Convolutional neural networks 

(CNNs) are the mainstay of most traditional approaches to image analysis and pest 

categorization problems. Several sensors are used in integrated pest management traps to help 

identify pests and assess whether the environment is conducive to pest populations. A central 

server gathers data from both kinds of traps in order to evaluate and determine the outcomes, 

indicating more accurate and successful pest surveillance and management in agricultural 

settings(Passias et al., 2023). 

 Another method includes where researchers used deep learning methods for detection and 

image recovery of pest from the IP102 dataset having 75 K images, K-means clustering as a 

tool for pest detection even though there is a complicate classification and imbalance pest 

variety. Training and performance assessment include sample from 18000 pests for 

implementation of the project. These include sensitivity, specificity, precision, recall, F1 

score and G mean of the performance. MATLAB R2021a is used as platform to implement, 

which feature extraction is done based on each pixel and geometric transformations are also 
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done. Thus, the validation accuracy is 97%. Obtaining a 98% reliable test means that at a 

point when there were 1,000 samples to be tested, the results were earned. The disadvantage 

here is that: it might be impossible  for the deep learning technique to enable the K-means 

clustering to effectively train the algorithm for pest distinction and classification if it was not 

trained in a similar scenario to the dataset here meaning that there could be mis classification 

of pests or low accuracy in pest detection where the area is not covered by the dataset. Thus, 

given some randomness in the pest’s movements, there is always a possibility that some pests 

will be left unnoticed and escape extermination(Kundur and Mallikarjuna, 2022).  

Advanced methods of deep learning have recently been incorporated into the identification 

process of insects within agricultural practices in order to improve the efficiency and reliability 

of the same. Another exemplary work by Amrani et al. (2023) successfully used YOLOv3 for 

objectives linked to the identification of insects in imagery, based on a newly presented 

adaptive feature fusion convolution network. This technique enhanced the YOLOv3 model by 

adding the adaptive feature fusion module that increases the ability of detecting smaller objects 

such as insects. The presented network was trained in Pest24 dataset containing more than 

25000 images and obtained 72 % accuracy. 10% while a fast detection rate was recorded at 

63%. 8 images per second. This study proved that the proposed model can yield better 

probability accuracy as well as better computational time than the previous methods used and 

can be used for the real-time monitoring and controlling of pests in agricultural farms(Amrani 

et al., 2022). Nevertheless, there are also some issues with using deep learning in the 

identification of insects that should be noted. A limitation as identified by Manchanda et al. 

(2024) is the fact that huge annotated datasets are usually required to train the models 

adequately. This procedure may take sometime and may be very tasking hence, may need a lot 

of resources. Also, deep learning models require significant computation resources and hence 

may be unsuitable for deployment in scenarios that do not have a lot of computational power. 

Nevertheless, the study pointed to some factors that are worthy of consideration They identified 

that transfer learning which uses pre-trained models on large and general data bases and 

subsequently fine tuned on insect data sets displayed promising results in enhancing the results 

on insect classifications. This issue was closely discussed and it was concluded that careful 

tuning of hyperparameters and data augmentations in dataset are critical to improve 

performance and generalize the model across different agricultural domains(Manchanda et al., 

2024). Projects involving deep learning, such as DeepPestNet, exist with the framework for 

pest recognition and subsequent classification and are 100% effective. While the initial focus 

was put on the major pest species, the next steps for the future research of the given framework 

shall aim to expand the framework in order to also respond to the presence of other types of 

insects in their later developmental stages. The performance enhancement in the framework of 

the presented pest identification is anticipated to be greatly enhanced as a result of the further 

introduction of more species and the addition of life stages (i.e., larvae and adults). This 

research path offers experts and farmers the chance to fully obtain the more advanced tools for 

quicker and more accurate illness suspicion. Therefore, economic loss is prevented, and the 

yields produced in crops are protected(Ullah et al., 2022). 
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3. Research Methodology 
 

The objective of this study is to propose and compare an enhanced insect identification model 

based on deep learning approach; the selected deep learning framework is called Faster R-

CNN to improve pest control in agriculture. There is a sequence of basic stages that are 

involved in the methodology which include data selection, pre-processing and data 

preparation, model creation, model training and model assessment. This research adopts the 

CRISP-DM business analytics framework to guide the pre-processing, information selection, 

data analysis, and modelling processes. The Figure 1 depicts the class distribution the dataset. 

  

 
Figure 1: Class Distribution of the data  

 

3.1 Data Selection 

 

The data used in this research was obtained from Kaggle and it includes 15 different classes 

of insects that are very dangerous to farming practices and crop yields. Every class is given a 

distinctive name of the insect type and is well categorized to enhance the recognition process 

of the bugs. Each class contain different numbers of images; however, all together, the 

dataset contains 1481 images. The Figure 2 represents a snapshot of the dataset. The images 

are normalized, resized etc to pose them suitable for the model’s learning and make them 

uniform. The data augmentation methods are also employed to handle the class imbalance 

problem as well as to enhance the model’s ability to generalize. 

 

 
Figure 2 : Preview of the dataset  
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3.2 Data Preprocessing and Transformation  

 

After analysing the image dataset and researching about the work done on this, the author has 

decided to apply various data transformation techniques and it deems as an import factor. 

This step is crucial in data processing and warehousing because it formats the data for 

insertion into deep learning models. The preprocessing pipeline for this research involves 

several key steps: Data Resizing, Data Shuffling, Class Distribution and Normalization. 

Further, to improve the performance of the deep learning model data augmentation was used. 

Then, the data set was pre-processed and then split into training, validation, and test sets to 

avoid overfitting and necessitate the evaluation of the models. The respective classes of the 

dataset are as follows: 

• Africanized Honeybees (Killer Bees)  

• Aphids 

• Armyworms   

• Corn Borers 

• Colorado Potato Beetles 

• Fruit Flies 

• Cabbage Loopers 

• Citrus Canker 

• Corn Earworms 

• Fall Armyworms 

• Spider Mites 

• Thrips 

• Tomato Hornworms 

• Western Corn Rootworms 

• Brown Marmorated Stink Bugs 

The problem of class imbalance is evident from the dataset obtained from Kaggle where 

certain classes contain much fewer samples than the other classes. To overcome this, the 

class weights were calculated and incorporated in the training process of the models. This 

adjustment prevents the model from focusing only on the majority class and keeps all the 

classes in consideration. This detailed preprocessing method is important for building an 

effective insect detection system that meets the requirements of agricultural pest 

identification. 

Class Distribution: The dataset's class distribution throws light on the dataset's balance or 

imbalance by revealing how many photos there are in each class. The number of photos in 

this collection fluctuates according to the insect classes, suggesting an uneven distribution. 

As "Spider Mites" (119 images) demonstrates, some classes have larger sample sizes than 

others; "Aphids" (88 images) is one example of a smaller class. Because of this intrinsic 

imbalance, the model may find it difficult to learn and generalize across all classes, which 

presents a problem for training and model performance. 

Rare Classes: Because their sample numbers are smaller than those of other classes in the 

dataset, some classes are regarded as rare. The collection contains notable instances of 
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unusual classes, such as "Africanized Honeybees (Killer Bees)," "Aphids," and 

"Armyworms." Because there are only few instances of these classes, training the model will 

become difficult and could lead to poorer performance in correctly detecting and categorizing 

these uncommon insects. Reduced accuracy and precision in forecasting the presence of rare 

classes may result from the model's inability to adequately describe their distinctive traits and 

patterns. 

Common Classes: On the other hand, a few classes in the dataset have bigger sample sizes, 

which indicates that they are more common and plentiful. Examples of these common classes 

that are noteworthy are "Corn Borers," "Spider Mites," and "Fall Armyworms." These classes 

gain from having more training instances available, which gives the model more chances to 

pick up on and comprehend their unique traits. Because there are many examples of the same 

classes, the model may identify and use these characteristics to its advantage, which could 

result in better performance and accuracy when classifying these insects. 

Class Weights: Using class weights the issue of class imbalance has been addressed during 

training. Based on each class's frequency in the dataset, class weights allocate distinct 

weights to each one. Class imbalance is lessened by the model giving the minority class 

greater weight during training by altering the weights. After addressing the class weights, 

concerning the efficacy of training, it can be stated that the similarity of the distribution of the 

original classes and the classes of the trained images ensures that the model will be trained as 

planned, effectively avoiding problems related to class imbalance that could be present in the 

data. With the help of class weights and using the strategy of stratified split, the problem of 

class imbalance will be taken care of, and the model receives a balanced and representative 

training across the classes. Such a level of performance of the model provides confidence in 

its reliability and in the ability of the latter to effectively forecast in real-life conditions. 

Image Loading and Preprocessing: The specific paths are used to load images according to 

the requirement. The loaded images are decoded into tensor format with the help of `tf. 

image. While decoding an image, it was ensured that all images have three color channels, 

RGB. Each image is resized to the specified dimensions (`256x256` or `224x224` depending 

on the size of image passed) along with the information to be extracted is obtained from each 

image. This makes the size of the input to the model is standardized with resize. The pixel 

values of the images are scaled to the range between 0 and 1/255 by dividing the images by 

255. This step makes it certain that the model is fed with data that is normalized and this is 

known to enhance the training process of the model. 

Label Extraction: The class labels are derived from the image paths according to the 

subdirectories created during the data organization. These labels are then either kept as the 

string names of these classes or are converted to the numerical indices as per their position in 

the list of classes. If specified, the class labels are one hot encoded, which converts the 

categorical labels into binary vectors. This is good for the categorical cross entropy 

commonly used in the training phase. 

Stratified Data Splitting: Although the class distribution analysis helps to mitigate the 

problem of class imbalance during training, there is still a need to use an appropriate data 

splitting technique that takes stratification into account. If this isn't done, the class 

distribution analysis might not be useful. By using stratified data splitting, the train and test 

sets are guaranteed to maintain a representative class distribution that is identical to the 
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original dataset. This method avoids bias introduction and aids in a precise assessment of the 

model's performance by maintaining the relative proportions of each class. The author has 

applied the train-test split function from the scikit-learn to carry out a stratified data split. 

Therefore, through performing a verification to the train section images, one can bolster up 

the validation of the data split process and consequently the training phase. This cross-

checking will prove beneficial and will give the necessary confidence and guidance to ensure 

the creation of the training data, and eventually the for the betterment of model training.  

 

3.3 Model and Data Mining Design 

 
Data mining is generally understood as the technique of search for regularities, trends, and 

anomalies in the given data and forecasting the result. The objective of this work is to create 

an accurate insect detection model with the help of modern deep learning methods as 

depicted Figure 3.  

Due to the small size of the dataset, the objective is to employ transfer learning since it is 

well suited for classifying the farm insects. The use of this approach helps to recognize the 

pre-trained models to work with such as ResNet, MobileNet. Further to enhance the 

performance. Further, the fine-tuned Faster R-CNN model will be applied on the dataset for 

the current classifying task at hand.  And in the end, the ultimate aim is to determine the best 

network architecture that can be used for the real-world application of identifying insects in 

an agricultural setting. 

 
Figure 3: Proposed Model 

 

3.4 Model Assessment and Interpretation 
 

 Another important step that is characteristic for deep learning processes is the evaluation of 

results. This step also helps to determine the best approach depending on the metrics of the 

models and a comparison of their performances will be made. In this study, the evaluation 

entails the use of multi-class metrics because of the multiple classes of insects. The measures 

of effectiveness that have been applied in the process of comparing the models include 

accuracy, precision, recall as well as F1 score. Besides, the multi-class confusion matrix is 



14 
 

 

used to analyse the efficiency of the classification in terms of various insect types. The last 

procedure involves presenting all the results through graphs and charts as a means of 

evaluating the competency of the models to identify and categorize farm insects. 

 
 

4   Design Specification 
 

Basic introduction of implemented system for this research is presented in this section as 

depicted in the Figure 4.  And each phase of this design is discussed in detail.  

 
Figure 4: Design of Project 

 

4.1 Faster RCNN 
 

Deep learning has come to be regarded as one of the most efficient methods of feature 

learning and object recognition. Faster R-CNN is one of the Deep Neural Networks which 

outperforms other machine learning algorithms because it is capable of learning hierarchical 

features from data on its own. It presents a novel concept of a Region Proposal Network 

(RPN) that is connected directly to the detection network utilizing full-image convolutional 

feature so that generating region proposals can practically be done at almost no extra 

computational cost. This approach helps the model to identify the objects with ease and less 

time and at the same time, improve the accuracy of the model. The basic idea in Faster R-

CNN is that convolutional layers of the network can learn features from the input image, 

while the region proposals and their classifications as well as the boundaries can be further 

improved. The model is divided into two main stages: the proposal stage of a region and 

classification stage. In order to acquire the predicted class labels and bounding box locations, 

the Region Proposal Network and ROI pooling in conjunction with a classifier and regressor 

head are the primary components of the Faster R-CNN as depicted in the Figure 5. 
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Figure 5: Faster R-CNN 

 

4.2 ResNet, MobileNet, and Xception Models 

 
Besides, the other state-of-art deep learning models like ResNet, MobileNet, and Xception 

are studied in this research concerning insect classification. These models are used through 

the transfer learning technique to utilize the weight and to improve the feature extraction 

element. 

ResNet is a very powerful deep learning model that has been designed with the use of 

residual blocks in an effort to minimize the vanishing gradient issue in very deep networks. 

ResNet enables the training of deep models by adding shortcuts, which skip one or more 

layers, into the network. This design enhances the learnability of residual functions making 

the convergence and performance better. To extract complicated features from the insect 

images, ResNet50V2 and ResNet152V2 models are employed in this project. 

MobileNetV2 is an efficient convolutional neural network proposed for use in mobile and 

IoT devices applications. It employs depth wise separable convolutions to scale down the 

parameters as well as the computational intensity, which makes it very efficient. 

MobileNetV2 is relatively small but is effective, therefore it can be used in cases where it is 

necessary to save computational power. In this case, the effectiveness of this model for insect 

classification problems is measured. 

Xception, which is an acronym for Extreme Inception is a deep convolutional neural network 

which builds on Inception architecture by replacing traditional Inception. This architecture 

leads to a more efficient and powerful model to learn the fine-grained features. Due to the 

design of Xception, the algorithm can provide a high level of accuracy in different activities 

related to image classification.  

Thus, by comparing these models at first, one can obtain preliminary information concerning 

their effectiveness and appropriateness for the given dataset. This approach also aids to set a 

base for the design and working of the Faster R-CNN model.  
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4.3 The Method  

 

The data is initially loaded into google collab from google drive after the drive is mounted 

through the code. To reduce the data loading process and overcome the memory problems, 

the batch processing method is applied where the sets of 32 images are used. The data is 

loaded into memory using custom data loaders in such a way that each batch of data is 

preprocessed and in a format that can be used by the models. For the model training, several 

state-of-art deep learning models are used which includes ResNet, MobileNet and Xception 

via transfer learning to set up a good initial base. These models utilize transfer learning to 

improve the feature learning process. In these models, the classifier layers are tweaked to 

provide the output of 15 classes that are associated with various species of insects. Following 

the benchmarking with transfer learning models, the Faster R-CNN model is employed to 

enhance the use of object detection. Faster R-CNN employs an RPN to produce region 

proposals, subsequently, the model performs classification and bounding box regression. All 

the models are trained for the desired number of epochs and the model which yielded the best 

accuracy in the validation set is used for further testing. The outputs of these models are 

assessed using other basic measures like accuracy, precision, recall, and F1 score.  

 

5 Implementation 
 

This section deals on the methods of utilizing different types of deep learning models to 

classify the insect species in the dataset. The basic architecture models applied in this 

research are Faster R-CNN, ResNet, MobileNet, and Xception, which employ transfer 

learning to improve the outcomes of the models. 

 

5.1 Faster R-CNN Implementation  
 

Based on the dataset of the images of insects within fifteen classes, the detailed approach was 

constructed in this paper to perform the automatic detection and recognition of the various 

kinds of insects. To perform this task, the Faster R-CNN model that integrates the Region 

Proposal Networks (RPN) with Fast R-CNN was used.  

Backbone: ResNet50 which is trained on the ImageNet database is used as the feature 

extractor. The backbone takes features of the input images and passes them to the RPN. 

Region Proposal Network (RPN): Produces region proposals, which are boxes possibly 

containing an object. The RPN provides candidate regions of interest (ROIs) that may contain 

an object. 

ROI Pooling: Generates fixed size feature maps from the proposed regions. This makes sure 

that each region proposal is of a fixed size that can be passed to the fully connected layers of 

the network. 

Fully Connected Layers: These layers sort and narrow down the objects and sharpen the 

bounding boxes. The classification layer provides the probable object class for each region 

proposal and the bounding box regression layer fine tunes the coordinates of the bounding 

boxes as depicted in the Figure 6. 
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Figure 6: Faster R-CNN Pipeline 

 

The features of the network include 50 convolutional layers that are followed by max-pooling 

layers for feature extraction and ReLU activation function for non-linearity. The last layer of 

the network is the output layer by which the identified insects are classified into fifteen 

classes using SoftMax function. 

Fully Connected Layers: These layers sort and narrow down the objects and sharpen the 

bounding boxes. The classification layer provides the probable object class for each region 

proposal and the bounding box regression layer fine tunes the coordinates of the bounding 

boxes. 

 

5.2 Transfer Learning Models 
 

ResNet is another powerful deep learning model that became very popular because of its 

residual blocks that prevent from vanishing gradient issue in very deep networks. ResNet 

enables one to train very deep networks by incorporating a shortcut connection that jumps 

over one or more layers. This design enhances the learning of residual functions, and at the 

same time it enhances the rate of convergence and performance. In this project both the 

ResNet50V2 and ResNet152V2 architectures are used to extract fine details of the images of 

insects. The input layer takes images of size 224 x 224 x 3, which is passed through residual 

blocks comprising of convolution layers, batch normalization, and ReLU activation. 

Shortcuts skip one or more layers of convolution in order to allow for the learning of 

residuals. 

MobileNetV2 is quite compact, yet it is very efficient, which will make it suitable for many 

scenarios with restricted computational capabilities. The model in this project takes input 

images of size 224*224*3 and applies depth wise separable convolutions which decreases the 

computation and the model size. Bottleneck layers are made up of thin layer with a few 

channels, dilated by pointwise convolution and then passed through depthwise convolution. 
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Xception – ‘’Extreme Inception’, is a deep convolutional neural network that is an extension 

of the Inception model whereby standard Inception modules are replaced with depthwise 

separable convolutions. This architecture leads to designing a more efficient and powerful 

model of capturing better features at a more detailed level. The model processes input images 

of size 224*224*3 and in the Inception modules, standard convolution is replaced with 

depthwise separable convolution for better efficiency and accuracy. 

In this project, for the input data, in all the above-mentioned models, the average Pooling 

layers sum all the feature maps to produce a single value for each map before going to fully 

connected layers with 256 and 128 neurons and the ReLU activation function. A dropout 

layer set to a dropout rate of 0. 4 is used to avoid overfitting by performing input unit 

sampling that sets a portion of the input units to 0 during the training phase. To improve the 

learning and model convergence, the Adam optimizer was used in their training process. 

 

 

 

6 Evaluation 
 

The performance of the models was tested on the test set. The following results summarize 

the evaluation metrics for each model: 

 

6.1 ResNet50V2 Model 

 

As depicted in Figure 7 it is noted that for the ResNet50V2 model the accuracy output for the 

training set was 66% and the number of images correctly classified for the training set was 

840 with an image count of 1272. The validation accuracy was also 66% and 189 correct 

classifications out of 287, which means that there is some overfitting. The testing accuracy 

was 66% almost similar to the validation accuracy and was able to correctly predict 21 out of 

32 images. The accuracy of the training set improved, while the over fit measurements such 

as validation accuracy remained behind by 0.2, highlighting overfitting. Through the 

confusion matrix presented in Figure 8 the author was able to see that certain classes had 

perfect results while there were extremely poor results for Aphids and Armyworms. 

However, great recall values were observed for Africanized Honeybees though precision for 

the same bees was significantly low because although the model identified the bees correctly, 

it also gave high probabilities to other bees that were not necessarily the Africanized 

Honeybees. 
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Figure 7: ResNet50V2 Performance 

 

 
Figure 8: ResNet50V2 Confusion Matrix  

 

6.2 ResNet152V2 

 

 The performance of ResNet152V2 model shifts in tandem with the ResNet50V2. Even with 

the deeper architecture of ResNet152V2 in a bid to capture more features, its gains are 

negligibly small. The training accuracy level for ResNet152V2 was around 60%, and 

validation was around 70% as seen in Figure 9, followed by the testing accuracy almost equal 

to the validation. The characteristics of the learning and validation losses prove that there is 

no significant overfitting here.  
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Figure 9: ResNet152V2 Performance  

 

The confusion matrix as shown in the Figure 10, and the metrics of the classification report 

show that, although ResNet152V2 reaches a very good accuracy in the Colorado Potato 

Beetles, Brown Marmorated Stink Bugs and none or very low values for the others, where it 

is even impossible to recognize any percentages of precision and recall for some classes. The 

means of precision, recall, and F1 score are respectively, 61. 6%, 62. 7%, and 60. 3%, 

respectively. Based on these outcomes, it would appear that the effort should be made to fine-

tune rather the ResNet50V2 model because of the similar performance metrics while having 

better computational demands. 

 
Figure 10: ResNet152V2 Confusion Matrix 

6.3 MobileNet V2 

 

Through the classification report, the model shows better and worse performance on the 

different classes of insects. Nevertheless, some classes like Colorado Potato Beetles, Brown 
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Marmorated Stink Bugs and Africanized Honey Bees performers perfectly to the precision 

and recall measures while others like Cabbage Loopers and Armyworms undergo low levels 

of precision and recall measures. The evaluation of the overall performance which includes 

precision, recall and F1 score which is values at 0. 677, 0. 697, and 0. 611, respectively. This, 

in turn, shows that the model has a decent performance in some classes while having a poor 

performance in the other, hence, an average performance. The confusion matrix also 

underlines these statements, as it indicates the distribution of true positive and true negative, 

depending on classes. 

 
Figure 11:  MobileNet V2 Performance 

 
Figure 12: MobileNet V2 Confusion Matrix 

 

6.4 Xception  

Interestingly, the case with the Xception model is impressive in terms of testing compared to 

other models. As it can be noted, the training and validation losses, as well as the accuracy, 

are almost identical for the two networks meaning that Xception has the potential of being the 

optimum backbone since there is a significant boost in testing accuracy. Specifically, this 
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model obtained an accuracy of 50% as visible from the Figure 13, in general and a precision 

of 0. 461 and other relevant symbolisms, while the rate of recalls was 0. 532.  

 
Figure 13: Exception Performance 

 

From the classification report depicted in the Figure 14 it can be seen that the model is good 

with certain classes but doesn’t recognise certain classes such as Aphids and Armyworms, 

but the model possesses good accuracy with classes such as Colorado Potato Beetles and 

Brown Marmorated Stink Bugs. This implies that by optimizing the proper hyperparameters, 

the Xception model could be further enhanced for the betterment of its accuracy in all the 

classes. 

 
Figure 14: Xception Confusion Matrix 

6.5 Hyperparameter Tuning 
 

In this paper, the author presents the results after hyperparameter tuning with a Hyperband 

method in 13 trials and, on the validation dataset. The model was fine-tuned to perfection to 
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achieve a 5 % enhancement than the actual benchmark of 72%, giving an accuracy of 77% as 

shown in the Figure 15. This significant improvement should be placed the Xception model 

as one of the most potent peers to the earlier models while surpassing other models.   

 

 
Figure 15: Model Accuracy and Loss 

 

 It is once again noted that the Xception model’s performance stays well within the validation 

data, thus making it suitable for real-life use. As with many other models that displayed a 

significant difference in performance between a validation set and a testing set, this issue has 

been particularly reduced via hypertuning. In summary, the training curve gives a better 

perspective of the model’s ability and sturdiness in handling our classification task rather 

than the overfitting inference from the loss curve. Such consistency and the significant 

enhancement in the testing outcomes prove that the Xception model holds great potential to 

be developed as an excellent backbone for the classification framework. 

Thus, the predictions of the Xception model and the corresponding true labels suggest fairly 

high accuracy in the classification of various species of insects. The grid of images from the 

Figure 16 essentially allows the user to compare the images according to the true/predicted 

labels. Also, the structure of the Xception model is described in detail, which allows 

showcasing the model’s depth and performance. It has 24,024,631 parameters in total, 

23,970,103 of which are trainable, and 54,528 are non-trainable. A high value of parameters 

is suggestive of the model’s ability to capture complex relationships and characteristics of the 

inputs. These are followed by the layers like GlobalAveragePooling2D layers and multiple 

dense layers with dropout to make the model more generalizable. Even though there is a 

warning about the optimizer during loading, the model performance is not harmed, and the 

developed hypertuning approach confirms the model’s stability and high efficiency after 

hypertuning. 
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Figure 16: Model Predictions 

 

6.6 Faster RC-NN  
 

Faster R-CNN model was trained with ResNet-50 as the backbone which was pre-trained on 

the ImageNet dataset. The model was trained with minor modifications to our insect detection 

task, which is of detecting 15 insect classes and a background class. The training process was 

carried out for 10 epochs, at the end of which model was tested on the validation data. 

The training procedure was performed by making certain preparations to the dataset where 

the data was stratified split with an aim of partitioning the classes fairly. The InsectDataset 

class was declared to load the images and the labels associate with them, and the set of 

transformations were used to normalize the inputs. For batch and shuffle creation, 

DataLoader objects were created with phases including the training, validation, and testing 

phases. Based on the suggested model architecture, the author changed the box predictor to a 

predictor of the suitable number of classes. The used optimizer for the specified network was 

Stochastic Gradient Descent (SGD) with the learning rate of 0. 005, momentum of 0. 9, and 

weight decay of 0. 0005. These parameters were chosen to keep the training process steady 

and reach a good convergence. While training the model, the performance parameters 

gradually increased in the training phase. The initial training accuracy was. 94. 5% while the 

validation accuracy of the model is 92. 3%. Further, the accuracy in the course of 10 epochs 

has shown significant oscillations, although there is a clear movement towards the increase in 

the adequate measures of the model. Finally, for the last Epoch it was 91.5% in the training 

accuracy, 91.99% for the validation accuracy which indicates a better generalized model. 

 

7 Conclusion and Future Work 
  

This section, therefore, narrows down its focus on discussing and comparing the various 

models employed in this research concerning insect identification as presented in the Figure 

17. While the first initial steps like the pre-processing of images and the transformations that 

occurred were similar to all models, the results they had were different.  
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Figure 17: Comparision of Models 

 

The ResNet50V2 model demonstrated good performance on the training dataset that had a 

training accuracy of 77 % and validation accuracy of 76 % only. However, the overall recall 

and F1 score remained below 50%, which suggested the model’s weaknesses at working with 

data not included in the training set. This might be because of the datasets used or there is a 

possibility of potential over fitting to data.  

The ResNet152V2 model under the premise of the ResNet lineage didn’t bring many 

improvements in performance compared to ResNet50V2. Though its deeper architecture, this 

model achieved an accuracy of 91.5% on the training set, validation accuracy of 91.99% 

respectively and an accuracy of 62% on the test set. The result holds steady as the major 

trend indicates that although there could be instances that, utilizing deeper models does not 

enhance scores for this certain data set.  

Again, while the accuracy of its training and the validation was impressive, the testing was a 

bit of a letdown. It resulted in a precision of 0. 677 accompanied by a recall of 0. 697, the 

slight drop in the testing performance of the MobileNetV2 model indicates that this should 

not be preferred for this application.  

Nevertheless, rather surprisingly, Xception turned out to be the most suitable choice of the 

backbone to be used. After fine-tuning all hyperparameters of the model, it is possible to 

obtain the maximum validation accuracy of 77%. A significant 5% raise has been seen which 

is slightly above the benchmark of 72%. This model also had excellent separation of 

training/validation/testing phases with very little overlap, hence its variance was very low 

between the validation and testing phases. It can be concluded that the stability and high 

resistance of the Xception model’s values, compliance with which has been consistently 

demonstrated when working with validation data, make the model suitable for practical 

implementation.  

In the case of object detection, the Faster R-CNN model, with the ResNet- 50 back bone, 

offered the highest detection rates. The training accuracy was seen to go up to highlight at 

94.5%, and the validation accuracy got to the level of 92 during the first epoch and minimal 

deviations across next subsequent epochs. The final epoch provided a train accuracy of 91.5 

% and 91.99% as its validation accuracy respectively.   

Therefore, it is possible to conclude that the method used in this research has allowed to 

determine that Xception and Faster R-CNN models are the best backbones for identifying 

insects in an agricultural setting for the utilized dataset in this research. Thus, the proposed 
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Xception model performs better in the validation phase and the Faster R-CNN with its 

noteworthy accuracy has a higher possibility to be used in a real-world environment.  

Apparently, further work should be devoted to a number of directions that will help enhance 

the model’s performance. First, a larger and more varied set of images will mean that the 

models are trained on a better and more diverse set of images, thus increasing their capacity 

to correctly identify previously unseen images. 

The integration of the models into a total pest management system that incorporates pest 

trolls as well as monitoring and alert processes enable farmers and other agricultural experts 

to come up with effective practices. Such a system could use IOT devices and edge 

computing to analyze the images from the field in real time and provide accurate and timely 

interventions. Finally, entomologists, and agronomists’ feedback including field data for 

further validation of the models adopted will guarantee that the developed system is informed 

by current practice and is the most accurate and reliable in detecting and managing pests. 
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