

Configuration Manual

MSc Research Project

Data Analytics

Namrata Shrishail Tarade

Student ID: X22238867

School of Computing

National College of Ireland

Supervisor: Vikas Tomer

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Namrata Shrishail Tarade………………………………………………………………………

Student ID:

X22238867………………………………………………………………………………………….……

Programme:

… MSc Data Analytics ………………………………

Year:

………2024……….

Module:

…MSc Research Project……………………………………………………………….………

Lecturer:

……Vikas Tomer……………………………………………………………………………….………

Submission
Due Date:

…16th September 2024………………………………………………………………….………

Project Title:

A Novel Deep Learning Framework for Diabetic Retinopathy
Detection Integrating Ben Graham and CLAHE Preprocessing.

Word Count:

…1436…………………………… Page Count: ………9……………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……Namrata Shrishail Tarade………………………………………………………

Date:

……16th September 2024………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)



Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).



You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.



Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Namrata Shrishail Tarade

Student ID: X22238867

1 Introduction

The project aims on detecting diabetic retinopathy from retinal images using Preprocessing

techniques Ben Graham and CLAHE with different deep learning models that include

customized CNN, EfficientNetB7, and NASNetMobile. The main target is to assess images

of retinas into five categories of the severity of the disease diabetic retinopathy. It also

describes the environment setup, data processing, model training, and evaluation processes

required to achieve the results.

2 System Configuration

This project was done using Google Collaboratory. As for Python scripts, Google offers free

cloud servers; yet there are certain conditions. Though Google Collab Pro, this feature can be

used with more RAM and GPU usage. It incorporates an Intel(R) Core (TM) i5-1035G1

processor with CPU from 1. 00GHz. At the Collaboratory, the system specification that was

used in this project entails an Intel (R) Intel(R) CPU, has the frequency of 19GHz, a Tesla T4

GPU with 2496 cores, 12GB of DDR5 VRAM, 30GB disk, RAM of 13GB.

Other Libraries: Some of them are OpenCV, Numeric Python NumericPy, Data

manipulation- Pandas, Data visualization- Plotly, Seaborn, Matplotlib, Image augmentation –

ImgAug.

3 Data Collection

For this project, the dataset adopted is of retinal images which are categorized depending on

the level of DR. The data used in this study was collected from the Kaggle competition called

Diabetic Retinopathy Detection. The dataset can be accessed on this link1.The dataset

contains images, each associated with five classes:

• No_DR

• Mild

• Moderate

• Severe

• Proliferate_DR

4 Setting up Environment

1 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.

https://www.kaggle.com/c/diabetic-retinopathy-detection/data

2

After downloading and unzipping the data from Kaggle, it was uploaded to Google Drive so

that it will run on any machine. It eliminates the condition that limits the actual machine

required. As shown in the below Figure 1, the data was uploaded.

Fig.1 Saved in the Google Drive

The dataset was additionally loaded to the Google Colab in order to utilize it for the project.

Whenever you try to start the google disk you will get a message to verify your account to

access the google disk by utilizing google collab as a security check. It is also worth to try to

change the runtime environment to GPU since our data is in images which could help in

increasing the performance. Python is used, and Google Collab comes with a Jupyter

notebook setting already set up.

Fig.2 Mounting Drive

5 Data preprocessing

5.1 Python Libraries

At the start of the notebook, all necessary libraries for the data processing and

modeling were imported. The critical libraries used include:

3

 Opencv for image processing

 The package used for the handling of dataframes are the pandas.

 Tensorflow for creating and training of models

Fig.3 Importing Python Libraries

5.2 Data Loading

The images were placed in a directory train and the labels were extracted from a CSV file

known as trainLabels. csv.

Fig.4 Loading the data

5.3 Data Visualisation

In order to get a general idea about the type and quality of images used in the creation of the

dataset a simple function is implemented which would select and display a random set of

images along with their respective label.

4

Fig.5 Visualizing Random images

6 Data Augmentation and Transformation

To address the imbalance of the dataset, Data enhancement was performed this involves

creating new data instances from existing instances but belonging to different classes.

Borrowing the technology from the imgaug library, techniques such as horizontal flipping,

rotation and brightness adjustment were done.

Fig.6 Data Augmentation

7 Model Design and Training

7.1 Custom CNN Model
Based on the architecture of deep convolutional neural networks, a custom CNN was created

with several convolutional layers after which max-pooling and batch normalization layers

were applied. This model was trained with categorical cross-entropy as the loss function and

the Adam optimizer.

5

Fig.7 CNN Model

7.2 Transfer Learning Models

Two transfer learning models, EfficientNetB7 and NASNetMobile, were implemented:

• EfficientNetB7: Extra Dense layer + dropout and fine-tuned.

• NASNetMobile: As EfficientNetB7 but fine-tuned with additional dense and dropout layer.

Both models were trained up to 5 epochs and the learning rate was set to be reduced

according to the plateaus on the validation accuracy using ReduceLROnPlateau.

Fig.7.1 Transfer Learning Models

7.3 Model Training

The training stage is one of the main levels of the machine learning pipeline, at which the

chosen models detect patterns in the data associated with various classes of diabetic

retinopathy. Training consists of providing the models with data that are supposed to be

labeled in such a way that the internal parameters associated with the model or known as

weights need to adapt to the labeled data so as to reduce the gap between the labeled results

and the results generated by the model. This section gives details on the training procedures

for three models: first, a Custom CNN model, second, an EfficientNetB7 and, third,

NASNetMobile. Every model was trained on the preprocessed dataset, and there are

particular procedures oriented toward enhancing their effectiveness.

6

Fig.7.2 Model Training

7.4 Saving and Loading Model

Model saving is an essential process in machine learning since the final model should be

optimized for the specific task with all the hyperparameters fine-tuned. It will ultimately save

the model in the. h5 format, which is a format familiar for saving Keras’ models. This format

ensures not only the existing architecture of the model but also the estimates that were

achieved during training the model and that allows loading this model and further application

it to predict. The save () Keras method is utilized in order to save the entire model structure,

the optimizer condition, as well as the weights acquired during training. The following code

snippet shows how the NASNetMobile model was saved:

Fig 7.3 Model Saving

After saving, the model it is reinitiated to make more predictions from the testing data. The

load_model () function from a Keras library is used to load the model from the saved. h5 file.

This function is used to bring the model back to whichever state was present at end of

training process, inclusive of weights and layers.

Fig 7.4 Loading Model

7

8 Model Evaluation

After training was done, the next step was to assess the performance of the developed trained

models on test data set. Thus, out of all the models, the NASNetMobile was found to be the

most efficient model, it offered a high balance between accuracy, precision, recall, and the F1

score. Since the goal of this model was to make predictions in subsequent applications. This

process enables the identification of the models’ accuracy in unseen data sets and the ease of

understanding their performance in real life. The traditional metrics evaluation was made

according to the performance indicators consisting of F1 score, precision, recall, and

accuracy. These metrics offer a single view of every model and as to how good or bad it is

especially in a multi class classification problem such as the detection of diabetic

retinopathy.

Fig.8 Comparative Analysis of Model

	1 Introduction
	2 System Configuration
	3 Data Collection
	4 Setting up Environment
	5 Data preprocessing
	5.1 Python Libraries
	5.2 Data Loading
	5.3 Data Visualisation

	6 Data Augmentation and Transformation
	7 Model Design and Training
	8 Model Evaluation

