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Enhancing PCOS Detection with SRGAN-Generated 

Synthetic Images and CNN Models 
 

Ridima Tambde  

X22209557  
 

 

Abstract 

Polycystic Ovary Syndrome (PCOS) is a common hormonal disorder affecting 

women throughout the world and is detected using ultrasound scans. Due to this accurate 

diagnosis crucial for effective treatment, is often hindered due to the limited availability 

of data. For building reliable models, high-quality data is needed and with recent 

advancements in artificial intelligence, a concept called data generation where synthetic 

images are generated, has shown promising results. This study attempts the use of Super-

Resolution Generative Adversarial Networks (SRGAN) to create synthetic images from 

existing ones. These synthetic images, along with the original ones, are used to train and 

test various convolutional neural network (CNN) models, including NasNetMobile, 

Resnet-152, and Xception. Additionally, hybrid models combining all 3 CNN models 

with CatBoost are developed and evaluated. The SRGAN architecture is fine-tuned here 

till good images are obtained and the effectiveness is analyzed to determine their impact 

on diagnostic performance. Therefore, this research involves a comparison of the 

classification results from both original images and generated images, thus helping to 

understand if synthetic data influences the accuracy and reliability of diagnostic models 

with evaluation metrics like accuracy, precision, recall, F1 score, and the confusion 

matrix for understanding if any misclassifications. Thus, the study concludes by 

identifying the most effective model combinations and providing valuable insights for 

future research in medical imaging.  

 

 

1 Introduction 

1.1 Background 

The 21st Century has given rise to advancements in technology and medicine improving the 

chances of early diagnosis of diseases and the treatment of patients. However, due to these 

advancements, various ailments persist and impact millions of people from the global 

population and Polycystic Ovary Syndrome (PCOS) is one among them. PCOD is a very 

widespread pathology in the female population of the reproductive age, and it appears when 

ovaries secrete androgens in excessive amounts, which leads to hormonal disruption. This 

disrupts normal growth and ovulation causing infertility, weight gain, acne and excessive hair 

growth (Teede, Deeks and Moran, 2010). PCOS affects women's health in the long run as 

they are susceptible to cardiovascular diseases, type 2 diabetes, and obesity (Kakoly et al., 

2019) and low self-esteem among women due to these hormonal changes. Here, early 

diagnosis takes a central role, although 70% of women with PCOS have not been diagnosed 

(Wolf et al., 2018). This points to the fact that there is a need to enhance the diagnostic 

processes. A cross-sectional study conducted with participants at the IEEE conference 
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highlighted the current diagnostic approaches’s inadequacies and possibilities for 

improvement through imaging and AI (Liu et al., 2019). 

1.2 Motivation 

One significant challenge in medical imaging is the scarcity of high-quality data due to 

privacy concerns and limited availability, which obstructs the development of AI models. 

Many studies have used limited datasets such as Suha and Islam (2022) utilized only 594 

ultrasound images, and Alamoudi et al. (2023) emphasized the need to increase dataset for 

better model performance and diversity. By generating synthetic images that match with real 

images, it is possible to increase data and enhance the model performance (Frid-Adar et al., 

2018). This research therefore aims to address this gap by employing synthetic advanced data 

generation technique called Super-Resolution Generative Adversarial Networks (SRGANs) 

to generate high-resolution synthetic ultrasound images of ovaries. SRGAN are generative 

models that are capable of enhancing the resolution and details of images, making them 

reliable for detection (Ledig et al., 2017). 

The main purpose of this research is to combine the images generated using SRGAN 

with the original dataset and evaluate the results using standalone models like NasNetMobile, 

ResNet152, and Xception. Hybrid models are also employed in this research, where features 

are extracted from the mentioned CNN models and are further analyzed using machine 

learning algorithms like CatBoost. By leveraging the strengths of both deep learning and 

traditional machine learning techniques, this study aims to improve the accuracy of PCOS 

diagnosis. The SRGAN architecture was fine-tuned involving multiple variations and 

adjustments to get better details in the image similar to real ones. For this research, the 

generated data from the last three epochs out of 100 epochs of SRGAN training which 

produced the best results based on visual inspection is utilized. The original dataset consisted 

of 1986 images out of which 1588 were training images that were used to train SRGAN and a 

combined dataset was formed containing original data and the generated data (4764 x 3) 

resulting in 6352 images in the combined dataset and this combined data was used for 

classification. The final results are then verified with the results obtained from just the 

original dataset to understand if the addition of SRGAN made an impact.  

 

The research is based on the research question: 

Can the integration of SRGAN-generated synthetic images with real ultrasound images 

enhance the detection accuracy of CNN-based models, such as NasNetMobile, ResNet-

152 and XceptionNet, as well as hybrid models combining CNNs with Catboost for 

PCOS? 

1.3 Research objectives 

1. Generating images using SRGAN and assessing the performance in classification. 

2. To assess the performance of standalone CNN models (NasNetMobile, XceptionNet, 

ResNet152) and hybrid models that combine the mentioned CNN models with Catboost on 

the generated synthetic dataset.  

3. To compare the performance of standalone CNN models and hybrid models to know which 

one is effective.  
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4. To assess the results of the synthetic data with the original dataset to understand the impact 

of SRGAN-generated data on the classification.  

The report includes Section 1 as Introduction followed by Section 2 as Related Works that 

reviews existing research, identifies shortcomings, and presents the novel approach in this 

research. Section 3 is Research Methodology that explains the CRISP-DM framework and 

the use of SRGAN for data generation and CNN for classification. Section 4 is Design 

Specification that explains the architecture of SRGAN and CNN models. Section 5 

Implementation describes the setup and configuration and Evaluation assesses the model 

performance. Finally, Section 6 Conclusion and Findings summarizes the project and 

provides future direction.  

  

2 Related Work 
 

This section reviews recent studies focusing on their methodologies, results, positive impact, 

and limitations, highlighting the potential challenges faced in leveraging AI for diagnosis.  

2.1 PCOS Classification using CNN Models 

Hosain et al. (2022) introduced PCONet, a custom-designed CNN model for classifying 

PCOS using two datasets: Dataset A with 1924 training images and 1932 test images, and 

Dataset B with 339 images. After preprocessing steps like resizing, normalizing, and 

augmentation, PCONet achieved an accuracy of 98.12%, outperforming fine-tuned 

InceptionV3 model. However, the train and test sets had identical images, which might 

contribute to high performance. Similarly, Srivastav, Guleria and Sharma (2024) used a fine-

tuned VGG16 model on the same dataset as mentioned in the study by Hosain et al. (2022). 

Their method involved segmentation using techniques like thresholding and edge recognition, 

achieving an accuracy of 99.4%, but no justification was provided for high results raising 

concerns for overfitting. A study by Kumar et al. (2023) employed MobileNet architecture on 

a total of 1924 ultrasound images which provided effective outcomes. The author mentions 

certain limitations like heavy reliance on the quality of ultrasound images, as it can affect the 

model performance, hence recommends the need to enhance image quality through creating 

synthetic data. Chitra et al. (2023) proposed a hybrid approach using an ensemble of pre-

trained models like AlexNet, VGG16, and Inception V3 to classify PCOS. They enhanced the 

images with segmentation to remove and enhance relevant features, followed by data 

augmentation. This hybrid model achieved an accuracy of 87%, outperforming the individual 

models. The study highlights the limitation of decline in performance with increase in data. In 

the study by Subramani, Rarichan and Chaithra (2023), the authors developed a deep-learning 

based classification for predicting PCOS on 400 ultrasound images taken from a hospital. The 

study compared AlexNet, ResNet50, VGG16, and YOLOv5 for feature extraction and 

classification with YOLOv5 achieving highest accuracy of 99.8%. The positive aspects of 

this research include the high accuracy, however, the limited dataset can be a problem in 

terms of diversity. Ravishankar et al. (2023) proposed a method combining fuzzy rules with 

CNN to detect PCOS on 440 ultrasound images obtained from SRM Medical Science 

Hospital. The methodology involved preprocessing to 64x64 size as fuzzy is computationally 

intensive, followed by feature extraction by CNN, and then fuzzy rules were integrated. This 
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model achieved an accuracy of 98.37% with metrics such as precision, recall and F1 

indicating high performance. The limitations highlighted were integrating fuzzy logic with 

CNN can be computationally intensive and resizing to 64x64 can cause feature loss.  

2.2 PCOS Classification using Machine learning models 

Sumathi et al. (2023) proposed a methodology for detecting PCOS using a dataset of 1918 

augmented images from 25 hospital images. Their process included image acquisition, 

enhancement with Histogram Equalisation, segmentation, feature extraction using Gray Level 

Co-occurrence Matrix (GLCM) and classification. Darknet-19, AlexNet, SqueezeNet, and 

SVM were used, with SVM achieving the lowest accuracy of 84% and Darknet with 99%. 

The research stresses the need for more data. In contrast, Purnama et al. (2015) used two 

datasets of Dataset A with 275 ovary images based on mean texture and Dataset B with 399 

images based on other statistical measures. Features were extracted using Gabor wavelet 

method, and classification was performed using Neural Network-Learning Vector 

Quantization (LVQ), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM).  

SVM achieved the highest accuracy of 82.55% on Dataset A, and KNN with 78.81% on 

Dataset B. They highlighted the need for fine-tuning and refining the models for better 

results. In contrast, Suha and Islam (2022) utilized 594 ultrasound images of ovaries and used 

a hybrid model with features extracted by VGG16 and combined with a stacking ensemble of 

5 traditional classifiers (Logistic Regression, SVM, Decision Tree, KNN, Naïve Bayes) and 

XGBoost as the meta-learner. This approach achieved the highest accuracy of 99.89% on 

limited dataset. While all studies used image data, the study by Deshpande and Wakankar 

(2014) involved using a combination of image data and clinical data, containing total of 20 

ultrasound images, and dataset based on clinical parameters was used. Feature extraction was 

performed using a multiscale morphological approach, followed by segmentation and Canny 

edge detection and classification was done using SVM with a 95% accuracy. The author 

highlighted expanding the dataset in the future.  

2.3 Generative Adversarial Networks (GANs) 

Frid-Adar et al. (2018) applied both traditional data augmentation and synthetic data 

generation using Generative Adversarial Networks to classify liver lesions from CT images. 

The study used a small dataset of 182 images and applied traditional augmentation which 

resulted in 30,000 images which were further classified by CNN. The results were compared 

with classification results obtained by using synthetic data generated through DCGAN (Deep 

Convolutional GAN), a GAN architecture. The accuracy improved from 78.6% with 

traditional augmentation to 85.7% with the inclusion of synthetic data. On the contrary, 

Ahmad et al. (2022) presented SRGAN for improving image quality on four datasets 

including skin, retinal, cancer and cardiac ultrasound images forming a total dataset of 1400 

images. The architecture used initial layers for feature extraction with ResNet34, final layers 

with progressive upscaling with residual connections and CNN. SRGAN significantly 

improved image quality, achieving a PSNR of 38.83 dB and SSIM of 0.95. The limitation of 

this study was the use of Loss L1 function which can reduce errors but miss important 

features. The study by Liang et al. (2022) proposes a methodology using PGAN 

(Progressive-GAN) based framework to synthesize ultrasound images. The study uses 3 large 
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datasets: lung, hip joint and ovary and the approach employs auxiliary sketch guidance, 

progressive training strategies, and feature loss to enhance image quality. This approach 

showed promising results with FID ranging from 0.50 to 0.60 for the datasets, however, a 

limitation of the study is that the generated high-resolution images can be blurry and contain 

salt-and-pepper noise. Shashank, Acharya and Sivaraman (2023) used SRGAN with a VGG-

19 based loss function to enhance feature details and quality, showing significant 

improvements but faced challenges with overfitting needing a deeper network. Nandhini, 

Srinath and Veeramanikandan (2022) combined SRGAN and CNN to detect glaucoma from 

680 retinal fundus images that significantly improved accuracy from 75.20% to 96.11% and 

reduced loss metrics from 32.07% to 13.36%. For CNN, the limitations included reliance on 

limited and high-quality data as it increased the performance.  

The above studies show significant advancement in PCOS detection, but the gap 

remains. Studies including Kumar et al. (2023) and Suha and Islam (2022) use limited 

datasets, which can hinder performance and diversity. For PCOS classification, CNN models 

like NasNetMobile, ResNet152 and Xception, as well as their combination with the machine 

learning model CatBoost, have not been previously applied to PCOS classification. The use 

of GANs, particularly SRGAN is also unexplored in this domain. As discussed in Section 2.3, 

SRGAN can generate high-resolution synthetic images. This research proposes a novel 

approach by generating images with SRGAN and combining them with original data to 

enhance diagnostic accuracy using standalone CNN and hybrid models  

 
 

3 Research Methodology 
 

The methodology of this research is structured according to the CRISP-DM framework, 

which is considered a best practice for data-driven projects due to its flexible process model 

that ensures a systematic approach to problem-solving. Figure 1 illustrates the detailed 

process flow for this research.  

 

 
Figure 1: Methodology Diagram.  
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3.1 Business Understanding 

The overall aim of this study is to make a diagnosis of PCOS more accurate by using 

advanced AI techniques. Diagnosis of PCOS can be improved by generating synthetic data 

which will lead to better results for patients, and it will bring down the cost by avoiding 

relying on large volumes of data, lowering the cost, and increasing the speed of the 

development process.  

3.2 Data Understanding 

The dataset1 utilized in this study is taken from Kaggle consisting of 1588 training images 

and 398 test images of ultrasound scans of ovaries, labeled as PCOS and Normal.  

3.3 Data Preparation 

Initially, each image’s mode was checked to determine if it was stored in RGB or Grayscale 

format using the PIL library of Python. The images appeared grayscale after this check.  

SRGAN Pre-processing: The images were loaded and resized to 128x128 pixels to 

standardize the input size for the SRGAN model and then the images were normalized to the 

range [-1, 1] in order to transform the images into numpy arrays for further processing. The 

preprocessing steps for SRGAN were also highlighted in the study by Takano and Alaghband 

(2019).  

Classification Pre-processing: This involved preprocessing the images to make sure they 

are suitable for CNN and hybrid models. The preprocessing was divided into two parts.  

1. Pre-processing for classification using combined data: The original data, and SRGAN-

generated data involved the same pre-processing steps. Both the datasets were merged to 

form a combined dataset and all the preprocessing was applied to the combined dataset. The 

images were resized to 224x224 pixels for models NasNetMobile and ResNet-152 and 

299x299 for Xception. The normalization range [0,1] was the same for all three models. 

Histogram equalization was also applied to both images to enhance the features as this 

technique is effective for ultrasound images by revealing more details which are often not 

prominent enough due to its low contrast and noise.  

 

 
Figure 2: Original Training and Generated Data - Histogram Equalization. 

 

Figure 2 illustrates images before and after histogram equalization on the combined dataset to 

demonstrate the enhancement of features.  

2. Training and Testing: After data preparation, the dataset of 1588 images was split into 

80% for training and 20% for validation, and the test set of 398 images remain unchanged for 

 
 
1 https://www.kaggle.com/datasets/bharatsh001/pcos-cleaned-and-splitted 
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final evaluation. The CNN models (NasNetMobile, ResNet152, Xception) and their 

combination with Machine learning classifier (CatBoost) were trained for 100 epochs using 

the Adam Optimizer and binary cross-entropy loss functions. Validation data was used during 

training to fine-tune the models and prevent overfitting and the test set was used to evaluate 

the model’s performance using metrics such as accuracy, precision, recall, F1-score and 

confusion matrix.  

3. Data Generation using SRGAN: In this phase, SRGAN creates high-resolution synthetic 

images from the original training dataset. This method is preferred because GANs generate 

more realistic and diverse data. The SRGAN architecture includes a generator and 

discriminator, which are both convolutional networks to help the model effectively capture 

complex features (Ledig et al., 2017). With further fine-tuning, the generator employed 

residual blocks to improve the image quality making sure the images remain detailed (Lim et 

al., 2017). Adam optimizer with different learning rates was used to help the model learn 

faster and handle complexities better. This was adjusted for every fine-tuning as the model 

was built depending on the results. There were two losses used where adversarial loss using 

binary-cross entropy (BCE) helps the discriminator distinguish between real and fake images 

and the content loss using Mean Squared Error (MSE) is used to ensure the generated images 

are structurally similar to the original ones. Additionally, perpetual loss is calculated using a 

pre-trained VGG19 network to focus on high-level features as this approach is effective for 

grayscale images by enhancing structure details and textures (Moran et al., 2021). The 

discriminator is composed of convolutional layers with spectral normalization and Leaky 

ReLU to help stabilize training and improve performance. The SRGAN model was trained 

for 100 epochs with a batch size of 32. Images from the last 10 epochs were saved for 

evaluation, representing the highest quality outputs after extensive training. 

3.4 Data Modelling 

Data Splitting: The original data was already split into train and test and the train data was 

used to train SRGAN, which resulted in 4764 images as images generated for the last 3 

epochs (97,98,99) from 100 epochs were considered. The original train data was split into 

validation set with a ratio of 80:20, and the remaining train images were combined with the 

SRGAN-generated images resulting in 6034 images for classification (1270 remaining train 

images + 4764 SRGAN-generated images). 

CNN Models: Three CNN models (NasNetMobile, ResNet152, XceptionNet) were trained 

on the combined dataset (original + generated) and validation. The models were initialized 

with pre-trained weights from ImageNet, and the top layers were replaced with custom layers 

suitable for PCOS classification. The common architecture for the CNN models included a 

base model followed by global average pooling, dense layers with ReLU activation, dropout 

for regularization, and a final dense layer with softmax activation for classification. Finally, 

the model was compiled by Adam Optimizer. 

Hybrid Models: This was constructed by extracting features using CNN and classifying 

using a traditional machine model, in this case, Catboost.  
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3.5 Evaluation 

The performance of the models trained on the original dataset was compared with training on 

the combined dataset to evaluate the effectiveness of the SRGAN-generated synthetic images. 

The evaluation metrics included accuracy, precision, recall, F1 score, confusion matrix, and 

Area under curve.  

3.6 Deployment 

In this study, except for the deployment phase, all other phases are executed. 

 

 

4 Design Specification 

4.1 Super-Resolution Generative Adversarial Networks (SRGANs) 

This section describes the use of SRGAN to generate additional images for more accurate 

PCOS detection. The SRGAN consists of 2 main components: the generator and the 

discriminator. The generator generates detailed images from low-quality input, and the 

discriminator on the other hand compares the generated images to the real ones. During 

development of architecture, both components were modified and fine-tuned across several 

variations to enhance image quality. Pre-processing for all variations was done by resizing 

them to 128x128 pixels and normalizing them within [-1, 1].  

Variation 1: This variation shows a basic framework of a generative adversarial network. 

Resized images of 128x128 pixels are down-sampled to 64x64 pixels before giving it as input 

into the generator. Even though the images get downsampled, the pre-processing to resize 

them to 64x64 is because if the images were initially resized to 128x128 instead of directly 

resizing them to 64x64, essential details or features can be lost. The downsampling of the 

image before feeding it into the generator is standard process for SRGAN as it makes the 

neural network concentrate on extracting and learning critical features from a compressed 

representation of the image, in a way teaching the network how to reconstruct finer details 

from less data2.   

Generator - The generator starts by using a 9x9 convolutional layer with 64 filters to extract 

essential features from the downsampled images and after feature extraction the image is 

upsampled back to 128x128, which increases the size and adds more detail (Maqsood et al., 

2021). After upsampling, an additional 3x3 convolutional layers further refine the texture and 

structure of images. Finally, the output layer uses 9x9 convolutional filter with tanh 

activation to give output of the final high-resolution images.  

Discriminator - A 128x128 image generated as output from the generator is used as input 

here and this input will contain both generated and original images (128x128). The initial 

layers use 64 filters of 3x3 with a LeakyReLU activation function to introduce non-linearity 

to help capture complex patterns (Jia et al., 2019).  There is an addition of more layers with 

more filters to refine the feature extraction process as the architecture progresses. Some 

layers are configured with stride=2 to reduce spatial dimensions of feature maps obtained 

 
 
2 https://medium.com/analytics-vidhya/super-resolution-gan-srgan-5e10438aec0c 
 

https://medium.com/analytics-vidhya/super-resolution-gan-srgan-5e10438aec0c
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through other convolutional layers, in order to focus on larger features like shapes and 

textures instead of pixel-level details. Batch normalization is applied after the convolutional 

layers have processed the image to stabilize the training and help the discriminator learn more 

efficiently. After the convolutional layers have processed the image, the image data is 

flattened into a one-dimensional vector for Dense layer, which combines the extracted 

features and forms an understanding of the image content. The final layer is an output layer 

with sigmoid activation suitable for binary classification, which enables the discriminator to 

determine whether an image is real or generated. Figure 3 illustrates the architecture diagram 

for Variation 1.  

 
Figure 3: SRGAN architecture diagram Variation 1. 

 

Training Loop - A batch of original and generated images are randomly selected and passed 

to the discriminator, which evaluates them as real and fake using the architecture with the 

layers mentioned in Figure 3. During this process, the generator receives feedback in the form 

of loss (d_loss for the discriminator and g_loss for the generator), which is calculated using 

Binary Cross-Entropy (BCE), a loss function that measures the difference between actual and 

predicted values. This feedback helps the generator improve its ability to create realistic 

images. Through backpropagation, the generator fine-tunes its parameters to minimize g_loss 

and fool the discriminator. The training progresses with each batch at 0.0001 learning rate for 

both generator and discriminator, controlling the rate at which the model learns. Figure 4 

demonstrates this training loop for Variation 1.   

 
Figure 4: Training loop. 

 

Variation 2: The architectural setup is majorly similar to Variation 1 including the 

preprocessing, but there are several enhancements. Variation 2 introduces residual blocks, 

which are crucial to help maintain the image quality and details as they pass through multiple 

layers of the network.  
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Generator  - Residual blocks allow the network to learn and apply small changes on top of 

the original image data rather than having to recreate the image details from scratch at each 

layer, thus preventing loss of important details which can happen if crucial details are lost as 

it passes through many layers. This addition is important in architectures like SRGAN as it 

resolves the issue of loss of information. The residual block in this variation consists of two 

convolutional layers, followed by batch normalization to enhance the model’s ability to 

capture and maintain essential details and PreLU activation to allow the network to continue 

learning from images. Figure 5 illustrates the residual block architecture for this variation. 

 

 
Figure 5: Residual blocks layers – Variation 2. 

 

Discriminator – In variation 2, the discriminator is improved by adding Spectral 

Normalisation to all convolutional layers, because in the context of SRGAN, without this the 

discriminator might become too powerful, making it hard for the generator to improve as the 

generator would easily identify generated images as fake and this could stop the feedback to 

the generator and stopping the progress, thus spectral normalization will help to bring that 

balanced learning (Miyato et al., 2018). In this variation, 2 more convolutional layers are also 

added with filters, increasing the discriminator’s ability. 

Training loop – The training loop in Variation 2 follows the same process as the training 

loop in Variation 1 except for the learning rate which is increased to 0.0002 allowing the 

model to learn more quickly. 

Variation 3: While the preprocessing remains the same across all the variations, there are 

certain adjustments made in the generator and discriminator for this case.  

Generator – Similar to variation 2, the generator here also contains residual blocks, but the 

number of residual blocks is increased from 5 to 15 allowing the network to process and 

enhance the details through deeper layers, in a way making sure the texture of the image is 

also improved.  

Discriminator – The architecture is the same as the one for variation 2 and similarly, spectral 

normalization is maintained across all the layers. Figure 6 illustrates the architecture diagram 

for Variation 2, Variation 3 and Variation 4.  
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Figure 6: Architecture Diagram for Variation 2/Variation 3/Variation 4. 

 

Training Loop – The training loop process here is similar to the training loop for variations 1 

and 2, however VGG-19 for feature extraction is introduced. Both generated and synthetic 

images are passed to VGG-19  which extracts high-level features from the images which is 

then used to compute the perpetual loss. This perpetual loss evaluates how similar both 

(synthetic + original) images look beyond just pixel-to-pixel comparison. For normal images 

it will detect smooth textures without cysts, and for PCOS it will learn to detect complex 

textures with multiple cysts. This perpetual loss is then combined with the discriminator loss 

to create a total loss and provide feedback to generator. Figure 7 illustrates the training loop 

for Variations 3 and 4. 

 
Figure 7: Training loop for Variations 3 & 4. 

 

Variation 4: The architecture for variation 4 remains the same for the generator and 

discriminator with residual blocks increased from 15 to 16 to capture more depth in features, 

but there are some enhancements made in the training loop. 

Training Loop - In variation 4, the training loop incorporates sophisticated mechanisms to 

optimize the learning ability. The learning rate scheduler with exponential decay is employed 

which methodically lowers the learning rate as training progresses as it allows the neural 

network to make finer adjustments useful in the later stages of training to prevent exceeding 

the minimal loss values. Additionally, gradient clipping is used to keep the changes made 

during learning from becoming too large which causes instability (Gulrajani et al., 2017). 

Label smoothing of 0.9 is also applied to make sure the discriminator does not get too 

confident with its predictions, promoting a balanced training environment.  
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4.2 Convolutional Neural Network (CNN) 

In this project, 3 standalone CNN pre-trained models NasNetMobile, ResNet152, and 

Xception are utilized. These models help classify the images by processing them through 

several layers with ResNet152 offering deep residual networks helping capture intricate 

details and preventing loss of information and Xception with its depthwise separable 

convolutions capturing local features more distinctly and NasNetMobile for its lightweight 

and efficient architecture. Each model starts with a pre-trained based on ImageNet to quickly 

recognize general image features. Images are resized to fit model specifications: 224x224 for 

NasNetMobile and ResNet152, and 299x299 for Xception. These models come with several 

built-in layers such as Batch Normalization which ensures that the input data to each layer is 

standardized and ReLU activation which introduces non-linearity, helping the model learn 

complex patterns. Then, the images are sent to Global Average Pooling (GAP) layer which 

reduces the number of parameters by focusing on the important features and a dropout layer 

is then applied to avoid overfitting. Finally, a dense layer with Softmax activation is used to 

make final classification based on the features extracted. Figure 8 illustrates the architecture 

diagram of CNN standalone model describing image classification through different layers. 

 

 
Figure 8: CNN pre-trained models Architecture diagram. 

4.3 CNN and Machine Learning Classifier 

In this setup, images first go through a pre-trained model. Similar to CNN architecture in 

Figure 8, with pre-trained networks, batch normalization layer, ReLU activation layer remain 

consistent along with GAP which is embedded with these pre-trained models. These layers of 

CNN then process the features at every step and then these processed features are used by the 

Catboost classifier, a type of machine-learning model that excels in recognizing complex 

patterns within the image data, making it suitable for classifying. This classifier makes the 

final decisions, labeling the images based on the features it receives from initial image 

processing. Figure 9 displays the architecture for CNN + CatBoost classifier architecture.  

 

 
Figure 9: CNN + Catboost classifier Architecture. 

 

 

5 Implementation 
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5.1 Setup and Data Configuration 

The original data used in this project was already split into train and test. Training consisted 

of 913 images of normal class and 675 images of PCOS class, test set included 229 normal 

and 169 PCOS class images. To create more data for enhancing model training and 

diversification, SRGAN was employed and the generator was trained on the original training 

dataset on 100 epochs where each epoch produced 1588 images (913 + 675). During the 

training, images were processed with a batch size of 32 to manage computational load 

effectively. From the numerous variations and adjustments made to the SRGAN model, the 

fourth variation generated good images from epoch 80 to epoch 100 but only images from 

epochs 97, 98, 99 were considered due to computational requirements and based on clarity 

and visual inspection. This resulted in 4764 SRGAN-generated images. The generated data 

was then combined with the original training set and the original test set remained unchanged 

to ensure the model effectively handles unseen data. To balance the large training set and 

mitigate the risk of overfitting, the original training data was split into an 80:20 ratio to 

provide a reliable means of fine-tuning the model’s parameter through the validation 

feedback. 

This was executed on the Google Colab platform utilizing a TPU v2 with 300GB due to the 

intensive computational abilities of SRGAN and further classification with 6352 images.  

5.2 Pre-processing and Data Transformation 

The CNN models in this research like VGG19 for SRGAN, NasNetMobile, ResNet152, 

Xception for CNN require 3-channel RGB input. To address this, the grayscale images were 

converted to RGB by duplicating the grayscale channel across all 3 RGB channels using the 

PIL library to be suitable for CNN.  

SRGAN Preprocessing – For SRGAN, the original training dataset was used and the images 

were resized to 128x128 pixels to maintain uniformity. Then, the images were normalized to 

[-1, 1] to help the network learn better. Additionally, this normalization was done since ‘tanh’ 

function used in the output layer supports [-1,1] normalization.  

CNN Preprocessing – Preprocessing was applied to a combined dataset of 6352 images, 

consisting of 1588 original training images and 4764 generated images from the last three 

epochs (97, 98, 99). The validation (split from training) and test set were also preprocessed. 

Images were resized as per the model’s input requirements: 224x224 for NasNetMobile, 

ResNet152 and 299x299 for Xception. Standard normalization of [0,1] range was applied, 

followed by histogram equalization to enhance contrast and reveal more features. Then, label 

encoding was used to convert categorical labels into numeric form.  

5.3 Implementation: SRGAN Variations 

 In the process of generating synthetic data, various configurations of the SRGAN model 

were tested to identify the best-performing architecture. This involved modifying key 

parameters and components in the generator and discriminator network and Table 1 

summarises the key parameters and differences.  
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Table 1: SRGAN Model Variations and Parameters 

  

5.4 CNN and Hybrid Models 

The combined dataset and the validation dataset were used during training and the results 

were evaluated against the test data. The classification was done with the help of standalone 

CNN models (NasNetMobile, ResNet512, Xception) and hybrid models (CNN model for 

feature extraction, and the extracted features were classified using the CatBoost classifier).  

The models were compiled using Adam Optimizer, known for its ability to handle complex 

data and adjusting the learning rate automatically. Sparse categorical loss was also used to 

handle the classification of labeled data. Each model was trained on 10 epochs and the batch 

size was 32 to optimize memory usage and ensure data samples accurately reflect the overall 

dataset. Validation was conducted using the 20 percent data split from train data to evaluate 

model performance and avoid the risk of overfitting.  

For Hybrid models, the features were extracted using the same CNN models 

(NasNetMobile, ResNet512, Xception) and were classified using Catboost classifier, known 

for its performance with categorical data with training parameters such as learning rate of 0.1, 

tree depth of 4 and 100 iterations. The ‘verbose’ parameter was set to 10, providing feedback 

after every 10th iteration. 

 

6 Evaluation 
 

The effectiveness of image generation using SRGAN and classification using CNN and 

hybrid models is evaluated to understand the impact made by SRGAN-generated data on 

limited data. For SRGAN, four variations are analyzed to show improvements in image 

features using visual inspection and SSIM score, and discriminator vs generator loss graph. 

For classification performance is evaluated using classification reports, confusion matrix, 

accuracy, ROC curves, and loss graphs. SSIM refers to the similarity between real and 

generated images in terms of pixel and structure. Classification metrics include precision 

Variation Generator  Discriminator Learning Rate Activation 

Function  

Optimizer Loss Function  

1 Basic CNN Standard layers 

CNN 

Gen: 0.0001, 

Disc: 0.0001 

LeakyReLU Adam 

(β1=0.5) 

Binary Cross 

Entropy (BCE) 

2 CNN with 5 

residual 

blocks 

Spectral 

Normalisation 

(SN) + Batch 

Normalisation 

(BN) 

Gen: 0.0002, 

Disc: 0.0002 

PreLU Adam 

(β1=0.5) 

Binary Cross 

Entropy (BCE) 

3 CNN with 15 

residual 

blocks 

SN + BN Gen: 0.0002, 

Disc: 0.0002 

PreLU Adam 

(β1=0.5) 

VGG-19 based 

perpetual loss 

4 CNN with 16 

residual 

blocks 

SN + BN Starts at 0.0001 

Decay 

PreLU Adam with 

gradient 

clipping 

(β1=0.5, 

β2=0.999) 

VGG-19 based 

perpetual loss 
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(correct predicted values), recall (correct actual values), specificity (correct actual negatives), 

F1 score (combines precision and recall), and ROC curves (balance between true positives 

and false negatives).  

6.1 SRGAN Variation 1 / Variation 2 

Visual Inspection: The generated images are assessed over 100 epochs to observe the 

progression in image quality. Images displayed are saved in a grid of 25 samples for both 

classes at every 10th epoch to monitor how the image generation progresses and how much 

the images can adapt the features of the original dataset. Figure 10 illustrates the display of 

generated images from SRGAN Variation 1 and Variation 2, showing the evolution of image 

quality over 100 epochs. These images show significant blurriness and lack of fine detail. For 

Variation 1, if PCOS class is observed, there is little indications of cystic structures but 

normal class shows significant blurriness and hence images from these variations are not 

considered.  For Variation 2, images are getting saved every 10th epoch similar to Variation 1. 

But overall epochs also demonstrate a similar display of images, hence for evaluation images 

of the last epoch are shown. Both PCOS and normal classes show overwhelming darkness 

and lack visible detail, making it difficult to distinguish between the two classes. Due to these 

shortcomings, further metrics like SSIM and generator-discriminator loss graph will not be 

shown. 

      
Figure 10: Generated images – Variation 1/ Variation 2. 

6.2 Variation 3 

 
Figure 11: Generated images: Variation 3. 

 

The images for variation 3 as shown in Figure 11 show some differences from the other 2 

variations. The normal class shows improved texture and more visible details than variation1, 

but there is still significant blurriness. For the PCOS class, there’s a noticeable enhancement 

in the visibility of cysts which makes it easily understandable but it still can’t be considered 

to be taken as for both classes, each image does not fully occupy the given space leaving 
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noticeable black space and incomplete usage of the frame, thus further adjustments need to be 

made and these images cannot be considered for classification. 

6.3 SRGAN Variation 4 
 

 
Figure 12:  Generated vs Original images – SRGAN Variation 4. 

 

Figure 12 illustrates the comparison of original and generated images from Variation 4 over 

80-100 epochs. In SRGAN Variation 4, improvements in image generation were observed 

between epochs 80 to 90 and as the epochs progresses, it gets better, especially for epochs 

97,98,99. The normal generated images are improved in capturing structural elements 

compared to previous ones, but there is still little blurriness. But, there is a visible effort by 

the model to replicate the general textures and shapes found in the original image. The 

PCOS-generated image shows better cystic structures suggesting that the model is learning to 

distinguish and replicate important features. It is observed that the blurriness is constant but it 

also somewhat occurs from the original image as they also have a little blurriness factor. A 

conclusion can be made that after increasing residual blocks from 15 to 16 and introducing a 

finer controlled exponential decay for the learning rates to decrease slowly, the model’s 

ability to generate stable images improved.  

 

 
Figure 13: Discriminator vs Generator Loss Graph – SRGAN Variation 4. 

 

In Figure 13 the graph shows discriminator and generator losses across 100 epochs. Initially, 

both losses experience high fluctuations at the early stages of the model where the model is 

learning to refine its image generation. As training progresses, the losses decrease and start to 

stabilize, indicating the generator is producing more accurate images and the discriminator is 

learning effectively. This decrease in loss value suggests that the model has reached a 

consistent level of performance, capturing and replicating ultrasound images. 
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Table 2: SSIM metrics for SRGAN Variation 4 

Epoch 

SSIM for 

Normal Class 

SSIM for PCOS 

class 

97 0.16 0.16 

98 0.11 0.18 

99 0.1 0.13 

 

Table 2 shows SSIM metrics for SRGAN Variation 4 across last three epochs with visually 

good images. While the SSIM values are not very high, indicating structural differences 

between original and generated images, it is important to note that SSIM evaluates images on 

a pixel-by-pixel basis, focusing on specific aspects like brightness and structure. Visually, 

these images from the last 3 epochs show better improvements and capture features, thus 

considering these images can be useful in analysis, resulting in more diverse data. For 

classification, only the images from epochs 97, 98, 99 are taken that corresponds to 15% of 

the total generated data from epochs 80 to 100. This is because even though all the images 

generated in these epochs are good, taking all of them is not possible due to computational 

intensity and per epoch 1588 images are generated so in case of 80 to 100 epochs, there will 

be a total of 31,760 images which will be very high computation and hence only 4764 

generated images will be considered.  

6.4 CNN Standalone models 

This section aims to assess whether synthetic images generated using SRGAN can improve 

the diagnostic accuracy of CNN in detecting PCOS. 

NasNetMobile: This model shows an accuracy of 97%. It identifies all normal cases 

correctly causing a specificity of 100% and PCOS which is the positive class, has 13 

misclassifications with a recall of 92%. The F1 score combining precision and recall is strong 

for PCOS (0.96) and Normal (0.97) indicating balanced performance.  

 

Table 3: Evaluation Metrics for NasNetMobile 

Metric Normal PCOS Overall Metrics 

Precision 0.95 1.00  
Recall (Sensitivity) 1.00 0.92 Sensitivity: 0.92 

F1-score 0.97 0.96  
Test Loss   0.093 

Accuracy   97% 

Specificity    1.00 

Confusion Matrix TN: 229, FP: 0 

TP: 142, FN: 

13  
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Figure 14: NasNetMobile Training Progress and ROC Analysis. 

 

The training and validation loss graph shown in Figure 14 explains the model stabilized after 

a few epochs indicating good learning with epoch 10th as the best epoch and ROC-curve of 

1.00 confirms the model’s ability to distinguish both classes. The model also demonstrates 

low test loss of 0.093 suggesting precise predictions. Table 3 presents evaluation metrics for 

NasNetMobile's performance. 

 

ResNet152: This model demonstrates 96% accuracy and a test loss of 0.153. It excels in 

identifying Normal cases with precision of 93% as 16 PCOS cases were misclassified as 

Normal but achieves a perfect recall of 100%. For PCOS, precision is 100% because no 

Normal cases were incorrectly classified as PCOS with a recall of 90%. The F1 scores for 

PCOS and Normal are 95% and 97% respectively. The training and validation graph in 

Figure 15 shows the 10th epoch as the best epoch and an ROC-AUC score of 0.99 indicates 

proper classification. Table 4 presents the evaluation metrics for ResNet152 for performance. 

 

Table 4: Evaluation Metrics - Resnet152 

Metric Normal PCOS Overall Metrics 

Precision 0.93 1.00  
Recall 

(Sensitivity) 1.00 0.90 Sensitivity: 0.90 

F1-score 0.97 0.95  
Test Loss   0. 153 

Accuracy   96% 

Specificity    1.00 

Confusion Matrix TN: 229, FP: 0 TP: 139, FN: 16  
    

          
Figure 15: ResNet152 Training Progress and ROC Analysis. 
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Xception: This model gives an accuracy of 98% and correctly identifies all cases of Normal 

class but the precision is 97% as 8 PCOS cases were incorrectly classified as Normal, but the 

recall for Normal is 100%. For PCOS, the precision is 100% as there were no cases where 

Normal was misclassified as PCOS and the recall was 95% due to 8 missed cases. Table 5 

shows the evaluation metrics for Xception indicating the performance. 

 

Table 5: Evaluation Metrics: Xception 

Metric Normal PCOS Overall Metrics 

Precision 0.97 1.00  
Recall 

(Sensitivity) 1.00 0.95 Sensitivity: 0. 92 

F1-score 0.98 0.97  
Test Loss   0. 1026 

Accuracy   98% 

Specificity    1.00 

Confusion 

Matrix 

TN: 

229, 

FP: 0 TP: 147, FN: 8  
 

With the high F1 scores of 97% and 98% and the rapid decrease in loss as shown in Figure 16 

and the model’s nearly perfect ROC-AUC curve, indicated the model’s predictions are 

reliable 

 

         
Figure 16: Xception Training Progress and ROC Analysis. 

6.5 CNN Hybrid Models 

 
Figure 17: ROC-AUC Curve Analysis for Hybrid Model. 
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Figure 17 shows the ROC-AUC graph for Hybrid Models. All three perform well in 

distinguishing between classes with Xception + CatBoost and NasNetMobile + CatBoost 

showing a perfect score of 1.00. ResNet152 + CatBoost shows a close score of 0.99. 

 

Table 6: Performance metrics for Hybrid CNN-Catboost 

Model Metric Normal PCOS Accuracy 

Xception + CatBoost Precision 0.97 1.00 98% 

Specificity:100% 

Sensitivity:96% 
Recall 1.00 0.96 

F1-score 0.99 0.98 

Confusion Matrix  TN: 229, FN: 6 TP: 163, FP: 0 
 

ResNet152+ 

Catboost 

Precision 0.91 1.00 94% 

Specificity:100% 

Sensitivity:86% 
Recall 1.00 0.86 

F1-score 0.95 0.93 

Confusion Matrix TN: 229, FN: 23 TP: 146, FP: 0 

NasNetMobile + 

CatBoost 

Precision 0.90 1.00 94% 

Specificity:100% 

Sensitivity:85% 
Recall  1.00 0.85 

F1-score 0.95 0.92 

Confusion Matrix TN: 229, FN: 25 TP: 144, FP: 0 

 

Table 6 shows the evaluation matrix for Hybrid models built using CNN and Machine 

learning classifier CatBoost. The Xception + CatBoost model gives the best results with an 

accuracy of 98% giving perfect precision and recall which are reflected in the F1-scores of 

99% for Normal and 98% for PCOS. The model has minimal misclassifications with only 6 

false negatives for Normal and no false positives for PCOS. In contrast, RestNet152 + 

Catboost shows a slight dip in performance with an accuracy of 94% with 23 

misclassifications for PCOS with a recall of 86%. NasNetMobile + CatBoost follows a 

similar pattern with an accuracy of 93% and 40 misclassifications for PCOS. Both ResNet152 

and NasNetMobile show perfect precision for PCOS but differ in their ability to detect PCOS 

cases correctly.  

6.6 Discussion 
 

Table 7: Evaluation Metrics for Original Images 

Model Precision  Recall F1-score Accuracy 

NasNetMobile 0.98 0.97 0.97 97% 

ResNet152 0.98 0.97 0.97 97% 

Xception 0.99 0.98 0.99 99% 

Xception + 

CatBoost 

0.99 0.99 0.99 99% 

ResNet152 + 

CatBoost 

0.98 0.97 0.97 97% 

NasNetMobile 

+ CatBoost 

0.95 0.93 0.94 94% 

 

Table 7 presents evaluation metrics on the classification results obtained by using the original 

data. In this research, the primary focus was on assessing the impact of SRGAN-generated 
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data on PCOS detection using both CNN and Hybrid models. This approach was designed to 

understand if the addition of synthetic data can enhance the model’s performance in 

comparison with the performance of the original data. The evaluation metrics in Table 7 

explains that with just original data models like NasNetMobile, ResNet152, Xception and the 

hybrid models combining these CNN models with CatBoost showed excellent performance 

achieving an accuracy of 99%. When integrating with SRGAN-generated data it was 

observed that although XceptionNet maintained a high performance of 99% for both 

standalone models, the performance for other models decreased a little to 96%. For hybrid 

models, the performance decreased to 94% indicating that CNN models like ResNet152 and 

NasNetMobile with CatBoost might have not been able to capture subtle details present in 

SRGAN-generated data. This suggests that while the synthetic data mostly matched the 

performance of original data, a slight decline was observed for certain models. This indicates 

that the impact of classification from SRGAN-generated data can slightly vary based on the 

model characteristics and architecture. 

 

7 Conclusion and Future Work 
 

In this research, attempts were made to leverage SRGAN-generated images to enhance model 

training but the synthetic images retained some blurriness, but if observed the original images 

were also a bit blurry and this can be due to the nature of the ultrasound images which are 

usually noisy and of complex nature. Based on these characteristics, SRGAN might not be 

the best choice for improving ultrasound images, but the study still explored this approach to 

evaluate its impact and effectiveness. The study only tested 4 variations for SRGAN due to 

computational constraints, suggesting that further exploration with more training and 

resources can potentially yield better results.  In evaluating the effectiveness of SRGAN-

generated data, CNN models including NasNetMobile, ResNet152, and Xception were tested 

alongside hybrid models combining these CNNs with catboost.  

The models showed good accuracy even with the addition of SRGAN-generated data 

but there were minor differences in performance, with NasNetMobile and ResNet152 

experiencing slight variations of a few percent in accuracy as compared to classification 

using original image. A conclusion can be made that if the images were poor quality, there 

would be a significant drop in performance compared to the original one, but the minimal 

difference suggests that the SRGAN-generated images in this research were of sufficient 

quality to be useful, but the performance can vary depending on the model architecture.  
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