""‘-
\ National

Collegeof
[reland

E-Commerce Customer Retention Analysis
Configuration Manual

MSc Research Project
Data Analytics

Mohan Sugumaran
Student 1D: x22183779

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

“‘
National College of Ireland .\ National

MSc Project Submission Sheet
School of Computing

Student Name: Mohan Sugumaran

Student ID: X22183779

Programme: Data Analytics Year: 2024
Module: Research Project

Lecturer: Arjun Chikkankod

Submission Due

Date: 12/08/2024

Project Title: E-commerce Customer Retention Analysis

Word Count: 973 Page Count: 10

College
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Mohan Sugumaran
Date: 12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Mohan Sugumaran
Student ID: x22183779

1 Introduction

The aim of this research project is to precisely forecast customer attrition in the context of e-
commerce. This handbook provides a detailed explanation of the hardware and software
prerequisites required for future researchers to successfully reproduce the experiment. The
handbook provides a comprehensive overview of every step involved in the project
execution, encompassing data gathering, preprocessing, model training, testing, and
assessment. When relevant, footnotes are included with reference code repositories, allowing
for the replication and validation of all phases.

2 System Requirements

2.1 Hardware Requirements

The system used for this project is equipped with an 11th Gen Intel Core i7-1165G7
processor running at 2.80 GHz, with 16 GB of installed RAM, and operates on a 64-bit
Windows operating system. This setup provides sufficient computational power to handle the
data processing, model training, and evaluation tasks required for the customer churn
prediction project.

@ Device specifications

Device name LAPTOP-HBUMZ25BQ

Processor 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz
Installed RAM

Device ID ESF

Product ID

System type

Pen and touch No pen or touch input is

Figure 1 : Hardware Configuration

2.2 Software Requirements

The software configuration entails utilising Jupyter Notebook as the primary development
environment for coding, data processing, and model training. The dataset was instantly
uploaded and analysed within Jupyter Notebook, enabling a dynamic and streamlined
workflow for the customer churn prediction project.

3 Importing required libraries

The essential Python libraries for this project are listed in the requirements.txt file, which
guarantees the accurate installation of all dependencies. To recreate the environment, you
may install the necessary libraries by using the command "pip install -r requirements.txt" in
your terminal.

1]

1 scikit-learn
2 numpy

i pandas

1 matplotlib

5 seaborn

Figure 2: Required Python Libraries

4 Data Exploration

This figure represents one of the data exploration techniques used to gain insights and
understand the data. Similarly, various exploratory methods were employed throughout this
research.

Uni-Variate Analysis

Figure 3: Uni-Variate Analysis of Categorical Columns

https://www.kaggle.com/datasets/rakeshswaminathan/churn-data

https://www.kaggle.com/datasets/rakeshswaminathan/churn-data

5 Data Preparation
5.1 Data Collection

The dataset for the customer churn analysis was loaded into the Jupyter Notebook using the
pd.read_excel function from the specified file path.

e
Loding dota

churn = pd.read_sxcel(r’'C:/Users/mohan/Downloads/Research Project/dataset/Customer Churn Data.xlsx’, sheet_name = 'Data for DSBA')

Figure 4: Loading Customer Churn Data

5.2 Data Preprocessing

Following the process of data cleaning, an exploratory data analysis (EDA) was conducted to
examine the structure of the dataset and verify that all characteristics had consistent non-null
values.

EDA after data cleaning

checking info of dato

Q)

churn. i

«class “pandas.core.frame.Dataframe’ >
Index: 11144 entries, @ to 11259
Data columns (total 19 columns):

Column Non-Null Count Otype

8 AccountID 11144 non-null inteéd

1 churn 11144 non-null inted

2 Tenure 11144 non-null Inted
City_Tier 11144 non-null Inted

4 CC_Contacted_LY 11144 non-null Inted

5 Payment 11144 non-null floated

6 Gender 11144 non-null floated

7 service_Score 11144 non-null floate4d

8 Account_user_count 11144 non-null floated

9 account_segment 11144 non-null floated

18 CC_agent_Score 11144 non-null floated

11 Marital_Status 11144 non-null floated

12 rev_per_month 11144 non-null floate4d

13 Complain_ly 11144 non-null floate4d

14 rev_growth_yoy 11144 non-null floated

15 coupon_used_for_payment 11144 non-null floated

16 Day_%ince_CC_connect 11144 non-null floated

17 cashback 11144 non-null floated

18 Login_device 11144 non-null floate4d

dtypes: Inted4(3), floatsd(1l4), inted(2)

Figure 5: EDA info

Preprocessed the "Tenure' variable by handling missing and erroneous data, changing it to an
integer data format, and imputing the missing values with the median value.

Scaling data

frem skleacn, preprocessisg lapert Mirttandes

Figure 6: Data Scaling with MinMaxScaler

The dataset underwent scaling using the MinMaxScaler technique to standardise features
within the range of 0 and 1, guaranteeing consistency across all variables. The rescaled data
was subsequently aggregated into a fresh DataFrame to facilitate additional analysis and

model training.

Treating data

185

Figure 7: Treating Data

5.3 Data Splitting

The dataset was split into training and testing sets, with 70% of the data used for training and
30% reserved for testing.

Splitting data into train and test data set

Figure 8: Splitting Data into Training and Testing Sets

6 Model Implementation

6.1 Overview of Models

The model was evaluated both with and without SMOTE, and the results were stored for
comparison, this process was repeated for all other models as well.

result ut_smote =

results_with_smote =

logistic_regression_model = LogisticRegression(solver="liblinear’)

acc, prec, rec, f1 = evaluate_model(logistic_regression_model, X_train, y_train, X_test, y_test, 'Logistic Regression’, with_smote=False)
results_without_smote.append(['Logistic Reg sion', acc, prec, rec, fi])

acc, prec, rec, f1 = evaluate_model(logistic_regression_model, X_train_res, y_train_res, X_test, y_test, 'Logistic Regression’, with_smote=True)
results_with_smote.append(]'Logistic Regression’, acc, prec, rec, f1})

Figure 9: Comparing Model Performance with and without SMOTE

6.2 Hyperparameter Tuning

Hyperparameter grids were defined for several models, such as Logistic Regression, Decision
Tree, Random Forest, Gradient Boosting, AdaBoost, Bagging, and SVM, in order to enhance
their performance throughout the process of model tuning.

Define Hyperparameter Grids 1

1 O 1
1 L) e
snran_grid_decision_
ra Bt r
NO
ir ¥ [} 1
1 1w 1
Pe " - s
L “
i ¥
Nonwe]
il v -S, 18],
mAr aeple Inar i, 4, 1

parar_grid _gradisnt_boosting
timators’: (%0, 1aw, aea],

param_grid_adabooxt

param_grid_bagging
TiwaTor 10, se, duoe
wple

Figure 10 : Hyperparameter Grids for Model Tuning

6.3 Training Procedures

Below is the sample for the model training for the Random Forest model, with the parameter
of 100 estimators to evaluate its performance without applying SMOTE. Similarly, this is
performed for all the other models.

random_forest_model = RandomforestClassifier(n_estimators=100)

Figure 11 : Random Forest Model Initialization without SMOTE

6.4 Model Evaluation:

An evaluation function was defined to calculate metrics, generate confusion matrices and
ROC curves, and store results for models both with and without SMOTE.

Figure 12 : Evaluation Function for Model Performance Metrics

7 Results Analysis

The figure 8 below presents a comprehensive summary of the model comparison prior to and
following the implementation of SMOTE. This comparison is essential for obtaining findings
and analysing the optimal model for predicting customer retention.

¥ G ert results to Datafromes betler vispalization
results df _withoul _smote = pd.D. are(results_without_smote, columns={"Model', "Accurscy', "Preclsion', “Recall', 'F1 Score'))
results df with smote = pd.DataFrame{results with smote, columns=|'Mocel”, ‘Accuracy’, 'Precision’, 'Recall’, “F1 Score'|)

o Disploy Finol comparison tobles

display(MTHML(" <h2>Model Comparison Table Without SMOTEC/h2>7))
display(WTML (results_df without smote.to_bhtal{index=False)))

display(MTML("<h2>Model Comparison Table With SMOTE</h2>"))
display(MTHML(results df_with_smote.to_hisnl{index=False)))

Figure 13 : Converting and Displaying Model Comparison Results

Additionally, the ROC AUC curves for all models were generated to aid in selecting the best
model

import matplotiib.pyplot as plt

from sklearn.setrics import roc_curve, auc

4 Function o plot ceabined ROC curyes

def plot_combined
plt.figure(figsize=(18, 8))

oc(nodels, X _test, y test):

for model_name, model in models.items():
y_pred_proba = model. predict p a(X_test)[::x, 1
pr, tpr, _ = roc_curve(y_test, y pred proba)
roc_auc = auc(fpr, tpe)
pltplot(fpr, tpr, lw=2, label=f"{model name’ (ares = {(roc_auc:.2f})")

b,

plt.plot((8, 1], {8, 1], color="navy’, 1w=2, llnestyle="--')
plt.xlim{(6.08, 1.8])
plt.ylim({8.8, 1.85))
plt.xlabal('False Positiy
plt.ylabel(' True Positiy
plt, title(Conblned ROC
plt. legend(loc="1cower r
plt.show()

8 Storing best models ofter evaluation for combined ROC plot
best_nodels =
gistic Megression': best logistic_model,

Tree': best_decision_tree_model,
P,
‘Gradient Boosting’: best gradient_boosting sodel,
SL: best_adaboost_nodel
: best_bagging model,
Vector Machine': best_sve_medel,

won_forest_model,

‘Naive Bayes': naive _bayes model

¥ Plot combined AOC curves

plot_combined_roc(best_sodels, X _test, y test)

Figure 14 : Plotting Combined ROC Curves for Best Models

8 Model Deployment

8.1 Model Export
The code identifies the best model based on accuracy and recall, then saves it to a pickle file
for future use.

Identify the best model based on agccuracy and recall

best_model_name, (best_model, best_acc, best_rec) = max(best_models.items(), key=lambda item: (item{1][1], item[1][2]))
print(f"The best model is [best_model_name) with an accuracy of (best_acc} and recall of (best_rec|")
Sogve the best model to o pickle file

with open(f'bast_model_(best_model_name).pkl', 'wb’) as file:
pickle.dump(best_model, file)

Figure 15 : Identifying and Saving the Best Model

8.2 Streamlit Application

Figure 16 : Streamlit App Setup for Customer Retention Analysis

This code snippet demonstrates the setup of a Streamlit application for predicting customer
churn using a pre-trained model.

" Jupyter

File Wiew Settings Help

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS5 C:\Users\mohan\OneDrive\Documents: C:\Users\mohan\Downloads\Checkpoint_code
Ps C:\Users\mohan\Downloads\Checkpoint_code> run app.py

Local URL:
Network URL:

Figure 17 : Launching Streamlit App Locally via Jupyter Notebook

Executing the Streamlit application on a local machine by using the command “streamlit run
app.py " through PowerShell within Jupyter Notebook. This enables real-time visualisation
and analysis from within the web browser.

8.3 Deployment

This figure 12 shows the deployment process of a Streamlit app by connecting to a GitHub
repository. After specifying the repository, branch, and main file path, we can deploy the app
with a single click.

Deploy an app

Ropasitory

Figure 18 : Deploying Streamlit App via GitHub

Web Application:

This image shows a deployed Streamlit application for E-commerce Customer Retention
Analysis, where users can input customer data to predict whether a customer will churn or
not, along with the prediction probability.

AL AT TE WIS CDSGAR TRGETT 1SS LT [} . t

1Y Lowtw o B e e - o £ Nww My e v ave @ s O

L

Customer Data

Input 4 E-commerce Customer
- Retention Analysis

Figure 19 : Streamlit E-commerce Customer Retention Analysis Dashboard

https://publicwebappml-w9py9u9xcpggzusjnygpnn.streamlit.app/

https://publicwebappml-w9py9u9xcpqqzusjnygpnn.streamlit.app/

References

Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J., 2016. Data Mining: Practical Machine
Learning Tools and Techniques. 4th ed. San Francisco: Morgan Kaufmann.

Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed. Sebastopol: O'Reilly
Media.

Kuhn, M. and Johnson, K., 2013. Applied Predictive Modeling. New York: Springer.

10

