i‘
\ National

Collegeof
Ireland

Title

Exploring Machine Learning Algorithms for
Automated Segmentation of Brain Tumors
from MRI Scans

MSc Research Project
(MSCDAD_C)

Sushmitha vurutur sridhar
Student ID: 22201378

School of Computing
National College of Ireland

Supervisor: Hamilton Niculescu

Student Name:

Student ID:
Programme:
Module:
Supervisor:
Submission

Due Date:

Project Title:

Word Count:

\—ﬁ
National College of Ireland \ National

. . Collegeof
MSc Project Submission Sheet \
Ireland
School of Computing
Sushmitha vurutur sridhar
22201378
MSCDAD_C Year: 2023-2024

MSc Research Project

Hamilton Niculescu
12/08/2024

Exploring Machine Learning Algorithms for Automated
Segmentation of Brain Tumors from MRI Scans

1128 Page Count : 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author's
written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

Sushmitha vurutur sridhar

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1. Introduction

The purpose of this manual is to provide a comprehensive guide for setting up and configuring the
environment necessary to replicate the brain tumor segmentation project. This manual will walk
you through the installation of required software and libraries, the setup of the data pipeline, the
configuration and training of machine learning models, and the execution of the provided Jupyter
Notebook. The manual aims to ensure that users can easily reproduce the project results,

understand the underlying processes, and apply the techniques to similar tasks.

2. Minimum System Requirements

2.1 Hardware Requirement

To successfully set up and run the brain tumor segmentation project, your system should meet the

following minimum requirements:

e Operating System: Windows 10/11, macOS 10.15 or higher, or a Linux distribution such
as Ubuntu 18.04 or higher.

e Processor: Intel Core i5 or equivalent AMD processor, with at least 4 cores.

e« Memory (RAM): 8 GB or higher (16 GB recommended for smoother operation).

e Graphics Processing Unit (GPU): NVIDIA GPU with CUDA support (optional but
recommended for faster training).

o Storage: At least 20 GB of free disk space to store the dataset and trained models.

Specifically, this project was run on below specification

Device specifications

Device name Parrot

Processor ntel(R) Core(TM) 15-4310M CPU @ 2.70GHz 270
GHz

Installed RAM

Device ID

Product ID

System type B4-bit operating system, x64-based processor

Pen and touch Mo pen or touch input is available for this display
Copy

Rename this PC

Windows specifications

Edition Windows 10 Pro
Figure 1: Host System Hardware Specifications
2.2 Software Requirement

e Software:

o Python 3.8 or higher

o Jupyter Notebook

o Anaconda (optional, for easier environment management)

o Required Python libraries: TensorFlow, Keras, OpenCV, Scikit-learn, Matplotlib
e Internet Connection: Required for downloading datasets, libraries, and for running

Jupyter Notebook on Google Colab (if applicable).

3. Setting Up the Enviroment

3.1 Mounting Google Drive

The code was executed of Jupyter Notebook on Google Colab. In Google Colab, you first need to
mount your Google Drive to access any datasets or files stored there. This is done by using the
drive module from the google.colab package. After executing this code, you’ll be prompted to
authorize Google Colab to access your Google Drive. Once authorized, your Google Drive will be

mounted at /content/drive/.

[1 # Load dataset from google drive

from google.colab import drive

drive.mount("/content/drive/")

4

Mounted at /comtent/drive/

3.2 Importing Required Libraries

The next step is to import all the necessary libraries for the project. These libraries include
TensorFlow, Keras, OpenCV, Scikit-Image, NumPy, Matplotlib, and others, which are essential
for handling data preprocessing, model building, and visualization.

e TensorFlow & Keras: Used for building and training the neural network models.
e 0s, glob: For handling file paths and directory structures.

o skimage: Used for image processing tasks.

e cVv2: OpenCV library, used for image manipulation and preprocessing.

e NumPy: For numerical operations on arrays.

e Matplotlib: For data visualization.

o # importing libraries
import tensorflow as tf
import keras
import os
import gleb
import skimage
from skimage import io
import random
import cv2
import numpy as np
from keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image_dataset from_directory

from tensorflow.keras.utils import img_to_array,array_to_img, load img
import matplotlib.pyplot as plt

from keras import backend as K

¥matplotlib inline

Note:
Google Colab Environment: Google Colab already has most of these libraries pre-installed,

but if you encounter any missing libraries, you can install them using pip install library_name.

4. Data Pipeline Configuration

4.1 Data Collection

e Description of Datasets Used

For this project, the dataset used is the "Brain MRI Images for Brain Tumor Detection,” which is
publicly available on Kaggle. This dataset consists of 253 brain MRI images categorized into two
classes: images with brain tumors and images without brain tumors. The dataset is particularly
useful for training and testing machine learning models for the binary classification of brain tumor

presence. Dataset Link: Brain MRI Images for Brain Tumor Detection

Instructions on How to Download and Prepare the Dataset

e Downloading the Dataset:

o Visit the Kaggle dataset page.

o Click on the "Download" button to download the dataset to your local machine.
o If using Google Colab, you can also use the Kaggle API to download the dataset

directly into your Google Drive.

e Preparing the Dataset:

After downloading and extracting the dataset, it is essential to organize the images into appropriate
directories to facilitate easy access during the training of the models. Typically, the dataset should
be structured in a directory format that includes subdirectories for each class, such as "yes" for
tumor images and "no™ for non-tumor images. This organization ensures that the data is properly

categorized, making it straightforward to use in machine learning pipelines.

e Data Preprocessing
Steps to Preprocess the MRI Images
Preprocessing is a crucial step in preparing the data for training machine learning models. For MRI

images, preprocessing typically involves the following steps:

Resizing:

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Resize all images to a uniform size to ensure that the input dimensions match the model

requirements. In this case, you can resize the images to 224x224 pixels, which is a common input
size for CNNs.

o # Image data specifications

img_width, img_height = 224, 224

data_dir = '/content/drive/MyDrive/Datasets/brain_tumor dataset split’
TRAIN DIR = '/content/drive/MyDrive/brain_tumor dataset split/train’
TEST_DIR = '/content/drive/MyDrive/brain_tumor_dataset split/test’
VAL_DIR = '/content/drive/MyDrive/brain_tumor dataset split/val’

train_samples = sum([len(files) for r, d, files in os.walk(TRAIN DIR)])
validation_samples = sum([len(files) for r, d, files in os.walk(vaL DIR)])
test_samples = sum([len{files) for r, d, files in os.walk(TEST_DIR)])
epochs = 25

batch_size = 20

1

4.2 Data Augmentation:

Apply data augmentation techniques to artificially increase the size of the dataset and help the

model generalize better. Common augmentation techniques include rotation, flipping, scaling, and

adding noise.

©

Enhanced Data Augmentation using ImageDataGenerator

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=28,
width_shift_range=0.2,
height_shift range=0.2,
shear_range=a.2,
zoom_range=@.2,
horizontal flip=True,
vertical flip=True,
fill mode='nearest’

Randomly rotate images by up to 20 degrees

Randomly shift images horizontally by 20% of the width
Randomly shift images vertically by 20% of the height
Apply random shearing transformations

Randomly zoom into images by 28%

Randomly flip images horizontally

Randomly flip images wertically

Fill in pixels after transformations

s OH W W W OH W

)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory{
TRAIN_DIR,
target size=(img width, img height),
batch_size=batch_size,
class_mode='categorical’

)

validation_generator = val datagen.flow_from_directory(
VAL_DIR,
target size=(img width, img height),
batch size=batch size,
class_mode='categorical’

Found 282 images belonging to 2 classes.
Found 24 images belonging to 2 classes.

5. Data Splitting

Instructions on Splitting the Dataset

To ensure the model's performance is evaluated accurately, the dataset should be split into three

subsets: training, validation, and test sets.

o Training Set (80% of data) - Used for training the model.
o Validation Set (10 of data) - Used to tune the model's hyperparameters and
monitor overfitting during training.

o Test Set (10 of data) - Used to evaluate the final performance of the model.

[] import splitfolders
splitfolders.ratio(data_dir, output=output folder, seed=23, ratio=(.8, .1, .1}, group_prefix=None)

=+ Copying files: 253 files [@1:35, 2.682 files/s]

[1 # Image data specifications
img_width, img_height = 224, 224

data_dir = "/ /drive/MyDrive/Datasets/brain_tumor dataset split’
TRAIN DIR = °/ fdri aset_split/train
TEST_DIR = */ set split/test’

VAL _DIR = "/ et _split/val’

train_samples = sum([len{files) for r, d, files in os.walk({TRAIN_DIR)])
validation_samples = sum{[len(files) for r, d, files in os.walk{VAL_DIR)}])
test_samples = sum([len(files) for r, d, files in os.walk(TEST_DIR}])
epochs = 25

batch_size = 28

6. Model Configuration
Training the Model

Step-by-Step Guide to Training the Model Using the Preprocessed Data

Training the models involves feeding the preprocessed MRI images into the selected CNN
architectures and optimizing their parameters to minimize the loss function. Here is a step-by-step

guide:
1. Load the Preprocessed Data:

Ensure that the data is loaded into the appropriate format (e.g., TensorFlow Dataset) and split into

training, validation, and test sets.

[1 # Configure datasets for performance
AUTOTUMNE = tf.data.AUTOTUNE
train_dataset = train_dataset.prefetch({buffer_size=AUTOTUNE)
validation_dataset = walidation_dataset.prefetch(buffer_size=AUTOTUME)
test_dataset = test_dataset.prefetch(buffer_ size=AUTOTUNE)

Define the Model Architecture:

Use the pre-trained weights of MobileNetV2, VGG16, and ResNet50, and customize the final

layers to match the number of output classes (binary classification: tumor vs. non-tumor).

[1 # Modeling
from keras.models i
from keras.layers im t Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.applications.vgglé import VGG16

port Sequential

from keras.applications.resnet5@ import ResNetS@
from keras.applications.mobilenet import MobileNet
from keras.applications import MobileNetv2

Define input shape for the models
input_shape = (224, 224, 3)

Number of classes
num_classes = len(train_classes)

MobileNetV2 model
mobile_model = Sequential([
MobileNetv2(
include_top=False,
weights="imagenet",
input_shape=input_shape,
pooling="max"
N
Dense({128, activation="relu'),
Dropout(@.1),
Dense{num_classes, activation="softmax')
1
define the shapes of all layers by passing a dummy input
mobile_model.build(input_shape=(None, 224, 224, 3))

=¥ Downloading data from https://storage.googlespis.com/tensorflow/keras-applications/mobilenst v2/mobilenet w2 weights tf dim ordering tf kernsls 1.2 224 no_top.hS
9406464,9406464 0s Bus/step

Compile the Model:

Choose an optimizer (e.g., Adam), a loss function (e.g., binary cross-entropy), and evaluation

metrics (e.g., accuracy, Dice coefficient).

° # Compile and train models

steps_per_epoch = train_samples // batch_size
validation_steps = validation_samples // batch_size
test_steps = test_samples // batch_size

models = [mobile model, vgg model, resnet_model]
model names = ['MobileNetV2', 'VGG16', 'ResNet5d’]
histories = []

for model, name in zip(models, model names)
model.compile(loss="categorical_crossentropy’,
optimizer=tf.keras.optimizers.Adam(learning rate=8.001),
metrics=["'accuracy'])

print(f"Training {name} model...™)

history = model.fit(
train_dataset,
epochs=25,
validation_data=validation_dataset

)

Store the history
histories.append(history)

Evaluate the model

test_loss, test_acc = model.evaluate(test_dataset)
print(f'{name} Test accuracy:', test acc)

¥ Training MobileNetV2 model...

Epoch 1/25
11/11 —————————— 94s 5s/step - accuracy: ©.5389 - loss: 7.3432 - val _accuracy: 8.6258 - val loss: 4.839@
Epoch 2/25
11/11 ———————— 775 4s5/step - accuracy: ©.8381 - loss: 2.5049 - val_accuracy: ©.625@ - val loss: 4.2896

Train the Model:

Set the number of epochs and batch size, and initiate the training process.

° Epoch 13/25

. 11/11 ———————————— 2075 16s/step - accuracy: 8.8876 - loss: ©.2885 - val_accuracy: ©.7@83 - val_loss: 1.1953
2 Epoch 14/25
11/11 ———————— 1765 16s/step - accuracy: 8.8298 - loss: 8.392% - val_accuracy: £.7588 - val_loss: 1.0495
Epoch 15/25
11/11 ——————— 173s 16s/step - accuracy: @.9267 - loss: @.2627 - val accuracy: ©.7@83 - val_loss: 1.1981
Epoch 16/25
11/11 ————————— 1995 15s/step - accuracy: ©.8898 - loss: ©.2876 - val_accuracy: ©.8333 - val_loss: 0.6645
Epoch 17/25
11/11 178s 15s/step - asccuracy: @.9378 - loss: @.1595 - val_accuracy: ©.8333 - val_loss: 0.5526
Epoch 18/25
11/11 —————————— 210@s 1lés/step - accuracy: @.9210 - loss: @.1846 - val accuracy: 2.7582 - val_loss: @.7351
Epoch 19/25
11/11 —————————— 171s 15s/step - accuracy: @.8892 - loss: 8.2341 - val_accuracy: ©.6667 - val_loss: 2.4591
Epoch 28/25
11/11 ———————— 1735 16s/step - accuracy: @.9891 - loss: @.2345 - val accuracy: ©.6252 - val_loss: 3.2791
Epoch 21/25
11/11 ———————— 281s 15s/step - accuracy: 8.8%61 - loss: ©.2852 - val_accuracy: ©.6667 - val_loss: 1.4322
Epoch 22/25
11/11 203s 16s/step - accuracy: @.9099 - loss: @.2416 - val_accuracy: @.6667 - val_loss: 1.5378
Epoch 23/25
11/11 ———————— 1735 16s/step - accuracy: ©8.8732 - loss: ©.2453 - val_accuracy: ©.8333 - val_loss: 0.4724
Epoch 24/25
11/11 202s 16s/step - asccuracy: @.9675 - loss: @.161%9 - val_accuracy: @.7883 - val_loss: 0.7509
Epoch 25/25
11/11 ———————— 1735 15s5/step - accuracy: @.9379 - loss: @.2264 - val accuracy: ©.9583 - val_loss: @.2377
2/2 ———— 4s 1s/step - accuracy: 2.8099 - loss: 8.2621

ResNet5@ Test accuracy: @.8148148859844971

7. Model Performance Monitoring
Explanation of How to Monitor Model Performance
Monitoring model performance involves tracking various metrics during training, validation, and

testing phases. The key metrics to monitor include:

e Accuracy: Measures the proportion of correctly classified images out of the total images.

« Sensitivity (Recall): Measures the proportion of actual positives (tumor images) correctly
identified.

e Specificity: Measures the proportion of actual negatives (non-tumor images) correctly
identified.

o Dice Coefficient: A metric that balances precision and recall, particularly useful for
segmentation tasks.

Test the Models on Unseen Data

Once the model has been trained and validated, it should be tested on a completely unseen test set
to evaluate its generalization ability. This involves using the evaluate method in Keras to calculate

performance metrics on the test data.

[1 # Evaluate the best model on the test data
test_loss, test_acc = best _model.evaluate(test_dataset)
print('Best model Test accuracy:', test acc)

Visualizations of Model Performance Using Matplotlib

Visualizing the model’s performance can help in understanding how well the model is learning
and whether it is overfitting. Common plots include training and validation accuracy/loss over
epoch

t) # Plot accuracy and loss curves for each model
for name, history in zip(model_names, histories):
plt.figure(figsize=(8, 4))

plt.subplot(l, 2, 1)

plt.plot(history.history['accuracy’], label="Training Accuracy’)
plt.plot(history.history['val_accuracy'], label="Validation Accuracy’)
plt.title(f' {name} Accuracy')

plt.xlabel('Epochs”)

plt.ylabel('Accuracy”)

plt.legend()

plt.subplot(l, 2, 2)

plt.plot(history.history['loss’], label='Training Loss')
plt.plot(history.history['val_loss'], label="validation Loss')
plt.title(f' {name} Loss')

plt.xlabel('Epochs”)

plt.ylabel('Loss")

plt.legend()

plt.tight layout()

plt.show()
E34 MobileNetV2 Accuracy MobileNetV2 Loss
—— Training Loss
51 | —— Validation Loss
E |}
ad{ |\ /|
\ 11
TR
= I, |I |
8 w 37 -} |
= v \ 1
3 . | A /|
, f
21 \ /| ')
\ /| / \ .

Evaluate machine learning models by generating confusion matrices and classification reports. It

helps in visualizing how well the model has performed on the test data

[] from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
import numpy as np

for model, name in zip(models, model_names):
print(f'Evaluating {name} model..."')

Predict on the test dataset
¥Y_pred = model.predict{test_dataset)
y_pred = np.argmax(Y_pred, axis=1)

Extract true labels from the test dataset

y_true = []

for _, labels in test dataset:
y_true.extend(np.argmax(labels.numpy(), axis=1))

y_true = np.array(y_true}

Ensure y_pred has the same length as y_true
y_pred = y_pred[:len(y_true)]

cm = confusion_matrix(y_true, y_pred)
clr = classification_report(y_true, y_pred, target_names=class_names)

plt.figure(figsize=(8, 4))

sns.heatmap(cm, annot=True, fmt='d", cmap='Bluss’, xticklabels=class_names, yticklabels=class_names)
plt.title(f' {name} Confusion Matrix")

plt.xlabel('Predicted")

plt.ylabel(' True')

plt.show()

print(f'{name} Classification Report:‘n', clr)

S+ Ewvalustine MobileNetV2 model...

