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1. Introduction 

The purpose of this manual is to provide a comprehensive guide for setting up and configuring the 

environment necessary to replicate the brain tumor segmentation project. This manual will walk 

you through the installation of required software and libraries, the setup of the data pipeline, the 

configuration and training of machine learning models, and the execution of the provided Jupyter 

Notebook. The manual aims to ensure that users can easily reproduce the project results, 

understand the underlying processes, and apply the techniques to similar tasks. 

2. Minimum System Requirements 

 2.1 Hardware Requirement 

To successfully set up and run the brain tumor segmentation project, your system should meet the 

following minimum requirements: 

• Operating System: Windows 10/11, macOS 10.15 or higher, or a Linux distribution such 

as Ubuntu 18.04 or higher. 

• Processor: Intel Core i5 or equivalent AMD processor, with at least 4 cores. 

• Memory (RAM): 8 GB or higher (16 GB recommended for smoother operation). 

• Graphics Processing Unit (GPU): NVIDIA GPU with CUDA support (optional but 

recommended for faster training). 

• Storage: At least 20 GB of free disk space to store the dataset and trained models. 

Specifically, this project was run on below specification 



 

Figure 1: Host System Hardware Specifications 

2.2 Software Requirement 

• Software: 

o Python 3.8 or higher 

o Jupyter Notebook 

o Anaconda (optional, for easier environment management) 

o Required Python libraries: TensorFlow, Keras, OpenCV, Scikit-learn, Matplotlib 

• Internet Connection: Required for downloading datasets, libraries, and for running 

Jupyter Notebook on Google Colab (if applicable). 

3. Setting Up the Enviroment 
 

 

3.1 Mounting Google Drive 

 

The code was executed of Jupyter Notebook on Google Colab. In Google Colab, you first need to 

mount your Google Drive to access any datasets or files stored there. This is done by using the 

drive module from the google.colab package. After executing this code, you’ll be prompted to 

authorize Google Colab to access your Google Drive. Once authorized, your Google Drive will be 

mounted at /content/drive/. 



 

3.2 Importing Required Libraries 

The next step is to import all the necessary libraries for the project. These libraries include 

TensorFlow, Keras, OpenCV, Scikit-Image, NumPy, Matplotlib, and others, which are essential 

for handling data preprocessing, model building, and visualization. 

• TensorFlow & Keras: Used for building and training the neural network models. 

• os, glob: For handling file paths and directory structures. 

• skimage: Used for image processing tasks. 

• cv2: OpenCV library, used for image manipulation and preprocessing. 

• NumPy: For numerical operations on arrays. 

• Matplotlib: For data visualization. 

 

Note: 

Google Colab Environment: Google Colab already has most of these libraries pre-installed, 

but if you encounter any missing libraries, you can install them using pip install library_name. 

4. Data Pipeline Configuration 



 

 

4.1 Data Collection 

• Description of Datasets Used 

For this project, the dataset used is the "Brain MRI Images for Brain Tumor Detection," which is 

publicly available on Kaggle. This dataset consists of 253 brain MRI images categorized into two 

classes: images with brain tumors and images without brain tumors. The dataset is particularly 

useful for training and testing machine learning models for the binary classification of brain tumor 

presence. Dataset Link: Brain MRI Images for Brain Tumor Detection 

Instructions on How to Download and Prepare the Dataset 

• Downloading the Dataset: 

o Visit the Kaggle dataset page. 

o Click on the "Download" button to download the dataset to your local machine. 

o If using Google Colab, you can also use the Kaggle API to download the dataset 

directly into your Google Drive. 

• Preparing the Dataset: 

After downloading and extracting the dataset, it is essential to organize the images into appropriate 

directories to facilitate easy access during the training of the models. Typically, the dataset should 

be structured in a directory format that includes subdirectories for each class, such as "yes" for 

tumor images and "no" for non-tumor images. This organization ensures that the data is properly 

categorized, making it straightforward to use in machine learning pipelines. 

• Data Preprocessing 

 

Steps to Preprocess the MRI Images 

Preprocessing is a crucial step in preparing the data for training machine learning models. For MRI 

images, preprocessing typically involves the following steps: 

Resizing: 

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection


Resize all images to a uniform size to ensure that the input dimensions match the model 

requirements. In this case, you can resize the images to 224x224 pixels, which is a common input 

size for CNNs. 

 

4.2 Data Augmentation: 

Apply data augmentation techniques to artificially increase the size of the dataset and help the 

model generalize better. Common augmentation techniques include rotation, flipping, scaling, and 

adding noise. 

 

5. Data Splitting 



Instructions on Splitting the Dataset 

To ensure the model's performance is evaluated accurately, the dataset should be split into three 

subsets: training, validation, and test sets. 

o Training Set (80% of data) - Used for training the model. 

o Validation Set (10 of data) - Used to tune the model's hyperparameters and 

monitor overfitting during training. 

o Test Set (10 of data) - Used to evaluate the final performance of the model. 

 

6. Model Configuration 
Training the Model 

Step-by-Step Guide to Training the Model Using the Preprocessed Data 

Training the models involves feeding the preprocessed MRI images into the selected CNN 

architectures and optimizing their parameters to minimize the loss function. Here is a step-by-step 

guide: 

1. Load the Preprocessed Data: 

Ensure that the data is loaded into the appropriate format (e.g., TensorFlow Dataset) and split into 

training, validation, and test sets. 



 

Define the Model Architecture: 

Use the pre-trained weights of MobileNetV2, VGG16, and ResNet50, and customize the final 

layers to match the number of output classes (binary classification: tumor vs. non-tumor). 

 

Compile the Model: 

Choose an optimizer (e.g., Adam), a loss function (e.g., binary cross-entropy), and evaluation 

metrics (e.g., accuracy, Dice coefficient). 



 

Train the Model: 

Set the number of epochs and batch size, and initiate the training process. 

 

 



7. Model Performance Monitoring 
Explanation of How to Monitor Model Performance 

Monitoring model performance involves tracking various metrics during training, validation, and 

testing phases. The key metrics to monitor include: 

• Accuracy: Measures the proportion of correctly classified images out of the total images. 

• Sensitivity (Recall): Measures the proportion of actual positives (tumor images) correctly 

identified. 

• Specificity: Measures the proportion of actual negatives (non-tumor images) correctly 

identified. 

• Dice Coefficient: A metric that balances precision and recall, particularly useful for 

segmentation tasks. 

Test the Models on Unseen Data 

Once the model has been trained and validated, it should be tested on a completely unseen test set 

to evaluate its generalization ability. This involves using the evaluate method in Keras to calculate 

performance metrics on the test data. 

 

 

Visualizations of Model Performance Using Matplotlib 

Visualizing the model’s performance can help in understanding how well the model is learning 

and whether it is overfitting. Common plots include training and validation accuracy/loss over 

epoch 



 

Evaluate machine learning models by generating confusion matrices and classification reports. It 

helps in visualizing how well the model has performed on the test data 



 

 


