

Configuration Manual

MSc Research Project

Data Analytics

Sreejith Sridhar

Student ID: X22242376

School of Computing

National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sreejith Sridhar

Student ID:

X22242376

Programme:

MSc. Data Analytics

Year:

2024

Module:

MSc. Research Project

Supervisor:

Prof. Christian Horn

Submission
Due Date:

12/08/2024

Project Title:

Configuration Manual

Word Count:

911 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Sreejith Sridhar

Date:

12TH August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Sreejith Sridhar

X22242376

1 Introduction

In order predict employee attrition, this study uses a wide range of classification techniques,

such as Random Forest, K-Nearest Neighbours (KNN), Decision Tree, Logistic Regression,

and Support Vector Machine (SVM). To improve prediction accuracy, the research also

incorporates an ensemble technique using a Voting Classifier, merging numerous models.

This configuration manual provides extra code snippets when appropriate and describes the

workflow from environment setup to model assessment, outlining the steps required to

reproduce the project.

2 System Configuration

The project was executed on a computer operating Microsoft Windows 11 Pro, using an

Intel(R) Core(TM) i5-8365U CPU and 16 GB of RAM. The development environment

utilised was Jupyter Notebook, a component of the Anaconda Distribution, operating on

Python version 3.11.5.

3 Data Collection

The dataset utilised in this study is obtained from Kaggle, first created by IBM data scientists.

The dataset encompasses a range of characteristics about employees, such as their

demographics, job positions, satisfaction levels, and other qualities relevant to their

employment. These factors are essential for accurately predicting attrition. The dataset is

available for access and download via the provided link1.

4 Environment Setup

4.1 Libraries and Packages Requires

The project uses many Python tools and packages for data processing, model training,

assessment, and visualisation. Pandas and numpy for data processing, scikit-learn for

machine learning methods and model assessment, seaborn and matplotlib for visualisation,

1 https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/data

https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/data

2

and joblib for model storing and loading are essential. Ensemble approaches and SMOTE for

unbalanced datasets are also installed as shown in Figure 1.

Figure 1: Importing Python Library and Packages

5 Data Preprocessing

5.1 Handling Categorical Features

The categorical characteristics were encoded using LabelEncoder to convert them into a

numerical representation that is appropriate for machine learning models. Every category

characteristic was encoded separately, and the encoders were saved for future use.

Figure 2: Encoding Categorical features using LabelEncoder

3

5.2 Identifying Unique Values

The unique values of each attribute were examined. This stage identifies categorical variables

with few values to influence feature encoding and preprocessing selections.

Figure 3: Finding Unique Values

5.3 Converting Boolean Columns to Integer

The dataset's Boolean columns are transformed into integer type to guarantee compatibility

with machine learning methods, which often need numerical input.

Figure 4: Converting Boolean Columns to Integer

5.4 Feature Scaling

The numerical characteristics were normalised using the MinMaxScaler to scale the data

within the range of 0 to 1. This is crucial for algorithms such as K-Nearest Neighbours and

SVM.

Figure 5: MinMaxScaler to scale features

5.5 Handling Feature Correlation

Highly correlated characteristics are found and eliminated to address multicollinearity and

enhance the interpretability and performance of the model.

4

Figure 6: Finding Highly Correlated Features

5.6 Handling Imbalance data

SMOTE is used to balance the dataset by generating synthetic samples for the minority class

(Attrition – No).

Figure 7: Implementing SMOTE

6 Model Training and Evaluation

6.1 Hyperparameter Tuning

Hyperparameter optimisation was conducted to enhance the performance of the models. The

scikit-learn library's GridSearchCV techniques were employed to identify the optimal

hyperparameters for each model.

Figure 8.1: Decision tree

Figure 8.2: Support Vector Machine

5

Figure 8.3: Random Forest

Figure 8.4: K-Nearest Neighbor

Figure 8.5: Logistic Regression

6.2 Model Training

A Voting Classifier was trained using an ensemble of Logistic Regression, Decision Tree,

Support Vector Machine (SVM), Random Forest, and K-Nearest Neighbours (KNN) models.

The decision to use this ensemble approach with soft voting was taken to enhance the

accuracy of predictions.

6

Figure 9: Estimators to ensemble Voting Classifier

6.3 Model Evaluation

The model had been evaluated using several measures, such as the confusion matrix,

accuracy, and ROC AUC score. A confusion matrix was utilised to enhance knowledge of the

model's performance.

Figure 10: Evaluating the Voting Classifier Model

6.4 ROC AUC Score Calculation for used models

This code computes the ROC AUC scores for several machine learning models, such as

Logistic Regression, Random Forest , KNN, SVM, Decision Tree, Voting Classifier, Hybrid

Model (DT + RF), and AdaBoost.

Figure 11: Plotting ROC Curve

7

6.5 Feature Importance

Feature importance was estimated using models that have the capability to do so, and the

most important features were visually represented.

Figure 12: Plotting Feature Importance

7 Model Deployment

7.1 Saving the Voting Classifier Model

The Voting Classifier model, MinMax Scaler, and Label Encoders are stored using the joblib

library. This enables convenient reloading of the models and tools without the need to

undergo retraining.

Figure 13: Saving the Model and Preprocessing Tools

7.2 Streamlit App Code

To utilise the stored model and preprocessing tools for making predictions on new

information, they may be reloaded by employing the joblib.load function.

Figure 14: Loading the Model and Preprocessing Tools

 The system loads a pre-trained voting classifier model, as well as essential data

preprocessors such as scalers and label encoders. The application gathers user input via the

8

sidebar, does preprocessing on the data, and subsequently estimates the probability of an

employee departing from the company. The software presents the predicted outcome along

with a probability value. To execute this code, save it as a Python file and run it in a Python

environment by using the specified command.

Figure 15: Main Function of the Streamlit App

7.3 Running the Streamlit App file

Figure 16: Running the file in Python Environment

9

8 Streamlit Application for Employee Attrition Prediction

This is the user interface of the Streamlit program created to predict employee attrition. This

application can be accessed through the following link2.

Figure 17: Streamlit Interface

2 https://x22242376employeeattrition.streamlit.app/

https://x22242376employeeattrition.streamlit.app/

	1 Introduction
	2 System Configuration
	3 Data Collection
	4 Environment Setup
	4.1 Libraries and Packages Requires

	5 Data Preprocessing
	5.1 Handling Categorical Features
	5.2 Identifying Unique Values
	5.3 Converting Boolean Columns to Integer
	5.4 Feature Scaling
	5.5 Handling Feature Correlation
	5.6 Handling Imbalance data

	6 Model Training and Evaluation
	6.1 Hyperparameter Tuning
	6.2 Model Training
	6.3 Model Evaluation
	6.4 ROC AUC Score Calculation for used models
	6.5 Feature Importance

	7 Model Deployment
	7.1 Saving the Voting Classifier Model
	7.2 Streamlit App Code
	7.3 Running the Streamlit App file

	8 Streamlit Application for Employee Attrition Prediction

