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1 Introduction 
 
In order predict employee attrition, this study uses a wide range of classification techniques, 

such as Random Forest, K-Nearest Neighbours (KNN), Decision Tree, Logistic Regression, 

and Support Vector Machine (SVM). To improve prediction accuracy, the research also 

incorporates an ensemble technique using a Voting Classifier, merging numerous models. 

This configuration manual provides extra code snippets when appropriate and describes the 

workflow from environment setup to model assessment, outlining the steps required to 

reproduce the project. 

 

2 System Configuration 
 

The project was executed on a computer operating Microsoft Windows 11 Pro, using an 

Intel(R) Core(TM) i5-8365U CPU and 16 GB of RAM. The development environment 

utilised was Jupyter Notebook, a component of the Anaconda Distribution, operating on 

Python version 3.11.5. 

 

3 Data Collection 
 

The dataset utilised in this study is obtained from Kaggle, first created by IBM data scientists. 

The dataset encompasses a range of characteristics about employees, such as their 

demographics, job positions, satisfaction levels, and other qualities relevant to their 

employment. These factors are essential for accurately predicting attrition. The dataset is 

available for access and download via the provided link1. 

 

4 Environment Setup 

4.1 Libraries and Packages Requires 

  

The project uses many Python tools and packages for data processing, model training, 

assessment, and visualisation. Pandas and numpy for data processing, scikit-learn for 

machine learning methods and model assessment, seaborn and matplotlib for visualisation, 

                                                             
 
1 https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/data 

https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/data
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and joblib for model storing and loading are essential. Ensemble approaches and SMOTE for 

unbalanced datasets are also installed as shown in Figure 1. 

 

 
 

Figure 1: Importing Python Library and Packages 

 

 

5 Data Preprocessing 

5.1 Handling Categorical Features 

 

The categorical characteristics were encoded using LabelEncoder to convert them into a 

numerical representation that is appropriate for machine learning models. Every category 

characteristic was encoded separately, and the encoders were saved for future use. 

 

 
Figure 2: Encoding Categorical features using LabelEncoder 



3 
 

 

5.2 Identifying Unique Values 

 

The unique values of each attribute were examined. This stage identifies categorical variables 

with few values to influence feature encoding and preprocessing selections. 

 

 
Figure 3: Finding Unique Values 

5.3 Converting Boolean Columns to Integer 

 

The dataset's Boolean columns are transformed into integer type to guarantee compatibility 

with machine learning methods, which often need numerical input.  

 

 
Figure 4: Converting Boolean Columns to Integer 

5.4 Feature Scaling 

 

The numerical characteristics were normalised using the MinMaxScaler to scale the data 

within the range of 0 to 1. This is crucial for algorithms such as K-Nearest Neighbours and 

SVM. 

 
 

Figure 5: MinMaxScaler to scale features 

5.5 Handling Feature Correlation 

 

Highly correlated characteristics are found and eliminated to address multicollinearity and 

enhance the interpretability and performance of the model. 
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Figure 6: Finding Highly Correlated Features 

5.6 Handling Imbalance data 

 

SMOTE is used to balance the dataset by generating synthetic samples for the minority class 

(Attrition – No). 

 
 

Figure 7: Implementing SMOTE 

 

 

6 Model Training and Evaluation 

6.1 Hyperparameter Tuning 

 

Hyperparameter optimisation was conducted to enhance the performance of the models. The 

scikit-learn library's GridSearchCV techniques were employed to identify the optimal 

hyperparameters for each model. 

 

 
Figure 8.1: Decision tree 

 

 
Figure 8.2: Support Vector Machine 
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Figure 8.3: Random Forest 

 

 
Figure 8.4: K-Nearest Neighbor 

 

 
Figure 8.5: Logistic Regression 

6.2 Model Training 

 

A Voting Classifier was trained using an ensemble of Logistic Regression, Decision Tree, 

Support Vector Machine (SVM), Random Forest, and K-Nearest Neighbours (KNN) models. 

The decision to use this ensemble approach with soft voting was taken to enhance the 

accuracy of predictions. 
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Figure 9: Estimators to ensemble Voting Classifier 

6.3 Model Evaluation 

 

The model had been evaluated using several measures, such as the confusion matrix, 

accuracy, and ROC AUC score. A confusion matrix was utilised to enhance knowledge of the 

model's performance. 

 

 
Figure 10: Evaluating the Voting Classifier Model 

6.4 ROC AUC Score Calculation for used models 

 

This code computes the ROC AUC scores for several machine learning models, such as 

Logistic Regression, Random Forest , KNN, SVM, Decision Tree, Voting Classifier, Hybrid 

Model (DT + RF), and AdaBoost. 

 

 
Figure 11: Plotting ROC Curve 
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6.5 Feature Importance 

 

Feature importance was estimated using models that have the capability to do so, and the 

most important features were visually represented. 

 

 
Figure 12: Plotting Feature Importance 

 

 

7 Model Deployment 

7.1 Saving the Voting Classifier Model 

 

The Voting Classifier model, MinMax Scaler, and Label Encoders are stored using the joblib 

library. This enables convenient reloading of the models and tools without the need to 

undergo retraining. 

 

 
Figure 13: Saving the Model and Preprocessing Tools 

7.2 Streamlit App Code  

 

To utilise the stored model and preprocessing tools for making predictions on new 

information, they may be reloaded by employing the joblib.load function. 

 

 
Figure 14:  Loading the Model and Preprocessing Tools 

 

      The system loads a pre-trained voting classifier model, as well as essential data 

preprocessors such as scalers and label encoders. The application gathers user input via the 
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sidebar, does preprocessing on the data, and subsequently estimates the probability of an 

employee departing from the company. The software presents the predicted outcome along 

with a probability value. To execute this code, save it as a Python file and run it in a Python 

environment by using the specified command. 

 

 
 

Figure 15: Main Function of the Streamlit App 

 

7.3 Running the Streamlit App file  

 

 

 
 

Figure 16: Running the file in Python Environment 
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8 Streamlit Application for Employee Attrition Prediction 
 

This is the user interface of the Streamlit program created to predict employee attrition. This 

application can be accessed through the following link2. 

 

 

 
Figure 17: Streamlit Interface  

 

                                                             
 
2 https://x22242376employeeattrition.streamlit.app/ 

https://x22242376employeeattrition.streamlit.app/
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