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Deep Learning Framework for Land Use and Land 

Cover Classification and Change Detection 
 

Jawed Siddique 

x22232915 
 

Abstract 

 

Land Use and Land Cover (LULC) classification and change detection have 

numerous environmental applications. However, the limited availability of high-

quality labelled satellite data, high intra-class variability, and issues related to the 

noise in the available data LULC classification and change detection could be 

challenging. This study aims to address this challenge by performing LULC 

classification and detecting LULC change between the years 2018 and 2024 for the 

Greater Dublin Area by using the Sentinel-2 satellite imagery dataset and Deep 

Learning architecture. This study used data pre-processing and data transformation 

techniques to prepare a multi-spectral tiled satellite image dataset before employing 

supervised classification techniques. For classification purposes, a deep, multi-

layered CNN architecture ResNet50 model was used and five major classes: 

Artificial Surfaces, Agricultural Areas, Forest and Seminatural Areas, Wetlands, and 

Water Bodies were identified. For LULC classification evaluation, the classification 

error matrix, accuracy, precision, recall, F-Score and kappa analysis were used. For 

LULC change detection, the differences in the areas covered by each land cover class 

between the periods are measured. According to the findings from the study, the 

Agricultural land cover class accounted for 74.67% in 2018 and 75.27% in 2024, 

making it the most extensive class. There is, however, a shift in the second-largest 

class cover from Forest and Seminatural Areas in 2018 to Artificial Areas in 2024. 

Additionally, this study identified a significant change in the Forest (-3.20%) and 

Artificial Surfaces (+1.24) from 2018 to 2024. Lastly, the classification methodology 

achieved overall accuracy, precision and Kappa statistics of 92.38%, 92.41, and 0.91 

respectively. 

 

Keywords: Land Use, Land Cover, Change Detection, Sentinal-2, Deep 

Learning, Convolutional Neural Networks, ResNet50, Accuracy Assessment 

 

1. Introduction 

Land Use and Land Cover (LULC) classification and change detection are critical for effective 

land resource planning and management (Esfandeh et al., 2021; Yao et al., 2021). This helps in 

informed urban planning (Hamidi and Ewing, 2014), research on global climate change (Coppin 

et al. 2004), and natural disaster management (Qingmu, Liao & Chen, 2021). According to the 
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Environmental Protection Agency, Ireland (EPA, Ireland), Land Use (LU) refers to the various 

ways humans utilize land, while Land Cover (LC) describes everything visible on the land 

surface (EPA, 2020a). Starting primarily in the 1970s, manual classification and statistical 

techniques were used for the study of LULC (Yan et al., 2020), however, advancements in 

computing power and technology over the past three decades, have introduced machine learning 

and deep learning methods for LULC classification and change detection utilizing Remote 

Sensing and Geographic Information Systems (GIS) imagery (Wang et al., 2022; Garcia, 

Gutierrez & Riquelme, 2019; Phiri & Morgenroth, 2017) with varying success which in turn can 

be attributed to the various challenges associated with the datasets and techniques used (Alshari 

& Gawali, 2021).  

    A major challenge in LULC classification and change detection is the low variability of the 

spectral profiles of different LULC types, high intra-class variability, and issues related to the 

noise in satellite data and the low spatial resolution of freely available satellite images (Lin et al., 

2015; Rodriguez-Galiano et al., 2012). The study of land use and land cover for the Republic of 

Ireland also faces these challenges due to the limited availability of high-quality labelled training 

data (Brennan et al., 2017). Additionally, as per the CSO 2022 data, the Republic of Ireland is 

experiencing major shifts with respect to urban and rural population and land uses. Currently, 

there is an urban population of 64.5% which is growing at an average annual rate of 0.39% (CSO, 

2022). The agricultural sector, covering approximately 66% of the total land area, is also 

undergoing rapid transformations due to environmental policies and market demands (EPA, 

2023b). Finally, the country's natural habitats, including forests and wetlands which make up 

about 10% and 2% of the land area respectively, are facing pressures from both urban expansion 

and climate change (EPA, 2023c). These dynamic and diverse land use changes necessitate 

robust and accurate LULC classification systems to inform sustainable development policies, 

environmental conservation efforts, and effective resource management. This research is 

motivated by this need to address these challenges and provide a method for LULC classification 

and change detection, thereby supporting informed decision-making, resource management and 

sustainable urban planning. 

 

    This research aims to investigate how well CNN-based deep learning architecture performs for 

LULC classification and change detection in the area of interest – the Greater Dublin Area, 

during the period 2018 - 2024. 

 

    The major contributions of this research are as follows: 

1. A classification of the land use and land cover in the Greater Dublin Area with respect 

to the five most predominant classes, namely Agricultural Areas, Artificial Surfaces, 

Forest and Seminatural Areas, Water Bodies, and Wetlands.  

2. An analysis of change in land use and land cover in the area of interest over six years 

from 2018 to 2024. 

 

    This paper discusses and performs a critical analysis of past studies and related work in 

Section 2 with a focus on LULC classification and change detection using deep learning 

techniques. Subsequently in Section 3, the research methodology is discussed. Section 4 

discusses the design specification of the study and Section 5 discusses the implementation of the 

designed framework. The achieved results are presented and discussed in Section 6. Finally, the 

conclusion of this research and possible future works is presented in Section 7. 
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2. Related Work 

 

LULC classification and change detection using machine learning was introduced in the 1970s 

(Alshari & Gawali, 2021) and the two most widely used classification methods are the Maximum 

Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC) because of their 

dependability and simplicity (Khurana & Gupta, 2022; Srivastava et al., 2012). Tripathi & 

Kumar (2017) achieved an accuracy of 85-90% when they utilized MLC for change detection in 

the forest category of the Himalayan region of India; Samanta & Paul (2016) used the MLC 

technique for coastal LULC classification and change detection; Hossen et. al (2018) achieved a 

high accuracy of 93.33% using MLC and MDC techniques to assess and predict future changes to 

the LULC of Manzala Lake; and Sampath & Radhakrishnan (2022) employed MLC and MDC 

techniques in a comparative study on soil erosion rates using the RUSLE model. Chugtai, Abbasi 

& Karas (2021) in their study showed that the MLC and MDC models gave good results in the 

classification of vegetation and forest areas, however, their accuracy was reduced when applied 

to the classification of other regions such as urban landscapes. Additionally, Noi & Kappas 

(2019), showed that in the absence of high-resolution images, the MLC and MDC techniques 

failed to achieve consistently high accuracy as these methods use pixel comparison for 

classification.  

 

    Over the past decade, advanced machine learning methods such as support vector machines 

(SVMs), random forest (RF) etc. and deep learning methods like neural networks have been used 

for LULC classification. For example, studies by Gislason, Benediktsson & Sveinsson (2006) 

and Mochizuki & Murakami (2012) focus on using machine learning and assessing the 

performance of various tree-based classifiers, including random forests (RF), classification and 

regression trees (CART), and other decision trees using bagging and boosting methods. These 

studies found that random forests consistently outperformed the other classifiers. Shao & Lunetta 

(2012), used support vector machines (SVMs) for land cover classification tasks. Srivastava et al. 

(2012) used deep learning techniques for land use and land cover classification and showed that 

Artificial Neural Networks (ANNs) show better performance over SVM in classifying croplands. 

 

    As both machine learning and deep learning techniques have been equally effective in LULC 

classification, various comparative studies have been performed to determine the most effective 

approach. Rousset et al. (2021) performed a comparative study on SPOT6 satellite data for the 

topical island using XGBoost machine learning techniques and deep learning methods. Their 

study found that while both approaches performed similarly for land cover (LC) classification, 

the deep learning method outperformed XGBoost for land use (LU) classification, achieving an 

accuracy of 61.45% compared to XGBoost's 51.56%. Similarly, Kussul et al. (2017) evaluated 

the performance of CNNs against random forests using remote sensing data from Landsat-8 and 

Sentinel-1A satellites. Their study concluded that CNNs outperformed the random forest 

methods. Garcia, Gutierrez & Riquelme (2019) performed a comparative study between deep 

learning and machine learning techniques using five publicly available datasets having 

hyperspectral (Indian Pines, Salinas, Pavia) and radar (San Fransisco and Flevolad) images. 

These datasets cover both urban and rural landscapes and have different sizes, spatial resolutions, 

and number of classes. Support vector machines (SVMs), k-nearest neighbours (1NN, 2NN and 

5NN), random forest (RF) and CNNs techniques were applied to the datasets for classification. 
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Their findings showed that the CNN model had a better computation time (on both CPU and 

GPU) for four of the five datasets compared to the other machine learning models, consistently 

achieving accuracy greater than 95% and the highest average accuracy for all datasets. This 

demonstrated that deep learning – particularly CNNs, is capable of adapting to datasets of 

varying sizes and characteristics, making them a suitable choice for LULC image classification. 

The study however faced challenges in designing the CNN architecture and finding the optimal 

configuration and parameters. 

 

    This challenge was addressed in the research by Naushad et. al (2021), where they applied 

transfer learning instead of training CNNs from scratch. By applying transfer learning they fine-

tuned pre-trained networks, namely, the Visual Geometry Group (VGG16) and Wide Residual 

Networks-50 (ResNet-50), on the red–green–blue (RGB) version of the EuroSAT dataset. Their 

study results showed that Wide Residual Networks-50 (ResNet-50) outperformed the previous 

best results in both computational efficiency and accuracy, achieving an accuracy of 99.17%. 

This study however also showed that although there was a difference in the accuracy of the class 

prediction, the learning pattern of the VGG and ResNet50 was similar. Mahamunkar & Netak 

(2022), compared random forests with two variants of ResNet and VGG models on the EuroSAT 

dataset. Their results too corroborated the findings by Naushad et. al (2021) and showed that pre-

trained models achieved the highest accuracy, reinforcing that transfer learning is an effective 

approach for LULC classification using deep learning techniques. 

 

    Considering the performance of deep learning and transfer learning techniques in LULC 

classification, several studies have been carried out for different geographic regions on datasets. 

These studies have utilized datasets generated from a variety of satellite sources, including 

LandSAT, Sentinel-1, Sentinel-2, and others. Jagannathan & Divya (2021) used deep learning for 

LULC classification and change detection using deep convolutional neural networks for the 

region of Coimbatore, India. Sefrin, Reise & Keller (2021) performed image segmentation using 

a fully convolutional neural network (FCN) and long short-term memory (LSTM) network 

architectures to detect land cover change detection in the region around Klingenberg in the 

federal state of Saxony, Germany. Their approach followed generating a novel dataset by 

merging the ground truth dataset with the Sentinel-2 imagery and generating class labels before 

performing a training, validation and test split. 

 

    In conclusion, current research shows that various models such as ANNs, ResNet50, and 

VGG16 are used in the LULC classification and change detection for various geographic regions 

with very good performance. This includes performing the classification using the EuroSAT 

dataset as well as novel datasets generated from satellite imagery. However, to the best of our 

knowledge, no major study has been conducted on LULC classification and change detection for 

the Republic of Ireland from satellite imagery data. This research aims to address this gap by 

proposing a framework for LULC classification and change detection using the ResNet50 deep 

learning technique. 

 

3. Methodology 

 

The research methodology comprises five steps: data gathering, data pre-processing, data 

transformation, data modelling, and evaluation and results, as illustrated in Figure 1. 
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Figure 1: Research Methodology 

 

3.1. Data Gathering 

 

The first step in this study involves gathering the ground truth and Sentinel-2 input data for the 

years 2018 and 2024 for the area of interest. These three datasets are introduced in Section 3.1.1 

and Section 3.1.2 respectively. 

 

3.1.1.  Ground Truth Data 

 

The vector data produced by the EPA[1] covering the land cover classes for the Republic of 

Ireland is considered the ground truth for this study. From the ground truth data, the area of 

Greater Dublin is extracted. This area is located on the east coast of the Republic of Ireland and 

includes the capital city of Dublin and its surrounding counties of Meath, Kildare and Wicklow. 

The area of interest covers approximately 6,986 sq. kilometres and has a population of 

approximately 2.2 million (Eastern and Midland Regional Assembly, 2019). The ground truth 

land cover data consists of five major land cover classes: Agricultural Areas, Artificial Surfaces, 

Forest and Seminatural Areas, Water Bodies, and Wetlands. Figure 2 shows the ground truth data 

for the area of interest aggregated in 2018[1]. 
 

 
Figure 2: Visualization of Greater Dublin Area (area of interest); and the land cover ground truth data (2018) 

obtained from Environmental Protection Agency, Ireland. 
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3.1.2.  Sentinel-2 Input Data 

 

Sentinel-2, an optical imaging satellite launched in 2015 by the European Space Agency (ESA) 

as part of the Copernicus Programme provides multispectral imagery across 13 spectral bands 

ranging from visible and near-infrared (NIR) to short-wave infrared. The satellite program covers 

the Earth’s surface every five days, generating imagery with spatial resolutions of 10m, 20m, and 

60m depending on the specific spectral band (Drusch et al., 2011). As input data for this study, 

Sentinel-2 MSI (MultiSpectral Instrument, Level-1C) remotely sensing imagery with a maximum 

of 5% cloud cover is downloaded from the Copernicus online portal[2] for the years 2018 and 

2024. However, due to the extent of the area of interest, the data is not available in a single image 

and therefore, requires downloading separate images representing the North and South of the area 

of interest. Figure 3 shows the downloaded north and south images generated by the Sentinel-2 

satellite for the years 2018 and 2024. 

 

 
Figure 3: Downloaded Sentinel-2 images from the Copernicus portal. (a - b) North and South region of Greater 

Dublin Area for 2018; (c-d) North and South region of Greater Dublin Area for 2024 

 

3.2. Data Pre-Processing 

 

The second step involves applying pre-processing techniques to the gathered datasets and 

preparing them for LULC classification and change detection using deep learning. For the ground 

truth vector data, the pre-processing includes reclassification, clipping, rasterization, and 

reprojection; while for the Sentinel-2 the pre-processing involves band merging, image 

combination, and reprojection. 

 

    The ground truth data containing detailed classification is first reclassified into five high-level 

classes discussed in Section 3.1.1. Next, an outline map of the Greater Dublin Area is 

downloaded from the Copernicus Land Monitoring Service Urban Atlas[3]. Using this outline 

map the reclassified shapefile is clipped to the area of interest. This reclassified and clipped 

ground truth shapefile covering the area of interest is then rasterised by class labels to a spatial 

resolution of 10m. This resolution of the ground truth raster image is selected to match the 

resolution of the Sentinel-2 imagery. 

1 https://gis.epa.ie/GetData/Download 
2https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018#download 
3https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2 
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    As presented in Section 3.1.2., the Sentinel-2 data for the years 2018 and 2024 is downloaded 

as separate images representing the north and south sections of the area of interest and has 

information across multiple spectral bands. Therefore, first, the multiple spectral bands (B2, B3, 

B4 and B8), all at 10m resolution, are merged to generate a single multi-band image and the 

process is repeated for the downloaded image tiles representing the north and south region. The 

generated multi-band images were then mosaiced into a single image. Further, this combined 

image was clipped to cover the area of interest using the preprocessed ground truth vector file. 

Next, the ground truth raster data and combined Sentinel images were reprojected to the same 

Coordinate Reference System (EPSG: 32629 WGS 84 / UTM zone 29N). Figure 4 shows tiled 

and labelled 2018 Sentinel-2 sample images representing the five classes. 

 

    Lastly, tiled images of 64*64 pixels were created using the rasterised ground truth data for 

2018 and the mosaiced satellite imagery for the years 2018 and 2024. For 2018, these tiled 

images were then classified according to the ground truth class labels resulting in a fully labelled 

2018 satellite imagery dataset. The 2024 tiled images were unlabelled as the ground truth data is 

currently not available and thus these images were used without labels for prediction. Figure 4 

shows tiled and labelled 2018 Sentinel-2 sample images representing the five classes. Figure 5 

shows tiled sample images from the 2024 Sentinel-2 dataset. 

 
Figure 4: Land use and Land cover sample tiled images generated from Sentinel-2 satellite for 2018. (a-e) 

Agricultural Areas; (f-i) Artificial Surfaces; (j-l) Forest and Seminatural Areas; (m-o) Water Bodies; (p-r) Wetlands 

 

 
Figure 5: Land use and Land cover sample tiled images generated from Sentinel-2 satellite for 2024. 
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3.3. Data Transformation 

 

The third step involves data augmentation, image resizing and normalization of the pre-processed 

Sentinel-2 dataset. Data Augmentation is the process of generating slightly modified samples 

from existing data that can help enrich the training dataset and improve model generalization and 

performance. This can be achieved through various techniques such as geometric 

transformations, colour space adjustments, and noise injection (Shorten & Khoshgoftaar, 2019). 

In this study, the collected dataset for 2018 contained 5 classes: Artificial Surfaces (12,778 

images), Agricultural Areas (1,451 images), Forest and Seminatural Areas (1,944 images), Water 

bodies (80 images), and Wetlands (859 images). This imbalance in class could result in the model 

being biased towards the dominant class. As a result, several data augmentation techniques were 

applied during the training phase using the Pytorch 'transforms' module. 'RandomHorizontalFlip' 

and 'RandomVerticalFlip' were used to randomly flip the images along horizontal and vertical 

axes, 'RandomRotation' was applied to rotate the image by 20 degrees, and 'ColorJitter' was 

applied to generate samples with different brightness, contrast, saturation and hue. The random 

seed value was set to 20. 

 

    ResNet50 model is pre-trained on the ImageNet dataset, thus it is crucial to standardize the 

input dataset to match the data distribution of the pre-trained model. To achieve this, 

normalization technique was applied to the dataset. 'RandomResizedCrop' was used to randomly 

crop a portion of the image and resize it to the target size of 224x224 pixels. This also involved 

scaling the pixel value to a range defined by the mean and standard deviation of the ImageNet 

dataset. The mean and standard deviation values were set to [0.485, 0.456, 0.406] and [0.229, 

0.224, 0.225] respectively[4].  

 

    The transformed 2018 dataset was split into a ratio of 60:20:20 as training, validation and test 

datasets. The 2024 unlabelled image dataset was used only as a test dataset. Data augmentation, 

resizing, and normalization were all applied to the training dataset, whereas only resizing and 

normalization were applied to the validation and test datasets. Figure 6 shows the data pre-

processing and data transformation workflow. 

 

3.4. Data Modelling 

 

The fourth step consisted of training a deep, multi-layered CNN architecture ResNet50 using 

transfer learning. 'ResNet' stands for Residual Network and '50' refers to the number of layers in 

this network. This is a pre-trained model that has been trained on Google servers on the ImageNet 

dataset. The ImageNet dataset is a large-scale image dataset containing over 14 million images 

across 1,000 different classes. The ResNet50 architecture is divided into four main components: 

the convolutional layer, the identity block, the convolutional block and the fully connected layers. 

The convolutional layers extract features from the input image, while the identity and 

convolutional blocks process and transform these features. Finally, the fully connected layers are 

used to make the final classification (Medium, 2023). By leveraging the pre-trained weights from 

ImageNet, ResNet50 can effectively transfer learned features and improve the model's 

performance on new tasks. This approach significantly reduces the need for extensive training 

data and computational resources, making it a powerful tool for image classification tasks. Figure 

7 shows the ResNet50 model architecture. 
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Figure 6: Data pre-processing and transformation workflow for the ground truth and Sentinel-2 datasets 

 

 
Figure 7: ResNet50 Model Architecture with internal layerwise detail (Shabbir et al., 2021) 
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3.5. Evaluation 

 

The last step in the research involved assessing the model’s performance using key performance 

metrics and measuring the change in land use and land cover areas for each classification 

category between the years 2018 and 2024. This step allowed for a detailed comparison of the 

extent to which different land use types had changed over the specified period and also provided 

insights into the accuracy of the model's predictions. 

 

4. Design Specifications and Implementation 

 

This section outlines the modelling and evaluation techniques, the architecture utilized to 

implement these methods, and the associated requirements. Section 4.1 details the modelling 

techniques used, while Section 4.2 describes the evaluation methods employed to assess the 

model's performance. Section 4.3 discusses the architecture utilized for the implementation of the 

discussed techniques, while Section 4.4 discusses the associated requirements. 

 

4.1. Modelling Techniques 

 

This research uses the Convolutional Neural Network (CNN) with the ResNet-50 architecture 

version 2.0 pre-trained on the ImageNet dataset, which is known for its robustness in image 

classification tasks (Sharma, Jain & Mishra, 2018). Implemented in Pytorch v2.3.1, the pre-

trained ResNet-50 model has 23,518,277 trainable parameters and utilizes residual learning 

through 50 layers and skip connections to effectively capture complex patterns and features in 

large-scale image data (He et al., 2016), making it particularly effective for LULC classification 

compared to other CNN models (Dastour & Hassan, 2023). In this research, the pre-trained 

model layers were kept open to learn new features from the training dataset. The feature matrices 

extracted from the convolutional layers were supplied to the fine-tuned fully connected layer, 

specifically designed to match the number of output classes. The key parameters of the 

experimental setup, including the activation function, optimizer, learning rate, loss function, and 

number of epochs, are summarized in Table 1. 

Table 1: ResNet50 parameters used in this research 

Parameters Values

Activation Function Softmax

Optimizer Stochastic Gradient Descent (SGD)

Learning Rate 0.001

Loss Function Cross-Entropy

Number of Epochs 10  
 

4.2. Evaluation Techniques 

 

In this study, the ResNET50 model was used for the classification of both labelled and unlabelled 

datasets, as discussed in Section 3.3. Therefore, depending on the type of the dataset different 

evaluation techniques were employed to measure the model performance. Section 4.2.1. discusses 

the evaluation techniques used to measure the model’s performance on labelled 2018 data. 
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Section 4.2.2. discusses the methods of evaluating the model's performance on unlabelled 2024 

data. Section 4.2.3. discusses the techniques used for change detection. 

 

4.2.1. Evaluation Techniques for Prediction of Labelled Data (2018) 

 

In this case, the model efficacy was evaluated by analyzing the confusion matrix which detailed 

the predicted versus true class distribution. Figure 8 shows a 2*2 confusion matrix for a binary 

classification task.  

 
Figure 8: 2 * 2 confusion matrix for the binary classification 

 

    This distribution provides insights into the number of correct and incorrect predictions for each 

class, helping identify patterns of misclassification, and analysing key performance matrices such 

as overall accuracy (OA), class-wise accuracy, precision (P), recall (R), F-Score and Cohen’s 

Kappa Coefficient. 
 

    The overall accuracy (OA) metric is a crucial measure for any CNN model as it represents the 

ratio of the total correct predictions divided by the total number of predictions. Precision (P) is 

the ratio of correctly classified images to the total number of images classified in a particular 

category, while recall (R) is the ratio of correctly classified images to the total number of relevant 

images present in the database. Furthermore, F-Score and Cohen’s Kappa coefficient () were 

also calculated to provide additional insights into the model’s performance.nMathematically 

overall accuracy, precision, recall, F-Score, and κ can be calculated from the equations (1) – (5). 

 

  
 

    Additionally, class-wise performance metrics such as classwise accuracy, precision, recall and 

F-Score were calculated. This measures the model's performance in correctly predicting instances 

for each specific class individually which helps to analyze any potential imbalance in prediction 
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accuracy and also assess the model performance not only overall but also at an individual class 

level. 

 

4.2.2. Evaluation Techniques for Prediction of Unlabelled Data (2024) 

 

    To evaluate the model’s effectiveness in predicting unlabelled 2024 satellite data, two distinct 

techniques were employed to evaluate the model’s effectiveness in predicting unlabeled data. 

 

        1. Manual Verification Technique: This technique involved selecting a small, random subset 

of images from the dataset and manually labelling them to create a reference set. By comparing 

the model’s predictions for these manually labelled images with the predicted labels, key 

performance metrics like accuracy and precision can be calculated (Yakimovich et al., 2021). 

Although this approach is limited, it is practical and provides a method to check the model’s 

overall performance. For this research, 10% of the total images belonging to each class were 

selected and manually labelled for 2024. After model prediction the predicted class labels were 

compared to the manually labelled ground truth to evaluate the model's performance.  

 

        2. Pseudo Labeling technique: Pseudo labelling is a semi-supervised learning technique 

where the model's predictions on unlabeled data are used as 'pseudo-labels' to augment the 

labelled training dataset (Medium, 2022). After the model prediction is completed on the 

unlabelled dataset, an evaluation is done using the 10% sampling method, as explained in 4.2.2.1. 

The sampled manually labelled data is then added to the existing 2018 labelled data used to train 

the model earlier. The model is then re-trained using this new 'pseudo-labelled' augmented 

dataset. This newly trained model is then used to make the predictions for the unlabelled dataset. 

These new predictions are re-evaluated using the 10% manual verification technique as explained 

in 4.2.2.1. Figure 9, shows the workflow for implementing the pseudo-labelling technique for 

unlabelled dataset.  

 
Figure 9: Workflow for implementing 'pseudo-labelling' technique for unlabelled data 

 

4.2.3. Evaluation Techniques for Change Detection 

 

To assess the change in LULC for the area of interest, first the land area covered by five different 

classes was calculated for the years 2018 and 2024 using Sentinel-2 satellite imagery. The area 

for each class was then compared by subtracting the 2018 values from the 2024 values to 

determine the percentage change. Following this technique gives the extent and direction of land 

cover changes over the six years. 

 

4.3. Utilized Architecture for Implementation 

 

For the implementation of the proposed workflow - data collection, processing, transformation, 

modelling, and evaluation, this research utilizes various software tools. For data collection, pre-
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processing, and transformation, this research used the QGIS version 3.28 and ArcGIS Pro version 

2.9 software, along with Python GeoPandas (gpd), Rasterio, Pandas and Numpy libraries. The 

modelling technique is implemented using PyTorch version 2.3.1; while the evaluation was 

conducted using the Python scikitlearn ('sklearn') library. All the experiments were performed on 

an Apple MacbookPro with an M1 chip, 8-core CPU, 8 GB RAM, and 512 GB storage, running 

on macOS Sonoma version 14.5. The Python code was developed and executed within the 

Jupyter Notebook environment, version 6.4.3. Furthermore, Python libraries 'matplotlib', and 

'seaborn' were utilized for visualization purposes. 

 

4.4. Associated Requirements 

 

The associated requirements for this research included accessing data from the official EPA, 

Ireland, and Copernicus websites. Additionally, UTM was required to run a Windows virtual 

machine on a Mac to work with the ArcGIS software and GitHub repositories were used to 

understand ResNET50 architecture. 

 

5. Evaluation and Result Analysis 

 

The following section presents the main findings from the research using the evaluation 

techniques discussed in Section 4.2. Sections 5.1 and 5.2 focus on the classification results for the 

years 2018 and 2024. Section 5.3 discusses the change in Land Use and Land Cover for the same 

period. 

 

5.1. Classification Results with 2018 Satellite Data 

 

The ResNet50 model was trained on a 60% subset and validated on a 20% subset of the 

augmented 2018 satellite data, as detailed in Section 3.3. After 10 epochs, the model achieved an 

accuracy of 92.37% on the training dataset and 92.01% on the validation dataset. The training 

and validation loss were 0.20 and 0.20 respectively. Figures 10a and 10b display the accuracy 

and loss metrics for the training and validation dataset over 10 epochs. 

 
Figure 10: Demonstration of training and validation samples (a) accuracies and (b) the loss values 
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    When the model was evaluated on the test dataset, it showed an overall accuracy of 92.48% 

and a loss value of 0.19. Additionally, as discussed in Section 4.2.1 the confusion matrix and 

other performance parameters such as precision, recall, F-score and kappa coefficients were also 

evaluated. The precision, recall, F-score and κ values are 92.41%, 92.51%, 92.45% and 0.91 

respectively. Figure 11 shows the confusion matrix for the 2018 image classification across five 

classes. Table 2 provides a summary of the various performance metrics overall.  

 

 

Figure 11: Confusion matrix for 2018 augmented test dataset 

Table 2: Summary of model performance on the 2018 test dataset  

Performance Metrics Scores 

Overall Accuracy 92.48% 

Precision 92.41% 

Recall 92.51% 

F-Score 92.45% 

Cohen's Kappa Coefficient 0.91 

 

   The high values of overall accuracy and balanced precision and recall, as shown in Table 2 and 

Figure 9, demonstrate the strong overall predictive performance of the proposed model. The F-
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score, which balances precision and recall, is also high, confirming that the model has a good 

trade-off between avoiding false positives and false negatives. However, for a more detailed 

evaluation of a multi-class problem, class-wise metrics are needed as they show the percentage of 

correctly classified samples for each class. Table 3 summarises classwise performance metrics in 

the labelled 2018 image dataset. 

Table 3: Classwise performance for the 2018 test dataset 

Class Name Accuracy (%) Precision (%) Recall (%) F-Score (%) 

Agricultural Areas 96.26 96.26 97.22 96.74 

Artificial Areas 95.15 95.15 97.33 96.23 

Forest and Seminatural Areas 85.62 85.62 81.33 83.42 

Water Bodies 99.13 99.13 99.96 99.54 

Wetlands 85.88 85.88 86.73 86.31 
 

The classwise performance, as shown in Table 3, further validates the overall effectiveness of the 

model as indicated in Table 2. The model performs well in classifying Agricultural Areas, 

Artificial Areas and Water Bodies as it shows high accuracy and balanced precision and recall. 

However, the performance falls for the prediction of Forest and Seminatural Areas and Wetlands, 

as the accuracy and F-scores are ~85%, indicating few challenges in correctly classifying these 

more complex or variable land cover types. The relatively lower recall for these classes also 

suggests the model may struggle with false negatives in these classes, potentially missing some 

true instances. 

 

5.2. Classification Results with 2024 Satellite Data 

The trained model was used to classify 2024 tiled images into five land cover classes, namely 

Agricultural Areas, Artificial Surfaces, Forest and Seminatural Areas, Water Bodies, and 

Wetlands. To assess the model’s prediction, the manual verification technique was used, as 

discussed in Section 4.2.2. A randomly selected 10% subset of this unlabelled data was manually 

labelled to establish a ground truth for comparison with the model’s predictions. Table 4 presents 

the classwise performance for the model's predictions on the 10% manually labelled dataset 

before pseudo-labelling. 

Table 4: Classwise performance for 10% predicted 2024 dataset before pseudo-labelling 

Class Name Accuracy (%) Precision (%) Recall (%) F-Score (%) 

Agricultural Areas 97.85 97.86 74.05 84.31 

Artificial Areas 27.41 27.41 86.21 41.61 

Forest and Seminatural Areas 42.6 42.61 55.37 48.16 

Water Bodies 31.81 31.82 87.5 46.67 

Wetlands 51.09 52.01 14.77 23.01 

 

    The results show strong performance in predicting the 'Agricultural Areas' class. However, the 

performance metrics suggest that the model failed to predict the other classes, namely Artificial 

Surfaces, Forest and Seminatural Areas, Water Bodies, and Wetlands, with the same level of 

accuracy. Additionally, the results also showed very low values of precision, recall and F-score 
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indicating challenges in the model's ability to consistently and accurately identify these other 

classes, likely leading to a high rate of misclassification. To address this challenge, the pseudo-

labeling technique was applied, and the model's predictions were re-evaluated, as discussed in 

Section 4.2.2.2. Table 5 presents the classwise performance for the model's predictions after 

applying the pseudo-labelling. 

Table 5: Classwise performance for 10% predicted 2024 dataset after pseudo-labelling 

Class Name Accuracy (%) Precision (%) Recall (%) F-Score (%) 

Agricultural Areas 95.73 95.73 96.78 96.26 

Artificial Areas 71.25 71.26 89.47 79.33 

Forest and Seminatural Areas 78.73 78.72 58.42 67.07 

Water Bodies 99.99 99.98 50.01 66.67 

Wetlands 62.16 62.16 66.35 64.19 
 

    The results indicate that after applying pseudo-labeling, the model's performance showed a 

significant improvement in predicting the five land use and land cover classes across various 

metrics. Furthermore, there were fewer misclassifications compared to the initial prediction done 

on the data without pseudo-labelling, particularly in the more challenging classes of Forest and 

Seminatural Areas and Wetlands.  

 

5.3. Change Detection 

Table 6 and Table 7 present the spatial area covered by the five different classes and the 

percentage of the area of interest for 2018 and 2024. Table 8 indicates the change in the spatial 

coverage of the land cover classes. 

Table 6: Land cover classes with their spatial coverages and percentages of the area of interest for 2018 

Class Name 
Spatial Coverage  

(sq. km) 

Percentage of the area of 

interest 

Agricultural Areas 5233.87 74.67% 

Artificial Areas 594.33 8.48% 

Forest and Seminatural Areas 796.26 11.36% 

Water Bodies 32.77 0.47% 

Wetlands 351.85 5.02% 
 

Table 7: Land cover classes with their spatial coverages and percentages of the area of interest for 2024 

Class Name 
Spatial Coverage  

(sq. km) 

Percentage of the area of 

interest 

Agricultural Areas 5276.06 75.27% 

Artificial Areas 681.16 9.72% 

Forest and Seminatural Areas 571.8 8.16% 

Water Bodies 26.21 0.37% 

Wetlands 453.84 6.48% 
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Table 8: Change in spatial coverage of Land cover classes between the years 2018 and 2024 

Class Name 
Change in Spatial Coverage  

(sq. km) 

Percentage change of the 

area of interest 

Agricultural Areas 42.19 0.60% 

Artificial Areas 86.83 1.24% 

Forest and Seminatural Areas -224.46 -3.20% 

Water Bodies -6.56 -0.09% 

Wetlands 101.99 1.46% 

 

    The results show that in both 2018 and 2024, the 'Agricultural Areas' class represents the 

largest proportion of spatial coverage in the Greater Dublin Area. In 2018, the Agriculture class 

covered 74.67% of the total land cover and covered 75.27% of the total land cover in 2024. In 

2018 the second largest class was 'Forest and Seminatural Areas' covering 11.36% of the land. 

There is however a notable shift with 'Artificial Areas' surpassing Forest and Seminatural Areas 

to become the second-largest class, covering 9.72% of the area. 

 

    The results from Table 8 show that 'Agricultural Areas' saw a slight increase of 42.19 km2, or 

0.60% growth. Artificial Areas experienced a more substantial expansion, growing by 86.83 km2 

or 1.24%, indicating increased urban and built environments. This result seems consistent with 

the data released by Central Statistics Office Ireland, 2023. In contrast, Forest and Seminatural 

Areas faced a significant reduction, with a decrease of 224.46 km2 (3.20%), suggesting a notable 

loss of these natural areas, possibly due to development or land conversion. Water Bodies saw a 

slight decline of 6.56 km2 or 0.09%, while Wetlands increased by 101.99 km2 (1.46%), indicating 

growth in wetland areas, potentially from conservation efforts or natural processes. 

 

6. Conclusions and Discussion 

 

The aim of this research was the classification of the LULC in the Greater Dublin Area with 

respect to the five most predominant classes, namely Agricultural Areas, Artificial Surfaces, 

Forest and Seminatural Areas, Water Bodies, and Wetlands and change detection between the 

years 2018 and 2024 using ResNET50 deep learning architecture. Results from this research 

indicated that transfer learning is a reliable approach that can be used for LULC classification 

using satellite images. The proposed methodology was able to classify the images with an overall 

accuracy of 92.48 and an average classwise accuracy of 92.40%. Additionally, the pseudo-

labelling technique demonstrates enhanced performance and reliability in the model's predictions 

and could be a favourable approach for LULC and change detection which involves working with 

unlabelled testing datasets. Lastly, the change detection from this research reflects ongoing shifts 

in land use and land cover, with notable expansions in urban and wetland areas and reductions in 

forested regions. 

 

    This work can be improved by optimizing the model and supplementing the model training by 

providing high quantity and quality data having higher inter and intra-class variability. This work 

can also be improved by comparing the prediction results with ground truth data is crucial for 

evaluating and validating the model's performance and exploring other techniques for semi-
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supervised and unsupervised classification, such as advanced algorithms or hybrid approaches. 

Furthermore, this study can be expanded to include more diverse geographical areas and temporal 

scales. This could offer a more comprehensive understanding of land cover dynamics and 

contribute to the development of more robust and adaptable classification systems. 
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